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Abstract. The paper is devoted to investigation of Gegenbauer white noise functionals. A par-

ticular attention is paid to the construction of the infinite dimensional Gegenbauer white noise

measure Gβ , via the Bochner-Minlos theorem, on a suitable nuclear triple. Then we give the

chaos decomposition of the L2-space with respect to the measure Gβ by using the so-called

β-type Wick product.

1. Introduction. The white noise theory for Brownian motion was first introduced

by T. Hida, in the Gaussian case, in his celebrated lecture notes [6, 7]. Later, Kubo

and Takenaka reformulated Hida’s theory by taking different test function spaces and

using the S-transform (see [11, 16] and references therein). For non-Gaussian white

noise analysis, Y. Itô [8] constructed a Poissonian counterpart of Hida’s theory and

Kondratiev et al. [1, 10, 18] established a purely non-Gaussian distribution theory in

infinite dimensional analysis by means of a normalized Laplace transform. (See also

[5]). In [13, 9], a theory of the Lévy white noise analysis for the general case of Lévy

processes is developed. See also the generalization and extension to various aspects, in

[17, 14, 15].
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In view of these different developments, it is natural to ask if a white noise theory

can also be developed for other processes. In particular, since Gegenbauer processes are

becoming increasingly important in many applications, it would be of interest to have

a white noise theory for such processes. In fact, Gegenbauer processes are long memory

processes and are characterized by an unbounded power spectral density at zero. From

this last singularity property, one can observe that a natural tool to analyze such pro-

cesses appears to be a generalization of the wavelet transform in quite different way from

the Lévy processes. This was our motivation to intend to start a study on white noise

functionals of general form on non-Lévy cases.

The development in our present paper is essentially the introduction of an infinite

dimensional Gegenbauer white noise measure Gβ , β > 0, and the chaos decomposition

of an L2-space with respect to the measure Gβ by using an orthogonal system of infi-

nite dimensional Gegenbauer polynomials. Such a decomposition is obtained by using

the classical Gegenbauer polynomials as a counterpart of Hermite and Charlier poly-

nomials in the Wiener-Itô chaos decomposition in Gaussian and Poisson white noise,

respectively.

We shall use the following general formalism for classical polynomials. Let µ ba a

probability measure on R with finite moments of all orders, such that the linear span of

the monomials xn, n ≥ 0 is dense in L2(µ). It is well known that there exists a complete

system {Pn}∞n=0 of orthogonal polynomials such that Pn is a polynomial of degree n with

leading coefficient 1 and the following recursion formula is satisfied :

(1.1) (x− αn)Pn(x) = Pn+1(x) + wnPn−1(x).

Here, αn ∈ R and wn ≥ 0 for n ≥ 0, and by convention w0 = 1, P−1(x) = 0. The numbers

αn and wn are called Szegö-Jacobi parameters of µ. (see [2, 3, 4, 19] for detailed develop-

ment). The classical polynomials of Legendre, Chebyshev of the first kind, Chebyshev of

the second kind and Gegenbauer are distinguished from their generating function, which

involves the Fourier transform of their orthogonality measure. In this paper we focus on

the β-type distribution and Gegenbauer polynomials.

The outline of our paper is the following. In Section 2, we review some fact about

β-type distribution and Gegenbauer polynomials. Then we use the Gegenbauer functions

to construct a standard nuclear triplet

Eβ ⊂ H := L2 (]−1, 1[, dx) ⊂ E′
β.

By the Bochner-Minlos theorem, we define the Gegenbauer white noise measure Gβ on

(E′
β,B(E′

β)) and we give some of its features. In section 3, we define the β-type Wick

product by means of an orthogonal system of infinite dimensional Gegenbauer polynomi-

als and we investigate the chaos decomposition of the space L2(E′
β,B(E′

β),Gβ).

