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Abstrat. The struture of the set of positive unital maps between M2(C) and Mn(C) (n ≥ 3) isinvestigated. We proeed with the study of the �quantized� Choi matrix thus extending the meth-ods of our previous paper [MM2℄. In partiular, we examine the quantized version of Størmer'sextremality ondition. Maps ful�lling this ondition are haraterized. To illustrate our approah,a areful analysis of Tang's maps is given.1. Introdution. We will be onerned with linear positive maps φ : Mm(C) →Mn(C).We begin with setting up the notation and the relevant terminology (f. [MM3℄). We saythat φ is positive if φ(A) is a positive element in Mn(C) for every positive matrix from
Mm(C). If k ∈ N, then φ is said to be k-positive (respetively k-opositive) whenever
[φ(Aij)]

k
i,j=1 (respetively [φ(Aji)]

k
i,j=1) is positive in Mk(Mn(C)) for every positive el-ement [Aij ]

k
i,j=1 of Mk(Mm(C)). If φ is k-positive (respetively k-opositive) for every

k ∈ N then we say that φ is ompletely positive (respetively ompletely opositive). Fi-nally, we say that the map φ is deomposable if it has the form φ = φ1 + φ2 where φ1 isompletely positive while φ2 is ompletely opositive.By P(m,n) we denote the set of all positive maps ating betweenMm(C) and Mn(C)and by P1(m,n) the subset of P(m,n) omposed of all positive unital maps (i.e. suhthat φ(I) = I). Reall that P(m,n) has the struture of a onvex one while P1(m,n) isits onvex subset.In the sequel we will use the notion of a fae of a onvex one.Definition 1. Let C be a onvex one. We say that a onvex subone F ⊂ C is a faeof C if for every c1, c2 ∈ C the ondition c1 + c2 ∈ F implies c1, c2 ∈ F .2000 Mathematis Subjet Classi�ation: Primary 47B65; Seondary 47L07.Key words and phrases: positive maps, deomposable maps, fae struture.W.A.M. is supported by EU grant SCALA FP6-2004-IST no. 015714 while M.M. is supportedby the MNiSW researh grant P03A 013 30.The paper is in �nal form and no version of it will be published elsewhere.[249℄ © Instytut Matematyzny PAN, 2007



250 W. A. MAJEWSKI AND M. MARCINIAKA fae F is said to be a maximal fae if F is a proper subone of C and for every fae
G suh that F ⊆ G we have G = F or G = C.The following theorem of Kye gives a nie haraterization of maximal faes in theone P(m,n).Theorem 2 ([Kye℄). A onvex subset F ⊂ P(m,n) is a maximal fae of P(m,n) if andonly if there are vetors ξ ∈ C

m and η ∈ C
n suh that F = Fξ,η where

Fξ,η = {φ ∈ P(m,n) : φ(Pξ)η = 0} (1)and Pξ denotes the one-dimensional orthogonal projetion in Mm(C) onto the subspaegenerated by the vetor ξ.The aim of this paper is to go one step further in lari�ation of the struture of posi-tive maps betweenM2(C) andMn(C). It is worth pointing out that many open problemsin quantum omputing demand the better knowledge of this struture. Consequently,our results shed new light on the struture of positive maps as well as on the nature ofentanglement (f. [MM1℄, and for relation to quantum orrelations see [Maj℄).We reall (see [S℄, [W℄) that all elements of P(2, 2), P(2, 3) and P(3, 2) are deom-posable. Contrary, P(n,m) with m,n ≥ 3 ontains nondeomposable maps. In [MM2℄ weproved that if φ is extremal element of P1(2, 2) then its deomposition is unique. More-over, we provided a full desription of this deomposition. In the ase m > 2 or n > 2the problem of �nding the deomposition is still unsolved. In this paper we onsider thenext step for partial solution of this problem, namely for the ase m = 2 and n ≥ 3. Ourapproah will be based on the method of the so alled Choi matrix.To give a brief exposition of this method, we reall (see [Choi1℄, [MM1℄ for details)that if φ : Mm(C) → Mn(C) is a linear map and {Eij}m
i,j=1 is a system of matrix unitsin Mm(C), then the matrix

Hφ = [φ(Eij)]
m
i,j=1 ∈Mm(Mn(C)), (2)is alled the Choi matrix of φ with respet to the system {Eij}. Complete positivity of

φ is equivalent to positivity of Hφ while positivity of φ is equivalent to blok-positivityof Hφ (see [Choi1℄, [MM1℄). A matrix [Aij ]
m
i,j=1 ∈ Mm(Mn(C)) (where Aij ∈ Mn(C)) isalled blok-positive if ∑m

i,j=1
λiλj〈ξ, Aijξ〉 ≥ 0 for any ξ ∈ Cn and λ1, . . . , λm ∈ C.It was shown in Lemma 2.3 in [MM2℄ that the general form of the Choi matrix of apositive map φ belonging to some maximal fae of P(2, 2) is the following:

Hφ =









a c 0 y

c b z t

0 z 0 0

y t 0 u









. (3)
Here a, b, u ≥ 0, c, y, z, t ∈ C and the following inequalities are satis�ed:(I) |c|2 ≤ ab,(II) |t|2 ≤ bu,(III) |y| + |z| ≤ (au)1/2.



