
NONCOMMUTATIVE HARMONIC ANALYSIS

WITH APPLICATIONS TO PROBABILITY

BANACH CENTER PUBLICATIONS, VOLUME 78

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2007

ASYMPTOTIC SPECTRAL ANALYSIS OF
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Abstract. Motivated by the Watts–Strogatz model for a complex network, we introduce a

generalization of the Erdős–Rényi random graph. We derive a combinatorial formula for the

moment sequence of its spectral distribution in the sparse limit.

1. Introduction. Since the epoch-making papers by Watts–Strogatz [13] in 1998 and by

Barabási–Albert [1] in 1999 the network science has become one of the most fashionable

interdisciplinary research areas in current years. Various network models proposed so

far are very interesting from the mathematical point of view too. We aim at exploring

spectral properties of complex networks with mathematical rigor, along with the quantum

probabilistic techniques (see Hora–Obata [11] and references cited therein).

As characteristics of real world complex networks, simple statistics such as the degree

distribution, the mean distance of vertices, and the cluster coefficient have been discussed

in many papers. To go into further detailed structure, spectral analysis is expected to

be one of the promising directions, as was indicated by Dorogovtsev–Goltsev–Mendes–

Samukhin [7], Dorogovtsev–Mendes [8], Farkas–Derényi–Barabási–Vicsek [9], Rodgers–

Austin–Kahng–Kim [12], and others. For recent relevant works see Chung–Lu [5] and

references cited therein.

In this paper, motivated by the Watts–Strogatz model [13], we propose a model for a

complex network and study its spectra in the sparse limit. Although the Watts–Strogatz
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model is described in terms of a simple algorithm and is suitable for computer simulation,

its mathematical analysis seems very difficult because as a stochastic process it requires to

remember long history. Our model is obtained by simplifying this point and, as a result,

shares a common spirit with the famous Erdős–Rényi random graph G(n, p), which is a

random graph with n vertices where an edge between two vertices occurs with probability

p and is independent of other edges, see Bollobás [3] for a comprehensive survey. Our

model G(n,R; p, p′) is, in a strict sense, not a random “graph” but a random “network.”

In fact, in terms of the adjacency matrix A = (Aij), the matrix element Aij is a random

variable taking values in {0, 1/2, 1}. Moreover, the distribution of Aij varies according

to a “geometric distance” between two vertices i and j, defined by a relation R among

vertices.

This paper is organized as follows. In Section 2 we assemble some basic notions and

notations. In Section 3 we recall a combinatorial formula (Theorem 3.3) for computing

the moments of eigenvalue distribution of a random matrix. In Section 4 we define a

generalized Erdős–Rényi random graph G(n,R; p, p′) and derive a combinatorial formula

for the moments of its mean spectral distribution (Theorem 4.3). In Section 5 we propose

two concrete models by specifying a relation R in our model G(n,R; p, p′). In both cases

the mean degree is a linear combination of p, p′, np′ so we are interested in the sparse

limit taken as

n→ ∞, p′ → 0, np′ → λ (constant).

We derive formulae for the moments of their mean spectral distributions in the sparse

limit in terms of graph-geometric characteristics (Theorems 5.8 and 5.10). Section 6

contains some remarks on the Erdős–Rényi random graphs.

Acknowledgements. The second author is grateful to M. Bożejko for helpful demon-

stration of Proposition 6.4. Thanks are also due to W. M lotkowski for stimulating dis-

cussion on combinatorics concerning the Erdős–Rényi random graphs.

2. Preliminaries

2.1. Spectral distribution of a finite graph. Let G = (V,E) be a finite graph, where V

is the vertex set (a non-empty finite set) and E the edge set (a subset of the two-point

subsets of V ). Let A = (Aij)i,j∈V be the adjacency matrix of G defined by

Aij =

{

1, if {i, j} ∈ E,

0, otherwise.

Clearly, A is a symmetric matrix with zero diagonal elements and off-diagonal elements

taking values in {0, 1}. Let λ1 < λ2 < · · · < λs be the eigenvalues of A with multiplicities

m1,m2, . . . ,ms. These data are often referred to as the spectrum of G, for generalities see

e.g., Chung [4], Cvetković–Doob–Sachs [6], Hora–Obata [11]. We associate a probability

distribution µG on R defined by

µG(dx) =
1

|V |

∑

k

mkδ(x− λk)dx,
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which we call the spectral distribution of G (or of A). Note that µG is characterized by

its moment sequence:

(2.1) Mm(µG) =

∫ +∞

−∞

xmµG(dx) =
1

|V |
Tr (Am), m = 1, 2, . . . .

2.2. Mean spectral distribution of a random graph. In general, by a random graph

we mean a probability space G whose sample space consists of graphs. For a random

graph G the spectral distribution µG becomes a random measure on R so we are inter-

ested in the mean spectral distribution µ = E(µG) which is again a probability measure

on R.

In this paper, we restrict ourselves to a random graph whose vertex set is common

for all sample graphs. More precisely, let V be a finite set, say V = {0, 1, 2, . . . , n − 1},

and Ω the set of all graphs with vertex set V . A probability space (Ω, P ), where P is a

probability measure on Ω, is our random graph and denoted by G(n, P ). Here we note

that Ω is not a set of equivalence classes determined by graph-isomorphisms, but consists

of 2(n
2) sample graphs.

Proposition 2.1. The mean spectral distribution µ of a random graph G(n, P ) is char-

acterized by its moment sequence:

(2.2) Mm(µ) =
1

n
E(Tr (Am)), m = 1, 2, . . . .

Proof. Relation (2.2) follows by taking the expectation of (2.1). Since µ = E(µG) is

supported by a finite subset of R, we see by Carleman’s moment test (e.g., Hora–Obata

[11, Chapter 1]) that µ is uniquely determined by its moment sequence.

2.3. A random graph with independent edges. Given a random graph G(n, P ), the ad-

jacency matrix A = (Aij)i,j∈V becomes a random matrix satisfying the following condi-

tions:

(A0) Aij is a {0, 1}-valued random variable;

(A1) the diagonal elements vanish, i.e., Aii = 0 for all i ∈ V ;

(A2) A is symmetric, i.e., Aij = Aji for all i, j ∈ V .