2. Gegenbauer white noise space

2.1. Gegenbauer space in one dimension. Let µβ,σ be the beta-type distribution with

parameters β > −1
2 and σ ∈ R given by
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(2.1)





dµβ,σ(x) =

1

|σ|√π
Γ(β + 1)

Γ(β + 1
2 )

(
1 − x2

σ2

)β− 1

2

χ]−|σ|,|σ|[ dx,

dµβ,0(x) = δ0(x),

where δ0 is the Dirac measure concentrated at the point 0 and Γ(·) is the Gamma function.

For σ = 1, we have the standard beta-type distribution with parameter β :

(2.2) dµβ(x) := dµβ,1(x) =
1√
π

Γ(β + 1)

Γ(β + 1
2 )

(1 − x2)β− 1

2 χ]−1,1[ dx.

The following three important distributions are particular cases of (2.2).

• dµ 1

2

(x) =
1

2
dx, |x| < 1 : Uniform distribution;

• dµ0(x) =
1

π

1√
1 − x2

dx, |x| < 1 : Arcsine distribution;

• dµ1(x) =
2

π

√
1 − x2 dx, |x| < 1 : Semi-circle distribution.

From the paper [3], we recall the following useful background. Apply the Gram-

Schmidt orthogonalization process to the sequence
{
1, x, x2, · · · , xn, · · ·

}
to get a se-

quence {Pβ,n; n = 0, 1, 2, · · · } of orthogonal polynomials in L2(µβ). Here Pβ,0(x) = 1

and for β > 0, Pβ,n is the Gegenbauer polynomial given by

Pβ,n(x) =
n!

2n(β)n

[n/2]∑

k=0

(−1)n2n−2k

( −β
n− k

)(
n− k

k

)
xn−2k,

where the shifted factorials are given by

(a)0 = 1 ; (a)k = a(a+ 1) · · · (a+ k − 1) =
Γ(a+ k)

Γ(a)
, ∀ k ∈ N,

and for δ ∈ R, p ∈ N∗, we have
(
δ

p

)
=
δ(δ − 1)...(δ − p+ 1)

p!
.

For the Szegö-Jacobi parameters, since the measure µβ is symmetric we have

αn = 0 and wn =
n(n− 1 + 2β)

4(n+ β)(n− 1 + β)
, n ≥ 0.

It is well-known that, according to (1.1), these polynomials Pβ,n satisfy the recursion

formula

xPβ,n(x) = Pβ,n+1(x) + wnPβ,n−1(x).

We recall that the generating function ψµβ
associated to the measure µβ is given by

ψµβ
(t, x) =

1

(1 − 2xt+ t2)β
=

∞∑

n=0

2n(β)n

n!
tnPβ,n(x).

Remark 2.1. Note that the Legendre polynomials and Chebyshev polynomials of the

second kind are the special cases of Gegenbauer’s, with β = 1
2 and β = 1 respectively.



38 A. BARHOUMI, H. OUERDIANE AND A. RIAHI

For the case β = 0, we recall the Chebyshev polynomials of the first kind Tn given by

Tn(x) = xn +
1

2n

[n/2]∑

k=0

(−1)k n

k
2n−2k

(
n− k − 1

k − 1

)
xn−2k.

Furthermore, the generating function of the arcsine distribution is given by

ψµ0
(t, x) =

1 − t2

1 − 2xt+ t2
=

+∞∑

n=0

2nTn(x)tn.

A detailed development of this special case will appear in a future paper. Thus we assume

that β > 0 from now on.

The Bessel function of the first kind of order α > −1
2 can be defined by (see [19])

Jα(x) =
(x

2

)α +∞∑

k=0

(−1)k

k! Γ(α+ k + 1)

(x
2

)2k

, x > 0.

Moreover, we have the following Poisson-Mehler integral representation

(2.3) Jα(x) =
1√

π Γ(α+ 1
2 )

(x
2

)α
∫ 1

−1

(1 − t2)α− 1

2 eixtdt.