STRUCTURE OF POSITIVE MAPS 251It will turn out that in the ase φ : M2(C) → Mn+1(C), n ≥ 2, the Choi matrixhas the form whih is similar to (3) but some of the oe�ients have to be matries (see[MM3℄). The main result of our paper is an analysis of Tang's maps in the Choi matrixsetting and proving some partial results about the struture of positive maps in the ase
φ : M2(C) →Mn+1(C).2. P(2, n + 1) maps and Tang's maps. In this setion we summarize without proofsthe relevant material on the Choi matrix method for P(2, n + 1) (see [MM3℄) and weindiate how this tehnique may be used to the analysis of nondeomposable maps. Let
{e1, e2} and {f1, f2, . . . , fn+1} denote the standard orthonormal bases of the spaes C2and Cn+1 respetively, and let {Eij}2

i,j=1 and {Fkl}n+1

k,l=1
be systems of matrix units in

M2(C) and Mn+1(C) assoiated with these bases. We assume that φ ∈ Fξ,η for some
ξ ∈ C2 and η ∈ Cn+1. By taking the map A 7→ V ∗φ(WAW ∗)V for suitable W ∈ U(2)and V ∈ U(n+1) we an assume without loss of generality that ξ = e2 and η = f1. Thenthe Choi matrix of φ has the form

H =































a c1 . . . cn x y1 . . . yn

c1 b11 . . . b1n z1 t11 . . . t1n... ... ... ... ... ...
cn bn1 . . . bnn zn tn1 . . . tnn

x z1 . . . zn 0 0 . . . 0

y1 t11 . . . tn1 0 u11 . . . u1n... ... ... ... ... ...
yn t1n . . . tnn 0 un1 . . . unn































(4)
We introdue the following notations:

C =
[

c1 . . . cn
]

, Y =
[

y1 . . . yn

]

, Z =
[

z1 . . . zn

]

,

B =







b11 . . . b1n... ...
bn1 . . . bnn






, T =







t11 . . . t1n... ...
tn1 . . . tnn






, U =







u11 . . . u1n... ...
un1 . . . unn






.

The matrix (4) an be rewritten in the following form:
H =









a C x Y

C∗ B Z∗ T

x Z 0 0

Y ∗ T ∗ 0 U









. (5)
The symbol 0 in the right-bottom blok has three di�erent meanings. It denotes 0,
[

0 . . . 0
] or 





0...
0






respetively. We have the following

Proposition 3 ([MM3℄). Let φ : M2(C) → Mn+1(C) be a positive map with the Choimatrix of the form (5). Then the following relations hold:



252 W. A. MAJEWSKI AND M. MARCINIAK1. a ≥ 0 and B, U are positive matries,2. if a = 0 then C = 0, and if a > 0 then C∗C ≤ aB,3. x = 0,4. the matrix [

B T

T ∗ U

]

∈M2(Mn(C)) is blok-positive.In the example below, we will be onerned with the two-parameter family of nonde-omposable maps (f. [Tang℄). Here the important point to note is the fat that P(2, 4)and P(3, 3) are the lowest dimensional ases having nondeomposable maps. Thereforethe detailed analysis of suh maps should yield neessary information for explanations ofthe ourrene of nondeomposability.Example 4. Let φ0 : M2(C) →M4(C) be the linear map de�ned by
φ0

([

a b

c d

])

=









(1 − ε)a+ µ2d −b µc −µd
−c a+ 2d −2b 0

µb −2c 2a+ 2d −2b

−µd 0 −2c a+ d









, (6)
where 0 < µ < 1 and 0 < ε ≤ 1

6
µ2. It is proved in [Tang℄ that φ0 is nondeomposable.One an see that φ0 has the following Choi matrix:

Hφ0
=



























1 − ε 0 0 0 0 −1 0 0

0 1 0 0 0 0 −2 0

0 0 2 0 µ 0 0 −2

0 0 0 1 0 0 0 0

0 0 µ 0 µ2 0 0 −µ
−1 0 0 0 0 2 0 0

0 −2 0 0 0 0 2 0

0 0 −2 0 −µ 0 0 1



























. (7)
Observe that

φ0(I) =









1 − ε+ µ2 0 0 −µ
0 3 0 0

0 0 4 0

−µ 0 0 2









.