Conversely, a random matrix A with index set V satisfying conditions (A0)–(A2) deter-

mines a random graph G(n, P ) whose adjacency matrix is A.

Our concern in this paper is a random graph with independent edges, which means

that the occurrence of an edge is independent of other edges. In terms of the adjacency

matrix, this condition is equivalent to the following

(A3) the random variables {Aij ; 0 ≤ i < j ≤ n− 1} are independent.

Thus, it follows from Proposition 2.1 that the mean spectral distribution of a random

graph with independent edges is reduced to computation of E(Tr (Am)) for a random

matrix A satisfying (A0)–(A3). A useful formula will be derived in the next section.
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3. A combinatorial formula for computing moments

3.1. Moments of a random matrix. We consider a random matrix A with index set

V = {0, 1, 2, . . . , n− 1} satisfying conditions (A1)–(A3) and, instead of (A0) we assume

(A0′) Aij is a real-valued random variable having finite moments of all orders.

Let D(A) denote the set of distributions of the matrix elements of A.

Our goal in this section is to derive a combinatorial formula for computing E((Am)00).

For m = 1 we see trivially from (A1) that

(3.1) E(A00) = 0.

For m ≥ 2 we start with the obvious expression:

(3.2) E((Am)00) =
∑

06=i1 6=i2 6=···6=im−1 6=0

E(A0i1Ai1i2 · · ·Aim−10),

where condition (A1) is taken into account. The case of m = 1 may be considered as

a special case of (3.2) on the understanding that the sum over an empty set is zero.

Remarks of this kind will be omitted below.

We need some notation. For m ≥ 2 let W(V,m) be the set of sequences of elements

in V of the form:

(3.3) [i] : (i0 ≡) 0 6= i1 6= i2 6= · · · 6= im−1 6= 0 (≡ im).

Given [i] ∈ W(V,m) as in (3.3), let G[i] denote the underlying graph. Namely, its vertex

set V (G[i]) is defined to be the set of elements appearing in the sequence [i] (including 0).

Two distinct vertices j, j′ ∈ V (G[i]) are adjacent by definition if there exists 0 ≤ s ≤ m−1

such that {is, is+1} = {j, j′}. Thus the edge set E(G[i]) is defined. It is then obvious that

[i] becomes an m-step walk in the graph G[i] starting from and terminating at 0 and

passing through all the edges.

We will assign a label to every edge of G[i]. For e = {j, j′} ∈ E(G[i]) define

ν(e) = the distribution of Ajj′ = Aj′j ,(3.4)

κ(e) = |{0 ≤ s ≤ m− 1 ; {is, is+1} = {j, j′}}|.(3.5)

Note that κ(e) is the number of how many times the walk [i] passes through the edge e.

Thus, each edge e ∈ E(G[i]) is given a label (ν(e), κ(e)) ∈ D(A) × {1, 2, . . . ,m}.

Lemma 3.1. For m = 1, 2, . . . we have

(3.6) E((Am)00) =
∑

[i]∈W(V,m)

∏

e∈E(G[i])

Mκ(e)(ν(e)),

where Mκ(ν) stands for the κ-th moment of ν.

Proof. Let m ≥ 2 and consider a general term in (3.2):

E(A0i1Ai1i2 · · ·Aim−10), [i] ∈ W(V,m).

On computing the above expectation we need to note that Ajj′ = Aj′j appears with

multiplicities inside the bracket. So, writing

A0i1Ai1i2 · · ·Aim−10 =
∏

0≤j<j′≤n−1

A
sjj′

jj′ , sjj′ = 0, 1, 2, . . . ,
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we apply independence condition (A3) to obtain the factorization:

E(A0i1Ai1i2 · · ·Aim−10) =
∏

0≤j<j′≤n−1

E(A
sjj′

jj′ ).

Obviously, sjj′ ≥ 1 occurs only when {j, j′} ∈ E(G[i]) and sjj′ = κ({j, j′}). In this case,

E(A
sjj′

jj′ ) = Mκ({j,j′})(ν({j, j′})).

Consequently,

E(A0i1Ai1i2 · · ·Aim−10) =
∏

e∈E(G[i])

Mκ(e)(ν(e))

and, taking a sum over [i] ∈ W(V,m), we obtain (3.6).

3.2. A labeled rooted graph. We proceed to compute the right hand side of (3.6). Let

m ≥ 2 and D a finite set. A D-labeled rooted graph of size m, denoted by L = (V , E , o, ν, κ),

consists of

(L1) a connected graph (V , E) with 2 ≤ |V| ≤ m;

(L2) a distinguished vertex o ∈ V which is called the root;

(L3) a map ν : E → D;

(L4) a map κ : E → {1, 2, . . . ,m} such that
∑

e∈E κ(e) = m.

The pair (ν, κ) is called the label of L. We write V = V (L) and E = E(L). We note an

obvious inequality:

(3.7) |V| − 1 ≤ |E| ≤ m,

where the first one follows by connectivity of (V , E) and the second from (L4), see also

Proposition 5.4 below.

Two labeled rooted graphs are called isomorphic if there exists a graph-isomorphism

preserving the root and label. Let Λm(D) denote the complete set of representatives of

D-labeled rooted graphs of size m up to isomorphisms.

For [i] ∈ W(V,m), m ≥ 2, the underlying graph G[i] is naturally equipped with struc-

ture of a D(A)-labeled rooted graph of size m, which is denoted by L[i] = (G[i], 0, ν, κ),

where the label (ν, κ) is defined in (3.4) and (3.5). Noting that the product factor in (3.6)

is constant on [i]’s generating isomorphic L[i]’s, we obtain the following

Lemma 3.2. For m = 1, 2, . . . we have

(3.8) E((Am)00) =
∑

L∈Λm(D(A))

|{[i] ∈ W(V,m) ; L[i] ∼= L}|
∏

e∈E(L)

Mκ(e)(ν(e)).