The normalized Bessel function of order α > −1
2 is given by

(2.4) jα(x) =

{
2α Γ(α+ 1) Jα(x)

xα if x 6= 0

1 if x = 0

Using (2.3) and (2.4), the Fourier transform of the beta-type distribution, in Eq. (2.1) is

given by

(2.5) µ̂β,σ(x) =

∫

R

eixtdµβ,σ(t) = jβ(|σ|x), x ∈ R.

2.2. Construction of the Gegenbauer white noise space. For simplicity, put I = ]−1, 1[.

From the Favard theorem [4], one can easily obtain

‖Pβ,n‖2
L2(I,µβ) =

n!

4n

(2β)n

(β)n(β + 1)n
=: Mβ,n,

therefore, we define the corresponding Gegenbauer functions Hβ,n(x) by

Hβ,n(x) =

(
Γ(β + 1)√

π Γ(β + 1
2 )Mβ,n

) 1

2

Pβ,n(x)
(
1 − x2

) 2β−1

4 .

This gives an orthonormal basis {Hβ,n, n = 0, 1, 2, · · ·} for H := L2(I, dx).

Lemma 2.2. Define the operator Aβ, on H, by

Aβ = (x2 − 1)
d2

dx2
+ 2x

d

dx
−

(
β − 1

2

)2
x2

x2 − 1
+ 2.

Then the Gegenbauer functions Hβ,n are eigenvectors of Aβ, namely,

(2.6) AβHβ,n = λβ,nHβ,n
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with

λβ,n = β +
3

2
+ n(n+ 2β), n = 0, 1, 2, · · ·

Moreover, for any p > 1
4 , A

−p
β is a Hilbert-Schmidt operator satisfying

‖A−p
β ‖2

HS =

∞∑

n=0

λ
−2p
β,n <∞.

Proof. For simplicity, we put

fβ,n(x) = (1 − x2)
2β−1

4 Pβ,n(x).

Then, it is easy to see that

f ′′β,n(x) − 2x

1 − x2
f ′β,n(x) −

(
β − 1

2

)2
x2

(1 − x2)2
fβ,n(x) − 2

1 − x2
fβ,n(x)

= (1 − x2)
β
2
− 1

4

(
P ′′

β,n(x) − (2β + 1)x

1 − x2
P ′

β,n(x) − β + 3
2

1 − x2
Pβ,n(x)

)
.

On the other hand, Pβ,n satisfies the differential equation

P ′′
β,n(x) − (2β + 1)x

1 − x2
P ′

β,n(x) +
n(n+ 2β)

1 − x2
Pβ,n(x) = 0.

Hence, we have

(x2 − 1)f ′′β,n(x) + 2xf ′n(x) −
(
β − 1

2

)2
x2

1 − x2
fβ,n(x) + 2fβ,n(x) = λβ,nfβ,n(x),

which gives (2.6). The second statement is straightforward.

Now, for each p ∈ R, define a norm | · |p on H by

(2.7) |f |p = |Ap
β |f ||0 =

( ∞∑

n=0

λ
2p
β,n 〈|f |,Hβ,n〉2

)1/2

, f ∈ H,

where | · |0 and 〈 · , · 〉 are , respectively, the norm and the inner product of H. For p ≥ 0,

let Ep,β be the Hilbert space consisting of all f ∈ H with |f |p < ∞, and E−p,β the

completion of H with respect to | · |−p. Since A−1
β is of Hilbert-Schmidt type, identifying

H with its dual space we come to the real standard nuclear triple

Eβ :=
⋂

p≥0

Ep,β ⊂ H ⊂
⋃

p≥0

E−p,β := E′
β.

Being compatible to the inner product of H, the canonical bilinear form on E′
β × Eβ is

denoted by 〈 · , · 〉 again.

