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Abstrat. We srutinize the possibility of extending the result of [19℄ to the ase of q-deformedosillator for q real; for this we exploit the whole range of the deformation parameter as muhas possible. We split the ase into two depending on whether a solution of the ommutationrelation is bounded or not. Our leitmotif is subnormality.The deformation parameter q is reshaped and this is what makes our approah e�etive.The newly arrived parameter, the operator C, has two remarkable properties: it separates in theommutation relation the annihilation and reation operators from the deformation as well asit q-ommutes with those two. This is why introduing the operator C may have far-reahingonsequenes.

q-deformations of the quantum harmoni osillator (the abbreviation the q-osillatorstands here for it) has been arresting attention of many 1 resulting among other thingsin quantum groups. Besides realizing the ever lasting temptation to generalize matters,it brings forth new attrative �ndings. This paper exhibits the spatial side of the story.The q-osillator algebra, whih is the milieu of our onsiderations, is generated bythree objets a+, a− and 1 (the latter being a unit in the algebra) satisfying the ommu-tation relations
a−a+ − qa+a− = 1; (1)it goes bak to the seventies with [1℄ as a speimen. The other versions whih appear inthe literature are equivalent, and this is desribed ompletely in [8℄ where a list of furtherreferenes an be found.2000 Mathematis Subjet Classi�ation: Primary 47B20, 81S05.Key words and phrases: unbounded subnormal operator, q-osillator.Supported at its �nal stage by the MNiSzW grant N201 026 32/1350.The paper is in �nal form and no version of it will be published elsewhere.

1 q-deformations are vastly disseminated in Mathematial Physis and we would like to a-knowledge here with pleasure [8℄ for bringing them loser to Mathematis.[293℄ © Instytut Matematyzny PAN, 2007



294 F. H. SZAFRANIECLooking for ∗-representations of (1) usually means assuming that a− = a∗
+, with theasterisk denoting the Hilbert spae adjoint. Thus what we start with is a given Hilbertspae and the ommutation relation

S∗S − qSS∗ = I (Oq,op)in it. Of ourse, q must perfore be real then; this is what we assume in this paper.An easy-going onsequene isSample Theorem. If S is a weighted shift with respet to the basis {en}∞n=0 and
S∗Sf − qSS∗f = f, f ∈ lin{en}∞n=0,then Sen =

√
1 + q + · · · + qn en+1, n > 0.`If S is a weighted shift'�this is usually taitly assumed when dealing with therelation (Oq,op), like in [5℄. It is sometimes made a bit more expliit by stating that avauum vetor (or a ground state, depending on denomination in Mathematial Physisan author belongs to) of S exists. The point here (as it was in [19℄ for q = 1) is to disussthe ase. It turns out that, like in [19℄, subnormality plays an important role in the matter(and this, the ase q = 1 at least, is parallel to Rellih-Dixmier [12, 7℄ haraterization ofsolutions to the CCR). Lukily, the above oinides with our belief that subnormality isthe missing ounterpart of omplex variable in the quantization sheme.Preliminary essentialsA short guide to subnormality. Reall that a densely de�ned operator A is said to behyponormal if D(A) ⊂ D(A∗) and ‖A∗f‖ 6 ‖Af‖, f ∈ D(A). A hyponormal operator Nis said to be formally normal if ‖Nf‖ = ‖N∗f‖, f ∈ D(N). Speifying more, a formallynormal operator N is alled normal if D(N) = D(N∗). Finally, a densely de�ned operator

S is alled (formally) subnormal if there is a Hilbert spae K ontaining H isometriallyand a (formally) normal operator N in K suh that S ⊂ N .The following diagram relates these notions.normal =⇒ formally normal ⇒

⇓ ⇓ hyponormal
⇒subnormal =⇒ formally subnormalThough the de�nitions of formal normality and normality look muh alike, with a smalldi�erene onerning the domains involved, the operators they de�ne may behave in atotally inomparable manner. However, needless to say, these two notions do not di�erat all in the ase of bounded operators.If A and B are densely de�ned operators in H and K resp. suh that H ⊂ K and

A ⊂ B then
D(A) ⊂ D(B) ∩H, D(B∗) ∩H ⊂ PD(B∗) ⊂ D(A∗) (2)where P stands for the orthogonal projetion of K onto H; moreover,

A∗Px = PB∗x, x ∈ D(B∗). (3)



OPERATORS OF THE q-OSCILLATOR 295If B losable, then so is A and both A∗ as well as B∗ are densely de�ned. The extension
B of A is said to be tight if D(Ā) = D(B̄) ∩ H and ∗-tight if D(B∗) ∩ H = D(A∗). If
D(B) ⊂ D(B∗) (and this happens for formally normal operators as we already know),the two hains in (2) glue together as 2