Finally, we study the combinatorial number appearing in the above formula. We need

further notation. A unicursal walk on L = (V , E , o, ν, κ) ∈ Λm(D) is a walk on the graph

(V , E) from the root o to itself such that every edge e ∈ E is passed through as many

times as κ(e). It follows from (L4) that a unicursal walk is necessarily of m-step. Let u(L)

denote the number of unicursal walks in L. Obviously, u(L) is independent of the ν-label

of L = (V , E , o, ν, κ).
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An A-admissible embedding of L = (V , E , o, ν, κ) ∈ Λm(D(A)) is an injective map

ϕ : V → {0, 1, 2, . . . , n− 1} such that ϕ(o) = 0 and for every {v, v′} ∈ E , ν({v, v′}) coin-

cides with the distribution of Aϕ(v)ϕ(v′). Let t(L;n) denote the number of A-admissible

embeddings. The number is irrelevant to the κ-label of L = (V , E , o, ν, κ).

Theorem 3.3. Let A be a random matrix indexed by V = {0, 1, 2, . . . , n − 1} satisfying

conditions (A0 ′), (A1)–(A3). Then, for m = 1, 2, . . . we have

(3.9) E((Am)00) =
∑

L∈Λm(D(A))

|Aut (L)|−1u(L)t(L;n)
∏

e∈E(L)

Mκ(e)(ν(e)).

Proof. By Lemma 3.2 we need only to show that

|{[i] ∈ W(V,m) ; L[i] ∼= L}| = |Aut (L)|−1u(L)t(L;n), L ∈ Λm(D(A)).

Let L ∈ Λm(D(A)) = (V , E , o, ν, κ) be fixed. Let Ξ be the set of unicursal walks on L and

Φ the set of A-admissible embeddings of L. We first introduce a map Φ×Ξ → W(V,m).

For ϕ ∈ Φ and a unicursal walk [ξ] ∈ Ξ, which is of the form:

[ξ] : o ∼ ξ1 ∼ ξ2 ∼ · · · ∼ ξm−1 ∼ o,

we define ϕ([ξ]) to be just the image of the above sequence. Then, since ϕ is injective

and ϕ(o) = 0, we have

ϕ([ξ]) : 0 6= ϕ(ξ1) 6= ϕ(ξ2) 6= · · · 6= ϕ(ξm−1) 6= 0.

Indeed, ϕ([ξ]) ∈ W(V,m) so that L(ϕ([ξ])) ∈ Λm(D(A)) is defined. It is obvious that

L(ϕ([ξ])) ∼= L by the properties of ϕ and [ξ]. Conversely, every [i] ∈ W(V,m) such that

L[i] ∼= L is of the form [i] = ϕ([ξ]). In fact, an isomorphism ψ : L[i] → L induces a

bijection from the vertex set of G[i] onto V . Let ϕ be the inverse of this bijection. It is

obvious that [ξ] = ψ([i]) is a unicursal walk on L and ϕ([ξ]) = [i]. Thus,

{[i] ∈ W(V,m) ; L[i] ∼= L} = {ϕ([ξ]) ; (ϕ, [ξ]) ∈ Φ × Ξ}.

We next need to examine condition for ϕ([ξ]) = ϕ′([ξ′]). We see easily that α =

ϕ−1ϕ′ induces an automorphism of L. In this case we have (ϕ′, [ξ′]) = (ϕ ◦ α, α−1([ξ])).

Conversely, if (ϕ′, [ξ′]) is obtained from (ϕ, [ξ]) by an automorphism α ∈ Aut (L) in

this manner, we have ϕ([ξ]) = ϕ′([ξ′]). Since the action of α ∈ Aut (L) is apparently

faithful, there is a one-to-one correspondence between {[i] ∈ W(V,m) ; L[i] ∼= L} and

(Φ × Ξ)/Aut (L). This completes the proof.

Formulae equivalent to (3.9) have been implicitly or explicitly used in computation

of moments of a random matrix, see e.g., Bauer–Golinelli [2], Hiai–Petz [10], Wigner

[14, 15, 16].

4. Generalized Erdős–Rényi random graphs

4.1. Construction. As in the previous section we maintain V = {0, 1, 2, . . . , n−1}, n ≥ 1,

as a fixed vertex set and take two constant numbers 0 < p < 1 and 0 < p′ < 1.

Furthermore, we choose a subset

R ⊂ {(i, j) ∈ V × V ; i 6= j},



GENERALIZED ERDŐS–RÉNYI RANDOM GRAPHS 217

which will define a “geometric distance” among vertices. For i, j ∈ V with i 6= j, let Xij

be a Bernoulli random variable such that

P (Xij = 1) = p, P (Xij = 0) = 1 − p, if (i, j) ∈ R,

P (Xij = 1) = p′, P (Xij = 0) = 1 − p′, otherwise.

Moreover, we assume that the random variables {Xij ; i, j ∈ V, i 6= j} are independent.

We do not define Xii though one may set it to be 0. Obviously,

(4.1) E(Xij) =

{

p, if (i, j) ∈ R,

p′, otherwise.

Now, for every pair i, j ∈ V we set

(4.2) Aij =







1

2
(Xij +Xji), if i 6= j,

0, if i = j.

Then, A = (Aij)i,j∈V becomes a random matrix satisfying (A0′), (A1)–(A3).

In a strict sense A does not represent a random “graph” but a slightly generalized

one, which distinguishes a “grade” of connection, say, tight connection (Aij = 1), loose

connection (Aij = 1/2) and no connection (Aij = 0). The probability space of our

generalized random graph is denoted by G(n,R; p, p′).

Remark. One might prefer to the term “network,” which means a graph with weighted

edges. Then, G(n,R; p, p′) is a random network. In this sense, G(n,R; p, p′) is not a direct

generalization of the Erdős–Rényi random graph, see Section 6.

We see from (4.2) that the distribution of Aij (i 6= j) is essentially the convolution

of two Bernoulli distributions coming from Xij and Xji. Therefore, Aij obeys one of

the three distributions according to the “geometric distance” of i, j given by R. More

precisely, for (i, j) ∈ R ∩Rt, Rt = {(i, j) ; (j, i) ∈ R},

P (Aij = 1) = p2, P (Aij = 1/2) = 2p(1 − p), P (Aij = 0) = (1 − p)2,

for (i, j) ∈ (R ∪Rt)\(R ∩Rt),

P (Aij = 1) = pp′, P (Aij = 1/2) = p+ p′ − 2pp′, P (Aij = 0) = (1 − p)(1 − p′),

and otherwise,

P (Aij = 1) = p′2, P (Aij = 1/2) = 2p′(1 − p′), P (Aij = 0) = (1 − p′)2.