Lemma 2.3. The function

(2.8) Cβ(ϕ) = jβ(〈ϕ〉), ϕ ∈ Eβ,

is a characteristic function on Eβ, where 〈ϕ〉 =
∫

I
ϕ(x)dx.
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Proof. Obviously Cβ is continuous on Eβ and Cβ(0) = 1. We shall prove that Cβ is

positive definite. Given α1, α2, · · · , αn ∈ C and ϕ1, ϕ2, · · · , ϕn ∈ Eβ, we have

n∑

j,k=1

αjαkCβ(ϕj − ϕk) =
n∑

j,k=1

αjαk
Γ(β + 1)√
π Γ(β + 1

2 )

∫ 1

−1

(1 − t2)β− 1

2 eit〈ϕj−ϕk〉dt

=
Γ(β + 1)√
π Γ(β + 1

2 )

∫ 1

−1

(1 − t2)β− 1

2 |At|2dt ≥ 0,

where At =
∑n

j=1 αj exp(it〈ϕj〉).

An application of the Bochner-Minlos theorem leads us to the following.

Definition 2.4. The probability measure Gβ, on E′
β, whose characteristic function is

Cβ given by (2.8), is called the Gegenbauer white noise measure with parameter β. The

probability space (E′
β,Gβ) is called the Gegenbauer white noise space.

Proposition 2.5. For ξ∈Eβ, let Xξ be the random variable defined, on (E′
β,B(E′

β),Gβ),

by

Xξ(w) := 〈w, ξ〉,
where B(E′

β) is the cylinder σ-algebra on E′
β. If 〈ξ〉 ≥ 0, then Xξ has a beta-type distri-

bution with parameters β and 〈ξ〉.

Proof. By using (2.1), (2.5) and (2.8), we have
∫

E′
β

eiλXξ(w)dGβ(w) = jβ(〈λξ〉) = µ̂β,〈ξ〉(λ), λ ∈ R.

This proves that the distribution of the random variable Xξ is the probability measure

µβ,〈ξ〉 on R.

Remark 2.6. Indeed, for t ∈ R∗, setting in (2.8) ϕ = λχ[0∧t,0∨t], where 0∧ t = min(0, t)

and 0 ∨ t = max(0, t), we obtain

Cβ(ϕ) =

{
jβ(λ|t|) if |t| < 1,

jβ(λ) if |t| ≥ 1.

This function coincides with the Fourier transform of the measure µβ,|t| if |t| < 1 and

the measure µβ if |t| ≥ 1. On the probability space (E′
β,B(E′

β),Gβ), the random variable

Xt := 〈 · , χ[0∧t,0∨t]〉 has a beta-type distribution. So the family of random variables

X = {Xt, t ∈ R}, X0 = 0

is called a Gegenbauer process. The image of the Gegenbauer white noise measure Gβ

under the random variable Xt(·) is the beta-type distribution µβ if |t| ≥ 1 and the

beta-type distribution µβ,|t| if |t| < 1. Then, for t > s > 0, the characteristic function

E [exp{iλ(Xt −Xs)}] of Xt −Xs has the following form:

(2.9) E [exp{iλ(Xt −Xs)}] =






jβ(λ(t− s)) if s, t ∈ (0, 1),

jβ(λ(1 − s)) if 0 < s < 1 ≤ t,

jβ(0) = 1 if s, t > 1.
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We conclude that for s, t ∈ (0, 1) the random variable Xt −Xs has the beta-type distri-

bution with parameters β and t − s. This gives an essence of our approach for defining

the Gegenbauer white noise functionals.

3. Chaos decomposition of the white noise gegenbauer space. Let L2(E′
β,Gβ) be

the real Hilbert space of square Gβ-integrable functions with norm denoted by ‖·‖0. In the

remainder of this paper we shall discuss some properties of the white noise Gegenbauer

space L2(E′
β,Gβ).

Lemma 3.1. The measure Gβ satisfies the moment condition:
∫

E′
β

〈w, ξ〉n dGβ(w) <∞,

for any ξ ∈ Eβ satisfying 〈ξ〉 ≥ 0 and n ∈ N. More precisely, we have:

1.