Let ρ =
√

1 − ε+ µ2 and
δ =

∣

∣

∣

∣

1 − ε+ µ2 −µ
−µ 2

∣

∣

∣

∣

1/2

=
√

2 − 2ε+ µ2.Then φ0(I)
−1/2 is of the form

φ0(I)
−1/2 =



















β

δ
0 0 −γ

δ

0
1√
3

0 0

0 0
1

2
0

−γ
δ

0 0
α

δ





















STRUCTURE OF POSITIVE MAPS 253where and α, β > 0, γ ∈ R are suh that
α2 + γ2 = ρ2,

β2 + γ2 = 2,

(α+ β)γ = −µ.
(8)

Let us de�ne φ1 : M2(C) →M4(C) by
φ1(A) = φ0(I)

−1/2φ0(A)φ0(I)
−1/2, A ∈M2(C).Then

φ1(E11) =





















(1 − ε)β2 + γ2

δ2
0 0 − [(1 − ε)β + α]γ

δ2

0
1

3
0 0

0 0
1

2
0

− [(1 − ε)β + α]γ

δ2
0 0

(1 − ε)γ2 + α2

δ2





















,

φ1(E22) =





















(µβ + γ)2

δ2
0 0 − (µβ + γ)(µγ + α)

δ2

0
2

3
0 0

0 0
1

2
0

− (µβ + γ)(µγ + α)

δ2
0 0

(µγ + α)2

δ2





















,

φ1(E12) =





















0 − β

δ
√

3
0 0

0 0 − 1√
3

0

µβ + 2γ

2δ
0 0 −µγ + 2α

2δ
0

γ

δ
√

3
0 0





















.

One an dedue from (8) that
(µγ + α)2 + (µβ + γ)2 = ρ2. (9)Let

W =

















µγ + α
√

1 − ε+ µ2
0 0

µβ + γ
√

1 − ε+ µ2

0 1 0 0

0 0 1 0
µβ + γ

√

1 − ε+ µ2
0 0 − µγ + α

√

1 − ε+ µ2

















.

It follows from (9) that W is a unitary matrix. De�ne φ : M2(C) → M4(C) by φ(A) =
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W ∗φ1(A)W . Then the Choi matrix of φ is of the form

Hφ =



















































1 0 0 0 0 − 1√
3ρ

0 0

0
1

3
0 0 0 0 − 1√

3
0

0 0
1

2
0 − µ

2ρ
0 0

δ

2ρ

0 0 0
1 − ε

δ2
0 − µ√

3δρ
0 0

0 0 − µ

2ρ
0 0 0 0 0

− 1√
3ρ

0 0 − µ√
3δρ

0
2

3
0 0

0 − 1√
3

0 0 0 0
1

2
0

0 0
δ

2ρ
0 0 0 0

ρ2

δ2



















































. (10)

One an see that ψ([

0 0

0 1

])









1
0
0
0









= 0, so ψ ∈ Fη,ξ (f. Theorem 2), where η =

[

0
1

]

and ξ =









1
0
0
0









.
Observe that bloks whih form the Choi matrix (10) as in (5) are of the form

a = 1, C = 0, Y =

[

− 1√
3δ

0 0

]

, Z =
[

0 − µ

2ρ
0

]

,

B =











1

3
0 0

0
1

2
0

0 0
1 − ε

δ2











, U =













2

3
0 0

0
1

2
0

0 0
ρ2

δ2













, T =













0 − 1√
3

0

0 0
δ

2ρ
− µ√

3δρ
0 0













.

It is worth observing that the vetors C, Y, Z are orthogonal, the matries B,U arediagonal, while T is �omplementary� to the diagonal matries B and U . This observationis useful in understanding the peuliarity of nondeomposable mapsIn the sequel we will need the following tehnialities. For X =
[

x1 . . . xn

]

∈
M1,n(C) we de�ne ‖X‖ = (

∑n
i=1

|xi|2)1/2. By |X| we denote the square (n × n)-matrix
(X∗X)1/2. We identify elements of Mn,1(C) with vetors from C

n and for any X ∈
M1,n(C) de�ne a unit vetor ξX ∈ Cn by ξX = ‖X‖−1X∗.Proposition 5. Let X,X1, X2 ∈M1,n(C). Then

(1) |X| = ‖X‖PξX
, where Pξ denotes the orthogonal projetion onto the one-dimen-sional subspae in C

n generated by a vetor ξ ∈ C
n;

(2) |X1||X2| = 〈ξX1
, ξX2

〉X∗
1X2.