These distributions are denoted by α, β, γ, respectively. Thus D(A) = {α, β, γ}.

We say that a generalized random graph G(n,R; p, p′) is symmetric if for any i0 ∈ V

there exists a permutation σ on V such that σ(i0) = 0 and for all i, j ∈ V , the distributions

of Aij and Aσ(i)σ(j) coincide.

Proposition 4.1. A generalized random graph G(n,R; p, p′) is symmetric if and only if

for any i0 ∈ V there exists a permutation σ on V such that

σ(i0) = 0, σ(R ∩Rt) = R ∩Rt, σ(R ∪Rt) = R ∪Rt.
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Proof. The proof is straightforward. We only need to note that a permutation σ on V

induces a bijection from V × V onto itself.

4.2. Mean degree and mean spectral distribution. For a vertex i of a graph G the degree

degG(i) is defined to be the number of edges whose end vertices are i. In terms of the

adjacency matrix we have

degG(i) =
∑

j 6=i

Aij .

This identity can be used to define the degree of a vertex of our generalized random graph

G(n,R; p, p′). Then the mean degree is defined by

d̄(G(n,R; p, p′)) =
1

n

∑

i∈V

E(degG(i)) =
1

n

∑

i∈V

∑

j 6=i

E(Aij).

Theorem 4.2. If G(n,R; p, p′) is symmetric, its mean degree is given by

(4.3) d̄(G(n,R; p, p′)) = pR2 +
p+ p′

2
R1 + p′R0,

where

R2 = |{j ∈ V ; (0, j) ∈ R ∩Rt}|,

R1 = |{j ∈ V ; (0, j) ∈ R ∪Rt but 6∈ R ∩Rt}|,

R0 = |{j ∈ V ; j 6= 0, (0, j) 6∈ R ∪Rt}|.

Moreover,

(4.4) R0 +R1 +R2 = n− 1.

Proof. Since the distribution of degG(i) coincides with that of degG(0) by symmetry, we

have

d̄(G(n,R; p, p′)) = E(degG(0)) =
∑

j 6=0

E(A0j).

The distribution of A0j is α if (0, j) ∈ R ∩ Rt, β if (0, j) ∈ (R ∪ Rt)\(R ∩ Rt), and γ

if (0, j) 6= R ∪ Rt. The mean values of α, β and γ are p, (p + p′)/2 and p′, respectively.

Hence
∑

j 6=0

E(A0j) = pR2 +
p+ p′

2
R1 + p′R0,

which proves the assertion.

Theorem 4.3. If G(n,R; p, p′) is symmetric, its mean spectral distribution is character-

ized by the moment sequence:

Mm(n,R; p, p′)

=
∑

L∈Λm({α,β,γ})

|Aut (L)|−1u(L)t(L;n)
∏

e∈E(L)
ν(e)=α

ακ(e)

∏

e∈E(L)
ν(e)=β

βκ(e)

∏

e∈E(L)
ν(e)=γ

γκ(e),

where ακ, βκ, γκ are the κ-th moments of the distributions α, β, γ, respectively. Namely,

(4.5) ακ = p2 +
2p(1 − p)

2κ
, βκ = pp′ +

p+ p′ − 2pp′

2κ
, γκ = p′2 +

2p′(1 − p′)

2κ
.



GENERALIZED ERDŐS–RÉNYI RANDOM GRAPHS 219

Proof. Since G(n,R; p, p′) is symmetric, E((Am)ii) does not depend on the choice of i ∈ V

so the moment of the mean spectral distribution coincides with E((Am)00). Then, as a

direct consequence of Theorem 3.3 we arrive at the assertion. (4.5) is obtained directly

from the definition.

For example,

M2(n,R; p, p′) = R2α2 +R1β2 +R0γ2

=
1

2
d̄(G(n,R; p, p′)) +

1

2
(R2p

2 +R1pp
′ +R0p

′2).

We are interested in asymptotic behavior of our model G(n,R; p, p′) in the sparse limit,

that is, as n → ∞ while d̄(G(n,R; p, p′)) tends to a finite constant. We note from (4.3)

and (4.4) that the sparse limit shares a similar spirit with the Poisson limit. In the next

section we will study two concrete models.

5. Concrete models and their sparse limits

5.1. Model I. For convenience, for i ∈ V we understand i±1 to be a vertex in V uniquely

determined by addition modulo n. Let GI(n, p, p′) = G(n,R; p, p′) be a generalized random

graph with R defined by

R = {(i, i+ 1) ; i ∈ V }.

It is obvious by Proposition 4.1 that GI(n, p, p′) is symmetric. Moreover, since R∩Rt = ∅,

there is no matrix element Aij which obeys the distribution α. Namely, we have D(A) =

{β, γ}.

β

γ

β
β

Fig. 1. β-cycle, β-branch, β-segment

Before applying Theorem 4.3 we note some obstruction to an A-admissible embedding.

Let L = (V , E , o, ν, κ) ∈ Λm({β, γ}) and consider an A-admissible embedding ϕ : V →

{0, 1, 2, . . . , n − 1}. If e = {j, j′} ∈ E is an β-edge, that is, an edge whose ν-label is β,

Aϕ(j)ϕ(j′) obeys the distribution β so that ϕ(j) = ϕ(j′)± 1 by our relation R. Therefore,

for a large n, there is no A-admissible embedding if (i) L contains an β-cycle, i.e., a cycle

consisting of β-edges; or if (ii) L contains an β-branch, i.e., a vertex with three or more

β-edges, see Figure 1. Here the assumption “for a large n” applies only to avoid a trivial

case for (i). Now we set

Λ∗
m({β, γ}) =

{

L ∈ Λm({β, γ}) ;
(i) contains no β-cycles;

(ii) contains no β-branches

}

.

In other words, in L ∈ Λ∗
m({β, γ}) every β-edge appears only as a linear segment (β-

segment).
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With the above argument Theorem 4.3 is simplified as follows.

Theorem 5.1. The m-th moment of the generalized random graph GI(n, p, p′) is charac-

terized by the moment:

(5.1) Mm(n, p, p′) =
∑

L∈Λ∗

m({β,γ})

|Aut (L)|−1u(L)t(L;n)
∏

e∈E(L)
ν(e)=β

βκ(e)

∏

e∈E(L)
ν(e)=γ

γκ(e).