(3.1)

∫

E′
β

〈w, ξ〉2ndGβ(w) =
( 1
2 )n

(β + 1)n
〈ξ〉2n;

2.

∫

E′
β

〈w, ξ〉2n+1 dGβ(w) = 0.

Proof. By using proposition 2.5, we get
∫

E′
β

〈w, ξ〉2n dGβ(w) =

∫

R

t2n dµβ,〈ξ〉(t) =
( 1
2 )n

(β + 1)n
〈ξ〉2n

This proves the first statement. The second statement is obvious from the symmetry of

the measure µβ,〈ξ〉.

From the above Lemma, the linear functional w 7→ Xξ(w), ξ ∈ Eβ, belongs to

L2(E′
β,Gβ). Now, for each φ ∈ H = L2(I, dt), choose a sequence {φn} ⊂ Eβ so that

φn → φ in H. Then it follows from (3.1) that {〈 · , φn 〉} forms a Cauchy sequence in

L2(E′
β,Gβ). Denote by 〈 · , φ 〉 the L2-limit of {〈 · , φn 〉}. When φ = χ(s,t), the indicator

of (s, t), the characteristic function of 〈 · , φ 〉 is exactly the same as the one in (2.9). So

the Gegenbauer process X on (E′
β,B(E′

β),Gβ) can be represented by

X(t;w) =

{
〈w , χ(0,t) 〉 if t ≥ 0,

−〈w , χ(t,0) 〉 if t < 0, w ∈ E′
β.

Taking the time derivative formally, we get

Ẋ(t;w) = w(t), w ∈ E′
β.

Thus the elements of E′
β can be regarded as the sample paths of the Gegenbauer white

noise, and members of L2(E′
β,Gβ) are called Gegenbauer white noise functionals.

Now, we introduce polynomial functions on the white noise Gegenbauer space

(E′
β,Gβ). Let Pn(E′

β) be the space of finite linear combinations of functions of the form

w 7→ 〈w, ξ1〉 · · · 〈w, ξn〉 = 〈w⊗n, ξ1 ⊗ · · · ⊗ ξn〉, w ∈ E′
β , ξ1, · · · , ξn ∈ Eβ.
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An element of the algebraic sums

P(E′
β) =

∞∑

n=0

Pn(E′
β)

is called a polynomial on the space (E′
β,Gβ).

From Eq. (2.7) one can see that the nuclear space Eβ is closed under the absolute

value. This enables us to introduce a Wick product in the following way.

Definition 3.2. For w ∈ E′
β and n = 0, 1, 2, · · ·, we define the β-type Wick product

: w⊗n :β ∈ E′⊗̂n
β as the linear functional on E⊗̂n

β characterized by

(3.2)
〈
: w⊗n :β , ϕ

⊗n
〉

= |ϕ|n0 Pβ,n

( 〈w, |ϕ| 〉
〈 |ϕ| 〉

)
, ϕ ∈ Eβ,

and for any orthogonal vectors ξ1, · · ·, ξk ∈ Eβ and nonnegative integers nj ’s such that

n1 + · · · + nk = n, we have

(3.3)
〈
: w⊗n :β , ξ

⊗n1

1 ⊗̂ · · · ⊗̂ξ⊗nk

k

〉
=

〈
: w⊗n1 :β , ξ

⊗n1

1

〉
· · ·

〈
: w⊗nk :β , ξ

⊗nk

k

〉
.

Lemma 3.3. We have the following statements:

1.

(3.4)

∫

E′
β

〈
: w⊗n :β, ξ

⊗n
〉 〈

: w⊗m :β , ξ
⊗m

〉
dGβ(w) = Mβ,n |ξ|2n

0 δm,n, ξ ∈ Eβ;

2.