D(A) ⊂ D(B) ∩H ⊂ D(B∗) ∩H ⊂ PD(B∗) ⊂ D(A∗). (4)As we have already said a densely de�ned operator having a normal extension is just sub-normal. However, normal extensions may not be uniquely determined in the unboundedase as their minimality beomes a rather fragile matter, see [17℄; even though the inlu-sions (4) hold for any of them. Moreover, even if all of them turn into equalities none of thenormal extensions may be minimal of yli type (this is what ensures uniqueness); thiswill beome e�etive when we pass to the ase of q > 1. So far we have got an obvious fat.Proposition 1. A subnormal operator S has a normal extension whih is both tight and
∗-tight if and only if

D(S̄) = D(S∗). (5)If this happens then any normal extension is both tight and ∗-tight.Beause equality (5) is undoubtedly deisive for a solution of the ommutation re-lation of (any of) the osillators to be a weighted shift, subnormality is properly settledinto this ontext.
q-notions. For x an integer and q real, [x]q

def

= (1−qx)(1−q)−1 if q 6= 1 and [x]1
def

= x. If xis a non-negative integer, [x]q = 1+q+ · · ·+qx−1 and this is usually referred to as a basior q-number. A little step further, the q-fatorial is like the onventional, [0]q!
def

= 1 and
[n]q!

def

= [0]q · · · [n − 1]q[n]q and so is the q-binomial [

m
n

]

q

def

=
[m]q!

[m−n]q![n]q! . Thus, if −1 6 qand x ∈ N the basi number [x]q is non-negative.For arbitrary omplex numbers a and q one an always de�ne (a; q)k as follows:
(a; q)0

def

= 1, (a; q)k
def

= (1 − a)(1 − aq)(1 − aq2) · · · (1 − aqk−1), k = 1, 2, 3, . . .Then for n > 0 one has [n]q! = (q; q)n(1−q)−n. Moreover, there are (at least) two possiblede�nitions of q-exponential funtions
eq(z)

def

=

∞
∑

k=0

1

(q; q)k
zk, z ∈ ωq,

Eq(z)
def

=
∞
∑

k=0

q(
k

2)

(q; q)k
zk, z ∈ ωq−1 , q 6= 0,where

ωq
def

=

{

{z; |z| < 1} if |q| < 1,
C otherwise.These two funtions are related via

eq(z) = Eq−1(−z), z ∈ ωq, q 6= 0.

2 Desription of domains of weighted shifts and their adjoints an be found in [15℄.



296 F. H. SZAFRANIECThe q-osillatorSpatial interpretation of (Oq,op). The relation (Oq,op) has nothing but a symbolimeaning unless someone says something more about it; this is beause some of the solu-tions may be unbounded. For this reason we distinguish two, extreme in a sense, ways oflooking at the relation (Oq,op):The �rst meaning of (Oq,op) is
S losable, D is dense in H and

D ⊂ D(S∗S̄) ∩ D(S̄S∗), S∗Sf − qSS∗f = f , f ∈ D.
(Oq,D)The other is

〈Sf, Sg〉 − q〈S∗f, S∗g〉 = 〈f, g〉, f, g ∈ D(S) ∩ D(S∗) (Oq,w)and, beause this is equivalent to
‖Sf‖2 − q‖S∗f‖2 = ‖f‖2, f ∈ D(S) ∩ D(S∗)it implies for S to be losable, (Oq,w) in turn is equivalent to

〈S̄f, S̄g〉 − q〈S∗f, S∗g〉 = 〈f, g〉, f ∈ D(S̄) ∩ D(S∗).The ourring interdependene, whih follows, let us play a variation on the themeof (Oq,op).
1o (Oq,D) with D being a ore of S ⇒ (Oq,w) and D(S̄) ⊂ D(S∗).Indeed, for f ∈ D(S̄) there is a sequene (fn)n ⊂ D suh that fn → f and Sfn → S̄f .Beause S∗ is losed we get from (Oq,D) that S∗fn → S∗f and onsequently f ∈ D(S∗)as well as (Oq,w).
2o (Oq,D) with D being a ore of S∗ ⇒ (Oq,w) and D(S∗) ⊂ D(S̄).This uses the same argument as that for 1o.
3o (Oq,w) ⇒ (Oq,D) with D = D(S∗S̄) ∩ D(S̄S∗).This is beause D(S∗S̄) ∩ D(S̄S∗) ⊂ D(S̄) ∩ D(S∗).
4o (Oq,w) and D(S̄) ∩ D(S∗) a ore of S and S∗ ⇒ D(S∗S̄) = D(S̄S∗).Take f ∈ D(S∗S̄). This means f ∈ D(S̄) and S̄f ∈ D(S∗). Beause of this, piking