Example 5.2. The first four moments are given as follows:

M1(n, p, p′) = 0,

M2(n, p, p′) = 2β2 + (n− 3)γ2,

M3(n, p, p′) = 6β2
1γ1 + 6(n− 4)β1γ

2
1 + (n− 4)(n− 5)γ3

1 ,

M4(n, p, p′) = 2β4 + (n− 3)γ4 + 4β2
2 + 8(n− 3)β2γ2 + 2(n− 3)(n− 4)γ2

2

+ 8β3
1γ1 + 8(2n− 9)β2

1γ
2
1 + 8(n2 − 9n+ 21)β1γ

3
1

+ (n3 − 14n2 + 67n− 110)γ4
1 ,

where βκ and γκ are given in (4.5). The computation is easy and tedious.

5.2. Model I in the sparse limit. By Theorem 4.2 the mean degree of GI(n, p, p′) is

given by

d̄(GI(n, p, p′)) = p+ (n− 2)p′,

which suggests studying the sparse limit:

(5.2) n→ ∞, p′ → 0, np′ → λ (constant).

In this limit the mean degree tends to a finite constant p+ λ and

(5.3) limβκ =
p

2κ
, limnγκ =

2λ

2κ
.

Throughout this section the symbol “lim” means the sparse limit taken as in (5.2).

Our main interest is to obtain the limit of the m-th moment of the mean spectral

distribution of GI(n, p, p′). More explicitly, in view of the formula in Theorem 5.1, we will

compute the limit:

(5.4) limMm(n, p, p′) = lim
∑

L∈Λ∗

m({β,γ})

|Aut (L)|−1u(L)t(L;n)
∏

e∈E(L)
ν(e)=β

βκ(e)

∏

e∈E(L)
ν(e)=γ

γκ(e).

Let us consider Example 5.2 on trial. In fact, we obtain

limM1(n, p, p′) = 0,

limM2(n, p, p′) =
p

2
+
λ

2
,

limM3(n, p, p′) = 0,

limM4(n, p, p′) =
p

8
+
λ

8
+
p2

4
+ pλ+

λ2

2
.

(5.5)

Since γκ = O(n−1) by (5.3), each term of M3(n, p, p′) vanishes in the sparse limit. For

M4(n, p, p′) the first five terms in the first line contribute to the limit and the rest does
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not for the same reason. We will explicate the general structure behind by means of

graph-geometric observation.

To begin with, we will estimate t(L;n) as n → ∞ by using the idea of β-edge con-

traction. With each L = (V , E , o, ν, κ) ∈ Λ∗
m({β, γ}) we will associate a connected graph

L̃ = (Ṽ, Ẽ) as follows. First we introduce a notation. Two vertices v, v′ ∈ V are called

β-equivalent, denoted by v
β
∼ v′, if v = v′ or if there exists a path from v to v′ consisting

of β-edges. The set of β-equivalence classes is denoted by Ṽ = V/
β
∼. For v ∈ V let ṽ

denote the β-equivalence class containing v. Then Ẽ consists of edges of the form {ṽ, ṽ′},

where {v, v′} runs over E . It may happen that ṽ = ṽ′, which does not yield an edge of L̃

(we do not allow a loop). By construction,

(5.6) |Ẽ | ≤ |Eγ | = |{e ∈ E ; ν(e) = γ}|

is obvious. Next let us consider (V , Eβ). Since in L every β-edge appears as a linear

segment, (V , Eβ) is a disjoint union of trees, or more precisely, of linear segments and

isolated vertices. The number of connected components is equal to |Ṽ |. Let b(L) be the

number of isolated vertices of (V , Eβ).

Lemma 5.3. Let L ∈ Λ∗
m({β, γ}) and (Ṽ, Ẽ) the β-edge contraction. Then,

(5.7) 2|Ṽ|−b(L) (n− 2m2)|Ṽ|−1 ≤ |t(L;n)| ≤ 2|Ṽ|−b(L) n|Ṽ|−1.

Proof. Let {T0, T1, . . . , Tr−1} be the set of connected components of the graph (V , Eβ),

where T0 is the one which contains o. Apparently, r = |Ṽ |. Recall that these connected

components are linear segments or isolated vertices. For each 1 ≤ s ≤ r−1 choose ξs ∈ Ts

arbitrarily. We shall define an A-admissible embedding ϕ : V → V ≡ {0, 1, 2, . . . , n− 1}.

Note the obvious inequality:

|Ts| ≤ |V| ≤ m, 0 ≤ s ≤ r − 1,

where the second inequality follows from condition (L1). Therefore, the connected com-

ponent T0 lies necessarily in the interval:

ϕ(T0) ⊂ I0 ≡ {−(m− 1), . . . ,−1, 0, 1, . . . ,m− 1} ⊂ V,

since ϕ(o) = 0 is a constraint by definition. Note that there are two ways of embedding

if |T0| ≥ 2, but there is no such freedom if |T0| = 1. Choose arbitrarily x1 ∈ V \I0 and

define ϕ(ξ1) = x1. Then ϕ(T1)∩ϕ(T0) = ∅. Again there are two ways of embedding T1 if

|T1| ≥ 2, but only one otherwise. Set

I1 = {x1 − (m− 1), . . . , x1, x1 + 1, . . . , x1 + (m− 1)}.

Choose arbitrarily x2 ∈ V \(I0 ∪ I1) and define ϕ(ξ2) = x2. Then, ϕ(T2), ϕ(T1), ϕ(T0)

are mutually disjoint. There are one or two ways of embedding of T2 according as T2

consists how many vertices. Continuing this procedure up to s = r− 1, we may define an

A-admissible embedding ϕ of L. In this way we are able to construct at least

(5.8) 2r−r0(n− (2m− 1))(n− 2(2m− 1)) . . . (n− (r − 1)(2m− 1))

different ϕ, where r0 is the number of Ts’s consisting of single vertex, i.e., r0 = b(L).
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Rather roughly (5.8) is estimated from below as

≥ 2r−r0(n− 2m2)r−1 = 2|Ṽ|−b(L)(n− 2m2)|Ṽ|−1,

which proves the first half of (5.7). The second half is similarly and more easily verified.