∫

E′
β

〈
: w⊗m :β, ξ

⊗m
〉 〈

: w⊗n :β , η
⊗n

〉
dGβ(w) = Mβ,n 〈ξ, η〉n δm,n; ξ, η ∈ Eβ.

3. For all φn, ψn ∈ E⊗̂n
β , we have :

∫

E′
β

〈
: w⊗n :β, φn

〉 〈
: w⊗m :β , ψm

〉
dGβ(w) = Mβ,n 〈φn, ψn〉 δm,n.

Proof. 1. For ξ ∈ Eβ, ξ 6= 0, the image of the Gegenbauer white noise measure Gβ under

the map

w 7→
〈
w ,

|ξ|
〈|ξ|〉

〉
∈ R, w ∈ E′

β,

is the beta-type distribution µβ. Then we have
∫

E′
β

〈
: w⊗n :β , ξ

⊗n
〉 〈

: w⊗m :β, ξ
⊗m

〉
dGβ(w)

= |ξ|n+m
0

∫

I

Pβ,n(t)Pβ,m(t)dµβ(t) = Mβ,n |ξ|2n
0 δm,n.

2. It is sufficient to prove the identity under the assumption |ξ|0 = |η|0 = 1. Taking a

unit vector ζ ∈ Eβ such that 〈ξ, ζ〉 = 0, we may write

η = αξ + λζ, α2 + λ2 = 1,

and we have

〈
: w⊗n :β, η

⊗n
〉

=
n∑

k=0

(
n

k

)
αn−kλk

〈
: w⊗(n−k) :β , ξ

⊗(n−k)
〉〈

: w⊗k :β , ζ
⊗k

〉
.
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Then we get
∫

E′
β

〈
: w⊗m :β, ξ

⊗m
〉 〈

: w⊗n :β , η
⊗n

〉
dGβ(w) =

n∑

k=0

(
n

k

)
αn−kλk

×
∫

E′
β

〈
: w⊗m :β , ξ

⊗m
〉 〈

: w⊗(n−k) :β , ξ
⊗(n−k)

〉 〈
: w⊗k :β, ζ

⊗k
〉
dGβ(w).

On the other hand, by using the independence of the two random variables 〈·, ξ〉 and

〈·, ζ〉, we obtain
∫

E′
β

〈
: w⊗m :β, ξ

⊗m
〉 〈

: w⊗(n−k) :β, ξ
⊗(n−k)

〉 〈
: w⊗k :β , ζ

⊗k
〉
dGβ(w)

=

∫

E′
β

〈
: w⊗m :β, ξ

⊗m
〉 〈

: w⊗(n−k) :β , ξ
⊗(n−k)

〉
dGβ(w)

∫

E′
β

〈
: w⊗k :β, ζ

⊗k
〉
dGβ(w).

Therefore the last integral is equal to 0 unless k = 0 and is equal to 1 if k = 0. Hence,
∫

E′
β

〈
: w⊗m :β, ξ

⊗m
〉 〈

: w⊗n :β , η
⊗n

〉
dGβ(w)

= αn

∫

E′
β

〈
: w⊗m :β , ξ

⊗m
〉 〈

: w⊗n :β, ξ
⊗n

〉
dGβ(w).

Applying (3.4), we conclude that
∫

E′
β

〈
: w⊗m :β , ξ

⊗m
〉 〈

: w⊗n :β, η
⊗n

〉
dGβ(w) = Mβ,nα

n δm,n.

Since α = 〈ξ, η〉, we have completed the proof of 2.

3. The statement follows from the second assertion by considering φn and ψn as linear

combinations of elements of the form ξ⊗n, ξ ∈ Eβ.

Proposition 3.4. For two polynomials φ, ψ ∈ P(E′
β), given respectively by

φ(w) =

∞∑

n=0

〈
: w⊗n :β, φn

〉
, ψ(w) =

∞∑

n=0

〈
: w⊗n :β, ψn

〉
,

we have ∫

E′
β

φ(w)ψ(w) dGβ(w) =

∞∑

n=0

Mβ,n〈φn, ψn〉.