(fn)n ∈ D(S̄) ∩ D(S∗), we get from (Oq,w) in the limit
〈S∗S̄f, g〉 − q〈S∗f, S∗g〉 = 〈f, g〉 (6)for g ∈ D(S̄) ∩ D(S∗) and, beause g ∈ D(S̄) ∩ D(S∗) is a ore of S∗, we get (6) tohold for g ∈ D(S∗). Finally, S∗f ∈ D(S̄). The reverse inequality needs the same kind ofargument.The above results in

5o (Oq,w) and D(S̄) = D(S∗) ⇒ S̄ satis�es (Oq,D) on D = D(S∗S̄) = D(S̄S∗).Remark 2. Notie that when q 6= −1 and S satisfying (Oq,D) with D = D(S∗S̄) =

D(S̄S∗) for D to be a ore of S∗ is neessary and su�ient R(S∗S) to be dense in H.The following is a kind of general observation and puts hyponormality (or bounded-ness) in the ontext of (Oq,D).



OPERATORS OF THE q-OSCILLATOR 297Proposition 3. (a) For 0 6 q < 1 and for S satisfying (Oq,D), S|D is hyponormal ifand only if S is bounded and ‖S‖ 6 (1−q)−1/2. (b) For q < 0 and for S satisfying (Oq,D),
S∗|D is hyponormal if and only if S is bounded and ‖S‖ 6 (1 − q)−1/2.Proof. Write (Oq,D) as

(1 − q)‖Sf‖2 = q(‖S∗f‖2 − ‖Sf‖2) + ‖f‖2, f ∈ D,and look at this.The selfommutator. Assuming D ⊂ D(SS∗) ∩ D(S∗S) we introdue the followingoperator:
C

def

= I + (q − 1)SS∗, D(C)
def

= D. (7)This operator turns out to be an important invention in the matter. In partiular thereare two immediate onsequenes of this de�nition. The �rst says if S satis�es (Oq,D) with
D invariant for both S and S∗ then D is invariant for C as well and

CSf = qSCf, qCS∗f = S∗Cf, f ∈ D. (8)The other is that (Oq,D) takes now the form
S∗Sf − SS∗f = Cf, f ∈ D, (9)whih means that C is just the selfommutator of S on D.We would like to know the instanes when C is a positive operator.Proposition 4. (a) For q > 1, C > 0 always. (b) For q < 1, C > 0 if and only if S isbounded and ‖S‖ 6 (1 − q)−1/2. () For S satisfying (Oq,D), C > 0 if and only if S ishyponormal.Proof. While (a) is apparently trivial, (b) omes immediately from

〈Cf, f〉 = ‖f‖2 + (q − 1)‖S∗f‖2, f ∈ D.For () write (using (Oq,D)) with f ∈ D
〈Cf, f〉 = ‖f‖2 + (q − 1)‖S∗f‖2 = ‖f‖2 + q‖S∗f‖2 − ‖S∗f‖2 = ‖Sf‖2 − ‖S∗f‖2.Example 5. On the other hand, with any unitary U the operator

S
def

= (1 − q)−1/2U (10)satis�es (Oq,D) if q < 1. The operator S is apparently bounded and normal. Consequently(the Spetral Theorem) it may have a bunh of nontrivial reduing subspaes (even notneessarily one dimensional) or may be irreduible and this observation ought to bedediated to all those who start too fast generating algebras from formal ommutationrelations.Proposition 6. For q < 1 the only formally normal operators satisfying (Oq,D) arethose of the form (10). For q > 1 there is no formally normal solution of (Oq,D).Proof. Straightforward.Example 7. An ad ho illustration an be given as follows. Take a separable Hilbertspae with a basis (en)∞n=−∞ and look for a bilateral (or rather two-sided) weighted shift
T de�ned as Ten = τnen+1, n ∈ Z. Then, beause T ∗en = τ̄n−1en−1, n ∈ Z, for any
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α ∈ C and N ∈ Z we get |τn|2 = αqn+N + (1 − qn+N )(1 − q)−1 = αqn+N + [n + N ]qfor all n if q 6= 1 and |τn|2 = α + n if q = 1; this is for all n ∈ Z. The only possibilityfor the right hand sides to be non-negative (and in fat positive) 3 is α > (1 − q)−1 for
0 6 q < 1 and α = (1 − q)−1 for q < 0; the latter orresponds to Example 10. Thusthe only bilateral weighted shifts satisfying (Oq,D), with D = lin{en; n ∈ Z}, are those
Ten = τnen+1, n ∈ Z whih have the weights