STRUCTURE OF POSITIVE MAPS 255Proof. (1) Let η ∈ C
n. Sine η is onsidered also as an element of Mn,1(C) the multipli-ation of matries Xη makes sense. As a result we obtain a 1 × 1-matrix whih an beinterpreted as a number. With this identi�ation we have the equality

Xη = 〈X∗, η〉where X∗ on the right hand side is onsidered as a vetor from C
n, and 〈·, ·〉 denotes theusual salar produt in Cn. Now we an alulate

〈η,X∗Xη〉 = 〈Xη,Xη〉 = ‖Xη‖2 = |〈X∗, η〉|2 = ‖X‖2|〈ξX , η〉|2.(2) If X1 = 0 or X2 = 0 then the equality is obvious. In the ase both X1 and X2 arenonzero the equality follows from the following omputations
|X1||X2| = ‖X1‖−1‖X2‖−1|X1|2|X2|2 = ‖X1‖−1‖X2‖−1X∗

1X1X
∗
2X2

= ‖X1‖−1‖X2‖−1X∗
1 (X1X

∗
2 )X2 = ‖X1‖−1‖X2‖−1〈X∗

1 , X
∗
2 〉X∗

1X2

= 〈ξX1
, ξX2

〉X∗
1X2.To proeed with the study of Tang's maps we reall some general properties of mapsin P(2, n+ 1) (f. [MM3℄). We start withProposition 6 ([MM3℄). A map φ with the Choi matrix of the form
H =









a C 0 Y

C∗ B Z∗ T

0 Z 0 0

Y ∗ T ∗ 0 U









. (11)
is positive if and only if the inequality

∣

∣

∣
〈Y ∗,Γ τ 〉 + 〈Z∗,Γ τ 〉 + Tr (ΛτT )

∣

∣

∣

2

≤ [αa+ Tr (ΛτB) + 2ℜ{〈C∗,Γ τ 〉}] Tr (ΛτU) (12)
holds for every α ∈ C, matries Γ =

[

γ1 . . . γn

] and Λ =







λ11 . . . λ1n... ...
λn1 . . . λnn






,

γi ∈ C, λij ∈ C for i, j = 1, 2, . . . , n, suh that1. α ≥ 0 and Λ ≥ 0,2. Γ
∗
Γ ≤ αΛ.The supersript τ denotes the transposition of matries.Theorem 7 ([MM3℄). If the assumptions of Proposition 3 are ful�lled, then

|Y | + |Z| ≤ a1/2U1/2. (13)Remark 8. One an easily hek that the nondeomposable maps desribed in Example 4ful�ll the above inequality. It is easy to hek that in this ase the inequality is strit.This observation will be ruial for the next setion.As we mentioned, for P(2, n), n > 3, there are nondeomposable maps. The proposi-tion below provides the haraterization of ompletely positive and ompletely opositiveomponents of P(2, n).



256 W. A. MAJEWSKI AND M. MARCINIAKProposition 9 ([MM3℄). Let φ : M2(C) →Mn+1(C) be a linear map with the Choi ma-trix of the form (11). Then the map φ is ompletely positive (resp. ompletely opositive)if and only if the following onditions hold:(1) Z = 0 (resp. Y = 0),(2) the matrix 



a C Y

C∗ B T

Y ∗ T ∗ U



 (resp. 



a C Z

C∗ B T ∗

Z∗ T U



) is a positive element of thealgebra M2n+1(C).In partiular, the ondition (2) implies:(3) if B is an invertible matrix, then T ∗B−1T ≤ U (resp. TB−1T ∗ ≤ U),(4) C∗C ≤ aB,(5) Y ∗Y ≤ aU (resp. Z∗Z ≤ aU).This proposition yields information about possible splitting of a deomposable mapinto ompletely positive and ompletely opositive omponents. To go one step furtherlet us make the following observation. Let φ : Mm(C) →Mn(C) be a deomposable mapand φ = φ1 + φ2 for some ompletely positive φ1 and ompletely opositive φ2. Thenfrom the Kadison inequality we easily obtain
φ(Eij)

∗φ(Eij) ≤ ‖φ(I)‖ (φ1(Eii) + φ2(Ejj)) (14)for i, j = 1, 2, . . . ,m.Assume now that φ : M2(C) → Mn+1(C) has the Choi matrix of the form (5). Itfollows from Proposition 9 that the Choi matries of φ1 and φ2 are respetively
H1 =









a1 C1 0 Y

C∗
1 B1 0 T1

0 0 0 0

Y ∗ T ∗
1 0 U1









, H2 =









a2 C2 0 0

C∗
2 B2 Z∗ T2

0 Z 0 0

0 T ∗
2 0 U2









. (15)
Clearly, H1 +H2 = H, where H is the Choi matrix orresponding to φ. The inequal-ity (14) leads to additional relations between omponents of the Choi matries