In particular, the L2-norm of φ, with respect to Gβ, is given by

‖φ‖2
0 =

∞∑

n=0

Mβ,n|φn|20.

Proof. The statement follows from Lemma 3.3.

The β-Fock space Fβ(H) over H is defined as the weighted direct sum of the n-th

symmetric tensor powers H⊗̂n, n ∈ N,

Fβ(H) :=
+∞⊕

n=0

Mβ,nH
⊗̂n.
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Thus Fβ(H) consists of sequences
−→
f = (f (0), f (1), · · · ) such that, for any n ∈ N, f (n) ∈

H⊗̂n and

‖−→f ‖2
Fβ(H) =

+∞∑

n=0

Mβ,n‖f (n)‖2
H⊗̂n

<∞.

Proposition 3.5. For n = (n0, n1, n2, · · ·) with |n| = n0 + n1 + n2 + · · · = n < ∞ we

put

eβ,n :=

(
0, · · ·,

H⊗n0

β,n0
⊗̂ H⊗n1

β,n1
⊗̂ · · ·

√
Mβ,n0

Mβ,n1
· · ·

, 0, · · ·
)
,

where the non-zero element occurs in the (n+1)-th place. Then, {eβ,n, |n| = n} constitute

a complete orthonormal basis for Fβ(H). Moreover, if we put

φβ,n(w) := (Mβ,n0
Mβ,n1

· · · )−1/2 〈
: w⊗n :β,H⊗n0

β,n0
⊗̂ H⊗n1

β,n1
⊗̂ · · ·

〉
,

then {φβ,n, |n| <∞} forms a complete orthonormal basis for L2(E′
β,Gβ).

Proof. The proof is obvious by the definition of the β-Fock space.

Theorem 3.6. For each F ∈ L2(E′
β,Gβ), there exists a unique sequence

−→
f =

(
f (n)

)∞
n=0

∈ Fβ(H) such that

(3.5) F =
+∞∑

n=0

〈
: ·⊗n :β, f

(n)
〉

in the L2−sense. Conversely, for any
−→
f =

(
f (n)

)∞
n=0

∈ Fβ(H), (3.5) defines a function

on L2(E′
β,Gβ). In that case,

‖F‖2
L2(E′

β
,Gβ) =

+∞∑

n=0

Mβ,n‖f (n)‖2
H⊗̂n

= ‖−→f ‖2
Fβ(H).

The following unitary operator is called the Wiener-Itô isometry:

Iβ : Fβ(H) → L2(E′
β,Gβ), (f (n))∞n=0 7→ F

Proof. It is easy to see that the set

P(E′
β) =

{
φ, φ(w) =

n∑

k=0

〈
: w⊗k :β , φ

(k)
〉
, φ(k) ∈ E⊗k

β , w ∈ E′
β, n ∈ N

}

of smooth continuous polynomials on E′
β is continuously and densely embedded in

L2(E′
β,Gβ). Then, for any F ∈ L2(E′

β,Gβ), there exists a unique sequence
−→
f =

(
f (n)

)∞
n=0

∈ Fβ(H) such that

F =
+∞∑

n=0

〈
: .⊗n :β, f

(n)
〉
.

It follows that

‖F‖2
L2(E′

β
,Gβ) =

∫

E′
β

(+∞∑

n=0

〈
: w⊗n :β , f

(n)
〉)2

dGβ(w)

=
+∞∑

n=0

Mβ,n

〈
f (n), f (n)

〉
H⊗̂n = ‖−→f ‖2

Fβ(H),
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where Proposition 3.4 is taken into account. The second part of the Theorem is straight-

forward.
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Anal. 211 (2004), 1–70.

[14] E. W. Lytvynov, Orthogonal decompositions for Lévy processes with an application to the
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