Proposition 5.4. Let G = (V,E) be a connected graph. Then |V | ≤ |E| + 1. Moreover,

equality holds if and only if G is a tree.

Proof. Obvious.

Lemma 5.5. Let L ∈ Λ∗
m({β, γ}). Then

(5.9) lim t(L;n)
∏

e∈E(L)
ν(e)=γ

γκ(e) = 0

holds if (i) L̃ contains a cycle, or if (ii) L̃ is a tree such that |Ẽ | < |Eγ |.

Proof. Let L ∈ Λ∗
m({β, γ}). We see from Lemma 5.3 that

t(L;n)
∏

e∈E(L)
ν(e)=γ

γκ(e) ≤ 2|Ṽ|−b(L) n|Ṽ|−1
∏

e∈E(L)
ν(e)=γ

γκ(e)(5.10)

= 2|Ṽ|−b(L) n|Ṽ|−1−|Eγ |
∏

e∈E(L)
ν(e)=γ

nγκ(e) .

By (5.3) the last product converges in the sparse limit. Hence for (5.9) it is sufficient to

show that |Ṽ|−1−|Eγ | < 0. In case (i), |Ṽ | ≤ |Ẽ | holds (see Proposition 5.4) so, combining

with (5.6) we obtain |Ṽ| ≤ |Eγ |. In case (ii) we have |Ṽ| − 1 = |Ẽ | < |Eγ |.

It follows from Lemma 5.5 combining with (5.6) that for computation of (5.4) we need

only to consider L ∈ Λ∗
m({β, γ}) such that L̃ is a tree and |Ẽ | = |Eγ |. Set

Λ∗∗
m ({β, γ}) =

{

L ∈ Λ∗
m({β, γ}) ; L̃ is a tree and |Ẽ | = |Eγ |

}

.

Thus, our limit (5.4) is slightly simplified.

Lemma 5.6. Let Mm(n, p, p′) be the m-th moment of the mean spectral distribution of

GI(n, p, p′). Then, in the sparse limit (5.2) we have

limMm(n, p, p′)(5.11)

= lim
∑

L∈Λ∗∗

m ({β,γ})

|Aut (L)|−1u(L)t(L;n)
∏

e∈E(L)
ν(e)=β

βκ(e)

∏

e∈E(L)
ν(e)=γ

γκ(e) .

We now show the following important result.

Lemma 5.7. For L = (V , E , o, ν, κ) ∈ Λ∗
m({β, γ}) the following two conditions are equiv-

alent:

(i) L ∈ Λ∗∗
m ({β, γ}), i.e., L̃ is a tree and |Ẽ | = |Eγ |;

(ii) L is a tree.
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In particular,

Λ∗∗
m ({β, γ}) =

{

L ∈ Λm({β, γ}) ;
L is a tree;

L contains no β-branches

}

.

Proof. We prove with the help of the characterization of trees (Proposition 5.4) that (i)

implies (ii). Let L = (V , E , o, ν, κ) ∈ Λ∗∗
m ({β, γ}). We maintain the same notation as in

the proof of Lemma 5.3. Let {T0, T1, . . . , Tr−1} be the set of connected components of

the graph (V , Eβ). Since Ts is a tree,

(5.12) |Eβ| =

r−1
∑

s=0

|E(Ts)| =

r−1
∑

s=0

(|V (Ts)| − 1) = |V| − r.

On the other hand, r = |Ṽ | is apparent and |Ṽ| = |Ẽ | + 1 by assumption that L̃ is a tree.

Hence

(5.13) r = |Ẽ | + 1 = |Eγ | + 1.

Combining (5.12) and (5.13), we arrive at

|V| = |Eβ| + |Eγ | + 1 = |E| + 1,

which shows that (V , E) is a tree. This is what we wanted to show. The rest of the

assertion is straightforward by definition.

Theorem 5.8. Let Mm be the m-th moment of the spectral distribution of the generalized

random graph GI(n, p, p′) in the sparse limit (5.2). Then, for an odd m we have

Mm = 0

and, for an even m we have

(5.14) Mm =
∑

L∈Λ∗∗

m ({β,γ})

|Aut (L)|−1u(L) 2|Eγ |+1−b(L)−m p|Eβ|(2λ)|Eγ | .

Moreover, u(L) = 0 unless the κ-label of L ∈ Λ∗∗
m ({β, γ}) is even-valued.

Proof. We observe the right hand side of (5.11). First suppose that m is odd. Since

L ∈ Λ∗∗
m ({β, γ}) is a tree by Lemma 5.7, obviously there is no unicursal walk of odd steps

on L. Namely, u(L) = 0 for all L ∈ Λ∗∗
m ({β, γ}), and Mm = 0 follows.

Next suppose that m is even. For L ∈ Λ∗∗
m ({β, γ}) we compute

lim t(L;n)
∏

e∈E(L)
ν(e)=γ

γκ(e) = lim t(L;n)n−|Eγ|
∏

e∈E(L)
ν(e)=γ

nγκ(e).

Applying Lemma 5.3 and

(5.15) |Ṽ | − 1 − |Eγ | = |Ṽ| − 1 − |Ẽ| = 0,

which follows from Lemma 5.7, we obtain

(5.16) lim t(L;n)
∏

e∈E(L)
ν(e)=γ

γκ(e) = 2|Ṽ|−b(L) lim
∏

e∈E(L)
ν(e)=γ

nγκ(e) .
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Consequently,

Mm = limMm(n, p, p′)(5.17)

=
∑

L∈Λ∗∗

m ({β,γ})

|Aut (L)|−1u(L) 2|Ṽ|−b(L) lim
∏

e∈E(L)
ν(e)=β

βκ(e)

∏

e∈E(L)
ν(e)=γ

nγκ(e) .

Finally, applying (5.3) and (5.15), we arrive at

Mm =
∑

L∈Λ∗∗

m ({β,γ})

|Aut (L)|−1u(L) 2|Ṽ|−b(L)
∏

e∈E(L)
ν(e)=β

p

2κ(e)

∏

e∈E(L)
ν(e)=γ

2λ

2κ(e)

=
∑

L∈Λ∗∗

m ({β,γ})

|Aut (L)|−1u(L) 2|Eγ |+1−b(L)−m p|Eβ|(2λ)|Eγ | .