[

‖Z‖2 ZT

T ∗Z∗ |Y |2 + T ∗T

]

≤ ‖φ(I)‖
[

a1 C1

C∗
1 B1 + U2

]

and
[

‖Y ‖2 Y T ∗

TY ∗ |Z|2 + TT ∗

]

≤ ‖φ(I)‖
[

a2 C2

C∗
2 B2 + U1

]

.It is worth pointing out that the above inequalities give a partial answer to Choi's ques-tion (f. [Choi2℄). Furthermore, turning to Tang's maps one an observe that the matrixorresponding to φ(Eij)
∗φ(Eij) is relatively large, whih preludes the possibility of de-omposition of these maps.3. On the struture of elements of P(2, n + 1). Giving a full desription of thesituation in P(2, 2) in [MM2℄ we proved that if φ : M2(C) → M2(C) is from a largelass of extremal positive unital maps, then the onstituent maps φ1 and φ2 are uniquely



STRUCTURE OF POSITIVE MAPS 257determined (f. Theorem 2.7 in [MM2℄). We reall that the Choi matrix of suh anextremal map φ : M2(C) →M2(C) is of the form (f. (3))
Hφ =









1 0 0 y

0 1 − u z t

0 z 0 0

y t 0 u









, (16)
where, in partiular, the following equality is satis�ed (f. (III) from Setion 1):

|y| + |z| = u1/2. (17)In this setion, motivated by the results given in the previous setion (we `quantized'the relations (I)-(III) given at the end of Setion 1), we onsider maps φ : M2(C) →
Mn+1(C). If suh a map is positive unital and φ ∈ Fe2,f1

then its Choi matrix has theform








1 0 0 Y

0 B Z∗ T

0 Z 0 0

Y ∗ T ∗ 0 U









, (18)
where B and U are positive matries suh that B + U = 1 and the onditions listed inPropositions 3 and 6 are satis�ed.Our objet is to examine onsequenes of the property

|Y | + |Z| = U1/2 (19)whih for n ≥ 1 is a natural analog of (17).First, we reall the following tehnialLemma 10. Let A =

[

P S

S∗ Q

]

∈ M2(Mn(C)), where P,Q, S ∈ Mn(C), and P,Q ≥ 0.The following are equivalent:(i) A is blok-positive;(ii) pP + sS + sS∗ + qQ ≥ 0 for all numbers p, q, s suh that p, q ≥ 0 and |s|2 ≤ pq;(iii) |〈η, Sη〉|2 ≤ 〈η, Pη〉〈η,Qη〉 for every η ∈ Cn.Proof. (i)⇒(ii). Let η ∈ Cn. It follows from the de�nition of blok-positivity (f. [MM2℄)that the matrix
[

〈η, Pη〉 〈η, Sη〉
〈η, S∗η〉 〈η,Qη〉

]

is positive. Hene the matrix
[

〈η, pPη〉 〈η, sSη〉
〈η, sS∗η〉 〈η, qQη〉

]

being a Hadamard produt of two positive matries is positive as well. Consequently,
〈η, (pP + sS + sS∗ + qQ)η〉 ≥ 0.Sine η is arbitrary, (ii) is proved.



258 W. A. MAJEWSKI AND M. MARCINIAK(ii)⇒(i). To prove that A is blok-positive one should show that for any η ∈ C
n and

µ1, µ2 ∈ C one has
|µ1|2〈η, Pη〉 + 2ℜ{µ1µ2〈η, Sη〉} + |µ2|2〈η,Qη〉 ≥ 0.Observe that p = |µ1|2, q = |µ2|2, s = µ1µ2 ful�ll p, q ≥ 0 and |s|2 = pq. So,

|µ1|2〈η, Pη〉 + 2ℜ{µ1µ2〈η, Sη〉} + |µ2|2〈η,Qη〉 = 〈η, (pP + sS + sS∗ + qQ)η〉 ≥ 0.(i)⇔(iii). Let η ∈ Cn. The positivity of the matrix [

〈η, Pη〉 〈η, Sη〉
〈η, S∗η〉 〈η,Qη〉

] is equivalentto non-negativity of its determinant 〈η, Pη〉〈η,Qη〉 − |〈η, Sη〉|2.Here we give another (f. Proposition 6) haraterisation of positive maps in thelanguage of their Choi matriesProposition 11. Let φ : M2(C) →Mn+1(C) be a linear unital map with the Choi matrixof the form