τn
def

=















√

(1 − q)−1, q 6 0
√

αqn+N + [n + N ]q, α > (1 − q)−1, N ∈ Z, 0 6 q < 1none, 1 6 qHowever, T violates hyponormality (pik up f = e0 as a sample) if 0 < q < 1. Also Cde�ned by (7) is neither positive nor negative (〈Ce0, e0〉 = a > 0 while 〈Ce−1, e−1〉 < 0).Let us mention that T is q−1-hyponormal in the sense of [13℄. Anyway, T is apparentlyunbounded if q > 0. The ase of q 6 0 is preisely that of Example 10.Example 8. Repeating the reasoning of Example 7 we get that the only unilateralweighted shifts satisfying (Oq,D) are those T , de�ned as Ten = τnen+1 for n ∈ N, whihhave the weights
τn =

√

[n + 1]q , −1 6 q.This is so beause the virtual, in this ase, `τ−1' is 0 (T ∗e0 = 0). If −1 6 q < 0 theyare bounded and not hyponormal, if 0 6 q < 1 they are again bounded and hyponormal,and if 1 6 q they are unbounded and hyponormal; the latter two are even subnormal (f.Theorem 19 and 21 resp.).Remark 9. Aording to Lemma 2.3 of [10℄ for 0 < q < 1 the only ases whih mayhappen are the orthogonal sums of the operators onsidered in Examples 7, 8 and givenby formula (10). For q > 1, due to the same Lemma, the orthogonal sum of that fromExample 8 an be taken into aount.An auxiliary lemma of [14℄. We state here a result, [14℄ Lemma 2.4, whih justi�esthe examples above. We adapt the notation of [14℄ to ours as well as improve a bit thesyntax of the onlusion therein.Lemma 10. Let 0 < p < 1 and ε ∈ {−1, +1}. Assume T is a losed densely de�nedoperator in H. Then
T ∗Tf − p2TT ∗f = ε(1 − p2)f, f ∈ D(T ∗T ) = D(TT ∗) (11)if and only if T is unitarily equivalent to an orthogonal sum of operators of the followingtype:

• in the ase of ε = 1(I) TI : fn → (1 − p2(n+1))1/2fn+1 in H =
⊕+∞

n=0 Hn with eah Hn
def

= H0;
3 We avoid weights whih are not non-negative, for instane omplex, as they lead to a uni-tarily equivalent version only.



OPERATORS OF THE q-OSCILLATOR 299(II) TII : fn → (1 + q2(n+1)A2)1/2fn+1 in H =
⊕+∞

n=−∞ Hn with eah Hn
def

= H0 and
A being a selfadjoint operator in H0 with sp(A) ⊂ [p, 1] and either p or 1 notbeing an eigenvalue of A;(III) TIII a unitary operator;

• in the ase of ε = −1(IV) TIV : fn → (p2n − 1)1/2fn−1 in H =
⊕+∞

n=0 Hn with eah Hn
def

= H0 and always
f−1

def

= 0.A ouple of remarks seem to be absolutely imperative.Remark 11. The onlusion of Lemma 10 is a bit too ondensed. Let us provide somehints to reading it. First of all the fn's appearing in (I), (II) and (IV) should be under-stood as follows: take f ∈ H0 and de�ne fn as a (one sided or two sided, depending onirumstanes) sequene having all the oordinates zero exept the one labelled n whihis equal to f . Then, with the de�nition
D(E)

def

= lin{fn; f ∈ E ⊂ H0, n ∈ Z or n ∈ N depending on the ase},one has to guess that D(TI) = D(TIV) = D(H0) and D(TII) = D(D(A)). Passing tolosures in (I), (II) and (IV) we hek that T I as well as T IV are everywhere de�nedbounded operators (use 0 < p < 1) while T II is always unbounded (though satisfying
D(T ∗

IIT II) = D(T IIT
∗

II )
4).Remark 12. To relate (11) to (Oq,D) set ε = 1, p =

√
q and T =

√

1 − p2S when
0 < q < 1, and ε = −1, p−1 =

√
q and T = p−1

√

p2 − 1S∗ when q > 1.Positive de�niteness from (Oq,D). The following formalism will be needed.Proposition 13. If S satis�es (Oq,D) with D invariant for both S and S∗, then
S∗iSjf =

∞
∑

k=0

[k]q!