This proves (5.14).

With the help of Theorem 5.8 one may derive (5.5) easily.

5.3. Model II. We consider GII(n, p, p′) = G(n,R; p, p′), where a relation R is given by

R = {(i, i± 1) ; i ∈ V }.

In this case too, GII(n, p, p′) satisfies the symmetry condition. Since (R∪Rt)\(R∩Rt) = ∅,

there is no matrix element Aij which obeys the distribution β. Hence, on computing the

m-th moment for the mean spectral distribution of GII(n, p, p′) we need only to consider

Λm({α, γ}), see Theorem 4.3.

Since R ∩ Rt = {(i, i± 1) ; i ∈ V }, an A-admissible embedding ϕ of L ∈ Λm({α, γ})

maps an α-edge to {i, i ± 1}. Thus, the argument on GI(n, p, p′) is applicable just by

replacing β by α. Corresponding to Theorem 5.1, we have

Theorem 5.9. The m-th moment of the generalized random graph GII(n, p, p′) is char-

acterized by the moment:

(5.18) Mm(n, p, p′) =
∑

L∈Λ∗

m({α,γ})

|Aut (L)|−1u(L)t(L;n)
∏

e∈E(L)
ν(e)=α

ακ(e)

∏

e∈E(L)
ν(e)=γ

γκ(e).

It follows from Theorem 4.2 that the mean degree of GII(n, p, p′) is given by

d̄(GI(n, p, p′)) = 2p+ (n− 3)p′.

We are again interested in the sparse limit as in (5.2). In this limit the mean degree tends

to a finite constant 2p+ λ. Moreover, we note from (4.5) that

(5.19) limακ = p2 +
2p(1 − p)

2κ
, limnγκ =

2λ

2κ
.

In fact, ακ is independent of n and p′.

We are now convinced that the argument in the previous subsection is valid for

GII(n, p, p′) by replacing β by α. In fact, it is sufficient to modify (5.17) to obtain
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Mm = limMm(n, p, p′)(5.20)

=
∑

L∈Λ∗∗

m ({β,γ})

|Aut (L)|−1u(L) 2|Ṽ|−b(L) lim
∏

e∈E(L)
ν(e)=α

ακ(e)

∏

e∈E(L)
ν(e)=γ

nγκ(e) .

Then, using (5.19), we come to the final claim.

Theorem 5.10. Let Mm be the m-th moment of the spectral distribution of the general-

ized random graph GI(n, p, p′) in the sparse limit (5.2). Then, for an odd m we have

Mm = 0

and, for an even m we have

Mm =
∑

L∈Λ∗∗

m ({α,γ})

|Aut (L)|−1u(L) 2|Eγ |+1−b(L)−m (2λ)|Eγ |
∏

e∈E(L)
ν(e)=α

((2κ(e) − 2)p2 + 2p).

Moreover, u(L) = 0 unless the κ-label of L ∈ Λ∗∗
m ({α, γ}) is even-valued.

6. Appendix. The Erdős–Rényi random graph

6.1. Mean spectral distribution. For an integer n ≥ 1 and a constant number 0 < p < 1

let G(n, p) denote the probability space consisting of graphs G with vertex set V =

{0, 1, 2, . . . , n− 1} with probability P ({G}) defined by

P ({G}) = p|E(G)|(1 − p)(
n
2)−|E(G)|,

where E(G) stands for the set of edges of G. We call G(n, p) the Erdős–Rényi random

graph. This random graph is generated in such a way that for a pair of vertices we decide

by a coin toss whether to draw an edge or not. The mean degree of G(n, p) is given by

d̄(G(n, p)) =
1

n

∑

i∈V

E(degG(i)) = (n− 1)p.

Note that G(n, p) is not recovered by specializing parameters of a generalized Erdős–Rényi

random graph G(n,R; p, p′) introduced in Section 4.

Let µG be the spectral distribution of G ∈ G(n, p) and µn,p = E(µG) its mean

distribution. We are interested in asymptotics of µn,p in the sparse limit:

(6.1) n→ ∞, p→ 0, np→ λ (constant).

Note that the mean degree of G(n, p) tends to λ in the sparse limit.

LetA = (Aij) be the adjacency matrix ofG ∈ G(n, p). Obviously, A satisfies conditions

(A0)–(A3) and for all i 6= j,

P (Aij = 1) = p, P (Aij = 0) = 1 − p,

namely, Aij obeys a Bernoulli distribution with success probability p. Since G(n, p) is

symmetric, the mean spectral distribution µn,p is characterized by its moment sequence:

(6.2) Mm(µn,p) =
1

n
E(TrAm) =

1

n

∑

i∈V

E((Am)ii) = E((Am)00), m = 1, 2, . . . .
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Proposition 6.1. The m-th moment of the spectral distribution µn,p of the random graph

G(n, p) is given by

(6.3) Mm(µn,p) =
∑

L∈Λm

|Aut (L)|−1u(L)(n− 1)(n− 2) · · · (n− (|V (L)| − 1)) p|E(L)|,

where Λm is the complete set of representatives of labeled rooted graphs of size m with

constant ν-label. Obviously, M1(µn,p) = 0.

Proof. By Theorem 3.3, (6.2) becomes

(6.4) Mm(µn,p) =
∑

L∈Λm(D(A))

|Aut (L)|−1u(L)t(L;n)
∏

e∈E(L)

Mκ(e)(ν(e)).

Since D(A) consists of a single distribution, that is, the Bernoulli distribution with success

probability p. Hence Mκ(ν(e)) = p for all κ ≥ 1. Moreover, every injection V\{o} →

{1, 2, . . . , n− 1} is A-admissible so that

t(L;n) = (n− 1)(n− 2) · · · (n− (|V (L)| − 1)).

Combining these arguments, we come to (6.3).

6.2. The sparse limit. Using Proposition 6.1 we will calculate the sparse limit:

Mm = limMm(µn,p),

where the limit is taken as (6.1). In view of (6.3) we need only to consider

(6.5) (n− 1)(n− 2) · · · (n− (|V (L)| − 1)) p|E(L)| ∼ n|V (L)|−1−|E(L)|(np)|E(L)|.