1 0 0 Y

0 B Z∗ T

0 Z 0 0

Y ∗ T ∗ 0 U









(20)
where B,U, T ∈ Mn(C), Y, Z ∈ M1,n(C), and B,U ≥ 0. Then the map φ is positive ifand only if

pB + sT + sT ∗ + qU ≥ 0and
(sY ∗ + sZ∗)(sY + sZ) ≤ p2B + p(sT + sT ∗) + pqU (21)for every p, q, s ∈ C suh that p, q ≥ 0 and |s|2 ≤ pq.Proof. It follows from the de�nition of the Choi matrix and from (20) that

φ

([

p s

v q

])

=

[

p sY + vZ

sZ∗ + vY ∗ pB + sT + vT ∗ + qU

]

.So, the map φ is positive if and only if the matrix
[

p sY + sZ

sZ∗ + sY ∗ pB + sT + sT ∗ + qU

]

. (22)is a positive element of Mn+1(C) for numbers p, q, s suh that p, q ≥ 0 and |s|2 ≤ pq (i.e.suh that the matrix [

p s

s q

] is positive in M2(C)). The positivity of the matrix (22)is equivalent to both inequalities from the statement of the proposition.The following generalizes Lemma 8.10 from [S℄.Proposition 12. Let φ be a positive unital map with the Choi matrix (20). Assume that
B is invertible. Then the matrix

[

2B T

T ∗ U − |Y |2 − |Z|2
] (23)is blok-positive.



STRUCTURE OF POSITIVE MAPS 259Proof. Let η ∈ C
n, η 6= 0, and p, q, s ∈ C be numbers suh that p, q ≥ 0 and |s|2 = pq.Then from (21) we have

|s|2〈η, (|Y |2 + |Z|2)η〉 + 2ℜ
{

s2〈η, Z∗Y η〉
}

≤ p2〈η,Bη〉 + 2pℜ{s〈η, Tη〉} + pq〈η, Uη〉.Replae s in this inequality by is and obtain
|s|2〈η, (|Y |2 + |Z|2)η〉 − 2ℜ

{

s2〈η, Z∗Y η〉
}

≤ p2〈η,Bη〉 + 2pℜ{is〈η, Tη〉} + pq〈η, Uη〉.Adding the above two inequalities one gets
|s|2〈η, (|Y |2 + |Z|2)η〉 ≤ p2〈η,Bη〉 + pℜ{(1 + i)s〈η, Tη〉} + pq〈η, Uη〉. (24)Let pq = 1, and s be suh that |s| = 1 and ℜ{(1 + i)s〈η, Tη〉} = −

√
2 |〈η, Tη〉|. Then theinequality (24) takes the form

〈η, (|Y |2 + |Z|2)η〉 ≤ p2〈η,Bη〉 −
√

2 p |〈η, Tη〉| + 〈η, Uη〉. (25)Following the argument of Størmer in the proof of Lemma 8.10 in [S℄ we observe thatthe funtion f(x) = 〈η,Bη〉x2 −
√

2 |〈η, Tη〉|x + 〈η, Uη〉 has its minimum for x =

2−1/2〈η,Bη〉−1|〈η, Tη〉|. Hene, (25) leads to the inequality
〈η, (|Y |2 + |Z|2)η〉 ≤ −2−1〈η,Bη〉−1|〈η, Tη〉|2 + 〈η, Uη〉and �nally

|〈η, Tη〉|2 ≤ 2〈η,Bη〉〈η, (U − |Y |2 − |Z|2)η〉.By Lemma 10 this implies blok-positivity of the matrix (23).Our next results show that the property (19) in the ase n ≥ 2 has rather restritiveonsequenes.Proposition 13. Let φ : M2(C) → Mn+1(C), n ≥ 2, be a positive linear map with theChoi matrix of the form (20). Assume |Y | + |Z| = U1/2. Then Y and Z are linearlydependent.Proof. Assume on the ontrary that Y and Z are linearly independent. We will showthat φ an not be positive in this ase. To this end let p, q, s be numbers suh that p > 0,
q > 0 and |s|2 ≤ pq and de�ne

D = p2B + p(sT + sT ∗) + pqU − (sY ∗ + sZ∗)(sY + sZ).By Proposition 11 (f. (21)) it is enough to �nd numbers p, q, s and a vetor ξ0 ∈ Cn suhthat 〈ξ0, Dξ0〉 < 0.It follows from the assumption and Proposition 5 that
D = p2B + p(sT + sT ∗) + pq(|Y | + |Z|)2

− |s|2(|Y |2 + |Z|2) − s2Y ∗Z − s2Z∗Y

= p2B + (pq − |s|2)(|Y |2 + |Z|2) + pq(|Y | |Z| + |Z| |Y |)
+ p(sT + sT ∗) − s2Y ∗Z − s2Z∗Y

= p2B + (pq − |s|2)(|Y |2 + |Z|2) + psT + psT ∗

+ (pq〈ξY , ξZ〉 − s2)Y ∗Z + (pq〈ξZ , ξY 〉 − s2)Z∗Y.



260 W. A. MAJEWSKI AND M. MARCINIAKLet ξ ∈ C
n. Then
〈ξ,Dξ〉 = p2〈ξ, Bξ〉 + (pq − |s|2)〈ξ, (|Y |2 + |Z|2)ξ〉 + 2pℜ{s〈ξ, T ξ〉}

+ 2ℜ{(pq〈ξY , ξZ〉 − s2)〈ξ, Y ∗Zξ〉}
= p2〈ξ, Bξ〉 + (pq − |s|2)〈ξ, (|Y |2 + |Z|2)ξ〉 + 2pℜ{s〈ξ, T ξ〉}

+ 2‖Y ‖‖Z‖ℜ{(pq〈ξY , ξZ〉 − s2)〈ξ, ξY 〉〈ξZ , ξ〉}.Let ξ0 = ξY + ξZ and s = (pq)1/2eiθ for some θ ∈ [0, 2π). Then
〈ξ0, Dξ0〉 = p2〈ξ0, Bξ0〉 + 2p3/2q1/2 ℜ

{

eiθ〈ξ0, T ξ0〉
}

+ 2pq‖Y ‖‖Z‖ℜ{(〈ξZ , ξY 〉 − e−2iθ) (1 + 〈ξY , ξZ〉)2}.By the assumption ξY and ξZ are linearly dependent. Moreover ‖ξY ‖ = ‖ξZ‖ = 1. Thisimplies that |〈ξZ , ξY 〉| < 1, so (1 + 〈ξZ , ξY 〉)2 6= 0. Now, hoose θ suh that
ℜ

{

e−2iθ(1 + 〈ξZ , ξY 〉)2
}

= |1 + 〈ξZ , ξY 〉|2.Then
〈ξ0, Dξ0〉 = p2〈ξ0, Bξ0〉 + 2p3/2q1/2 ℜ

{

eiθ〈ξ0, T ξ0〉
}

+ 2pq‖Y ‖ ‖Z‖
[

ℜ
{

〈ξY , ξZ〉(1 + 〈ξZ , ξY 〉)2
}

− |1 + 〈ξZ , ξY 〉|2
]

.Observe that
ℜ

{

〈ξY , ξZ〉(1 + 〈ξZ , ξY 〉)2
}

< |1 + 〈ξZ , ξY 〉|2,so it is possible to �nd p su�iently small and q su�iently large so that 〈ξ0, Dξ0〉 isnegative. This ends the proof.Proposition 14. Let φ : M2(C) → Mn+1(C) satisfy the assumptions of the previousProposition. If Z = 0 and ‖Y ‖ < 1 (resp. Y = 0 and ‖Z‖ < 1) then φ is ompletelypositive (resp. ompletely opositive).Proof. It follows that U = |Y |2. Moreover, the assumption ‖Y ‖ < 1 implies that B =

1− |Y |2 is invertible. As we also have U − |Y |2 − |Z|2 = 0, by Proposition 12 the matrix
[

2B T

T ∗ 0

] is blok-positive. Hene T = 0. We onlude that the Choi matrix of φ hasthe form








1 0 0 Y

0 1 − |Y |2 0 0

0 0 0 0

Y ∗ 0 0 |Y |2









.

In order to �nish the proof one should show (f. Proposition 9) that the matrix




1 0 Y

0 1 − |Y |2 0

Y ∗ 0 |Y |2





is positive, but this an be done by straightforward omputations.The proof in the ase Y = 0 follows in the same way.As a onsequene of the above results we get the following desription of maps satis-fying the �quantized� properties (17).



STRUCTURE OF POSITIVE MAPS 261Theorem 15. Let φ : M2(C) →Mn+1(C) be a positive unital map with the Choi matrixof the form (20) where |Y | + |Z| = U1/2. Then(1) there are vetors ξ ∈ C
2 and η0 ∈ C

n+1 suh that
φ ∈

⋂

η⊥η0

Fξ,η; (26)(2) φ is unitarily equivalent to a map with the Choi matrix of the form


















1 0 0 0 0 y

0 1 0 0 0 W ∗

0 0 1 − u z V t

0 0 z 0 0 0

0 0 V ∗ 0 0 0

y W t 0 0 u



















(27)
where in eah blok there are numbers on positions (11), (13), (31) and (33), one-row matries from M1,n−1(C) on positions (12) and (32), one-olumn matriesfrom Mn−1,1(C) on positions (21) and (23), and square matries from Mn−1(C)on positions (22). Here u = (|y|+ |z|)2. Moreover, oe�ients satisfy the inequality

|〈ρ, Y ∗
1 〉| + |〈ρ, Z∗

1 〉| ≤ u1/2 (28)for any unit vetor ρ ∈ Cn where Y1, Z1 ∈M1,n(C) are de�ned as
Y1 =