If L is not a tree, i.e., contains a cycle, then we have |V (L)| ≤ |E(L)| and (6.5) vanishes

in the sparse limit. If L is a tree, we have |V (L)| = |E(L)|+ 1. In this case, (6.5) implies

that

lim(n− 1)(n− 2) · · · (n− (|V (L)| − 1)) p|E(L)| = λ|E(L)|.

We set

Λ∗∗
m = {L ∈ Λm ; L is a tree},

which is consistent with the notation in the previous sections. Summing up,

Mm = limMm(µn,p) =
∑

L∈Λ∗∗

m

|Aut (L)|−1u(L)λ|E(L)|.

Since a tree admits no unicursal walk of odd steps, for an odd m we have u(L) = 0 so

the odd moments vanish.

Theorem 6.2. Let Mm be the sparse limit of the m-th moment of mean spectral distri-

bution the Erdős–Rényi random graph G(n, p). Then for an odd m we have

Mm = 0,

and for an even m,

(6.6) Mm =
∑

L∈Λ∗∗

m

|Aut (L)|−1u(L)λ|E(L)|.

The formulae (6.3) and (6.6) are essentially known in the literature with different

notations, see e.g., Bauer–Golinelli [2].
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6.3. Partition statistics and approximations. There is another expression for Mm in The-

orem 6.2. In fact, we are interested only in the moments of even orders. Using Lemma

3.1 we start with

(6.7) M2m = lim
∑

[i]∈W(V,2m)

p|E(G[i])|.

Taking Theorem 6.2 into account, for the limit in the right hand side it is sufficient to

take the sum over [i] ∈ W(V, 2m) whose underlying graph G[i] is a tree.

With each [i] ∈ W(V, 2m) such that G[i] is a tree, we associate a partition ϑ of

{1, 2, . . . , 2m}. Write [i] as

[i] : 0 ≡ i0 6= i1 6= i2 6= · · · 6= i2m−1 6= i2m ≡ 0.

For s, t ∈ {1, 2, . . . , 2m} we write s ∼ t if {is−1 , is} = {it−1 , it}. Then s ∼ t becomes

an equivalence relation, which in turn yields a partition of {1, 2, . . . , 2m}, denoted by

ϑ = ϑ[i]. Let PT(2m) denote the set of all partitions of {1, 2, . . . , 2m} obtained in this

way. Obviously, for ϑ = ϑ[i] we have |E(G[i])| = |ϑ|. Then (6.7) becomes

M2m = lim
∑

ϑ∈PT(2m)

∑

[i]∈W(V,2m)
ϑ[i]=ϑ

p|ϑ|

= lim
∑

ϑ∈PT(2m)

(n− 1)(n− 2) · · · (n− |ϑ|) p|ϑ|

=
∑

ϑ∈PT(2m)

λ|ϑ|.

Summing up,

Theorem 6.3. The sparse limit of the 2m-th moment of mean spectral distribution of

the Erdős–Rényi random graph G(n, p) is given by

(6.8) M2m =
∑

ϑ∈PT(2m)

λ|ϑ|

It is obvious by construction that each block of ϑ ∈ PT(2m) consists of even number

of points. Let PNC(2m) be the set of non-crossing partitions of {1, 2, . . . , 2m} and set

PTNC(2m) = {ϑ ∈ PNC(2m) ; each v ∈ ϑ consists of even number of points}.

It is then shown that PTNC(2m) ⊂ PT(2m). However, PT(2m) contains some crossing

partitions too. This would hinder us from getting an explicit expression of the limit

distribution. An analytical approach, which yields also an implicit description of the

limit distribution, is found in Dorogovtsev–Goltsev–Mendes–Samukhin [7].

To conclude, we show two approximations for the limit distribution whose m-th mo-

ment is Mm.

Proposition 6.4. Let πλ/2 be the free Poisson distribution with parameter λ/2 and π∨
λ/2

its reflection, i.e., π∨
λ/2(dx) = πλ/2(−dx). Then

(6.9) M2m−1(πλ/2 ⊞ π∨
λ/2) = 0, M2m(πλ/2 ⊞ π∨

λ/2) =
∑

ϑ∈PTNC(2m)

λ|ϑ|.
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Proof. The free Poisson distribution πλ/2 is characterized by the constant free cumulants

rk(πλ/2) = λ/2. Then, rk(π∨
λ/2) = (−1)kλ/2 and

rk(πλ/2 ⊞ π∨
λ/2) = rk(πλ/2) + rk(π∨

λ/2) =

{

λ, k is even,

0, k is odd.

Applying the free moment–cumulant formula:

Mk =
∑

ϑ∈PNC(k)

∏

v∈ϑ

r|v| ,

we have

M2m−1 = 0, M2m =
∑

ϑ∈PTNC(2m)

λ|ϑ|,

which completes the proof. (This proof is within the standard framework of the free

probability theory, see e.g., Hiai–Petz [10].)

Comparing (6.8) and (6.9), we can expect that the sparse limit of mean spectral

distribution of the Erdős–Rényi random graph is a kind of deformation of the free Poisson

distributions.

Next we look for the leading term of M2m for a large λ. In fact,

M2m =

m
∑

k=1

|{ϑ ∈ PT(2m) ; |ϑ| = k}|λk

= |{ϑ ∈ PT(2m) ; |ϑ| = m}|λm +O(λm−1)

= |PNCP(2m)|λm +O(λm−1),

where PNCP(2m) stands for the set of non-crossing pair partitions of {1, 2, . . . , 2m}. The

number |PNCP(2m)| is well known as the Catalan number and is the 2m-th moment of

the Wigner semicircle law.

Proposition 6.5. For the m-th moment of mean spectral distribution the Erdős–Rényi

random graph G(n, p) we have

lim
λ→∞

limλ−m/2Mm(µn,p) =
1

2π

∫ +2

−2

xm
√

4 − x2 dx, m = 1, 2, . . . ,

where the second limit is the sparse limit as in (6.1).

The above result supports from the viewpoint of spectral analysis that the Erdős–

Rényi random graph behaves like a tree in the sparse limit.

References

[1] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286

(1999), 509–512.

[2] M. Bauer and O. Golinelli, Random incidence matrices: moments of the spectral density,

J. Statist. Phys. 103 (2001), 301–337.
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