[

y W
]

, Z1 =
[

z V
]

.Proof. It follows from Proposition 13 that there is a unit vetor η0 ∈ Cn suh that
Y ∗ = yη0 and Z∗ = zη0 for some y, z ∈ C. Hene |Y | = |y|Pη0

, |Z| = |z|Pη0
, and

U = (|y| + |z|)2Pη0
, where Pη0

is the orthogonal projetor onto the one-dimensionalsubspae generated by the vetor η0. As
φ(Pe2

) =

[

0 0

0 U

]

∈Mn+1(C)then φ(Pe2
)η = 0 for any η orthogonal to η0. So, from Theorem 2 we obtained (26).By hoosing a suitable basis of Cn+1 we may assume that fn+1 = η0. Then the Choimatrix (20) takes the form







































1 0 · · · 0 0 0 0 · · · 0 y

0 1 · · · 0 0 0 t11 · · · t1,n−1 t1n... ... ... ... ... ... ... ...
0 0 · · · 1 0 0 tn−1,1 · · · tn−1,n−1 tn−1,n

0 0 · · · 0 1 − u z tn1 · · · tn,n−1 tnn

0 0 · · · 0 z 0 0 · · · 0 0

0 t11 · · · tn−1,1 tn1 0 0 · · · 0 0... ... ... ... ... ... ... ...
0 t1,n−1 · · · tn−1,n−1 tn,n−1 0 0 · · · 0 0

y t1n · · · tn−1,n tnn 0 0 · · · 0 u







































.
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1 · · · 0 t11 · · · t1,n−1... ... ... ...
0 · · · 1 t1,n−1 · · · tn−1,n−1

t11 · · · tn−1,1 0 · · · 0... ... ... ...
t1,n−1 · · · tn−1,n−1 0 · · · 0























.

is also blok-positive, so tij = 0 for i, j = 1, 2, . . . , n− 1. Thus we obtained that the Choimatrix has the form (27).Now, for any ρ ∈ Cn, where ρ =
[

ρ1 . . . ρn

], de�ne the following matrix from
Mn+1,2(C):

Vρ =

[

ρ1 . . . ρn 0

0 . . . 0 1

]

.One an easily hek that V V ∗ = 1, so the map ψρ : Mn+1(C) → M2(C) : A 7→ V AV ∗is unital and ompletely positive. As a onsequene, the map ψρ ◦ φ : M2(C) → M2(C)is positive and unital. Moreover, by a straightforward alulation one an hek that theChoi matrix of this map has the form










1 0 0 〈ρ, Y ∗
1 〉

0 1 − u 〈ρ, Z∗
1 〉 t

0 〈ρ, Z∗
1 〉 0 0

〈ρ, Y ∗
1 〉 t 0 u











.

The inequality (28) follows from (III) in Setion 1.4. Conlusions. In our previous paper [MM2℄ we proved that for any positive unitalmap φ : M2(C) → M2(C) from some maximal fae there exists a unique deompositionof φ onto ompletely positive and ompletely opositive parts. To prove this result wehave used the tehniques based on the so alled Choi matrix (see (3)). It turned outthat these tehniques an be extended for an analysis of maps φ : M2(C) → Mn(C)(n ≥ 3). In partiular, we have shown that the appropriate Choi matrix (see (5)) hasvery analogous form but some of the oe�ients have to be matries. In other words,there is some kind of �quantization� of the lowest dimensional ase. In Propositions 3,6 and 12 and Theorem 7 we have shown several neessary onditions for positivity ofthe map φ in terms of its Choi matrix while in Proposition 9 we did it for ompletepositivity. It is worth pointing out these onditions are generalizations of those given in[S℄ and [MM2℄. Further we emphasize that Theorem 7 demonstrates rather strikingly thata generalization of the inequality (III) from Setion 1 is valid. Furthermore, guided by the
2 × 2 ase, the natural strengthening of the (in)equality (III) was examined. To this endin Proposition 13 we show that this quantized ondition is very restritive. This gives thepossibility to prove Theorem 15 whih fully haraterizes maps from M2(C) into Mn(C)satisfying the ondition (28).



STRUCTURE OF POSITIVE MAPS 263We end this paper by a remark that Theorem 15 gives a very useful tool for desribingproperties of extremal maps in P(2, n+1) and it seems that following this line of researhan give a possibility to onstrut some new examples of nondeomposable maps. Thedetails will be given in forthoming publiations.
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