[

i

k

]

q

[

j

k

]

q

Sj−kCkS∗(i−k)f, f ∈ D, i, j = 0, 1, . . . , (12)If, moreover, C > 0 then
p

∑

i,j=0

〈Sifj , S
jfi〉 =

∞
∑

k=0

[k]q!

∥

∥

∥

∥

p
∑

i=0

[

i

k

]

q

Ck/2S∗(i−k)fi

∥

∥

∥

∥

2

, f0, . . . , fp ∈ D. (13)All this under onvention Sl = (S∗)l = 0 for l < 0 and [

i
j

]

q
= 0 for j > i.Proof. Formula (12) is in [6, formula (35)℄. Formula (13) is an immediate onsequene of(12).As a diret onsequene of Fat A and (13) we getCorollary 14. Suppose S satis�es (Oq,D) where D is invariant for S and S∗, and Dis a ore of S. If C > 0, then

p
∑

i,j=0

〈Sifj , S
jfi〉 > 0, f0, . . . , fp ∈ D. (PD)

4 In this situation we have impliations 4o and 5o on p. 296.



300 F. H. SZAFRANIECA useful lemmaLemma 15. Let q > 0. Consider the following onditions:(a) S satis�es (Oq,w) and D(S̄) = D(S∗);(b) N (S∗) 6= {0} and for n = 0, 1, . . .

f ∈N (S∗) ⇒ S̄nf ∈D(S̄), S̄(n−1)f ∈ D(S∗) & S∗S̄n−1f = (n−1)S̄n−2f ; (14)() there is f 6= 0 suh that S̄nf ∈ D(S̄), n = 0, 1, . . . and S̄mf ⊥ S̄n for m 6= n.Then (a)⇒(b)⇒().Proof. (a)⇒(b). The polar deomposition for S∗ is S∗ = V |S∗| where V is a partialisometry with the initial spaeR(|S∗|) and the �nal spaeR(SS∗). SupposeN (S∗) = {0}.Then, beause N (V ) = R(|S∗|)⊥ = N (|S∗|) = N (S̄S∗) = N (S∗), V is unitary. Sine
S̄ = |S∗|V ∗, from 5o we get V |S∗|2V ∗ = q|S∗|2 + I. Consequently, for the spetra wehave sp(|S∗|) ⊂ q sp(|S∗|) + 1 ⊂ [0, +∞), whih is absurd. Thus N (S∗) 6= {0}.We show (14) by indution. Of ourse, N (S∗) ⊂ D(S̄) = D(S∗), whih establishes(14) for n = 0. Suppose N (S∗) ⊂ D(S̄n) and S∗S̄n−1f = (n − 1)S̄n−2f . Then, for
g ∈ D(S̄) = D(S∗),

〈S∗S̄n−1f, S∗g〉 = (n − 1)〈S̄n−2f, S̄∗g〉. (15)Beause already S̄(n−2)f ∈ D(S̄) = D(S∗∗), we have
|〈S∗S̄n−1f, S∗g〉| ≤ C‖g‖. (16)Beause S̄(n−1) ∈ D(S̄) = D(S∗), we an use (Oq,w) to get

〈S̄nf, S̄g〉 = 〈S̄S̄(n−1)f, S̄g〉 = 〈S∗S̄(n−1), S∗〉 + 〈S̄(n−1)f , g〉.This, by (16), implies S̄nf ∈ D(S∗) = D(S̄) and, onsequently, by (15), gives us S∗S̄nf =

nS̄n−1f , whih ompletes the indution argument. Now a straightforward appliation of(14) gives S̄n(N (S∗)) ⊂ D(S̄) ∩ D(S∗) for n = 0, 1, . . . .(b)⇒(). Take any f ∈ N (S∗) and using (14) and (12) write
〈Smf, Snf〉=〈Sn∗Smf, f〉=

min{m,n}
∑

k=0

[k]q !

[

m

k

]

q

[

n

k

]

q

〈S(n−k)CkS∗(m−k)f, f〉=0, m>n.A matrix formation. Suppose q > 0 and S is a weighted shift with respet to (ek)∞k=0with the weights (
√

[k + 1]q )∞k=0. With
S0

def

= S, Sn
def

= qn/2S, Dn
def

=
√

[n]q diag(qk/2)∞k=0, n = 1, 2, . . . (17)the matrix


















S0 D1 0 0

0 S1 D2 0
. . .

0 0 S2 D3
. . .. . . . . . . . . . . .



















(18)
de�nes an operator N in ⊕∞

n=0 Hn,Hn = H, with domain omposed of all those ⊕∞
n=0 fn



OPERATORS OF THE q-OSCILLATOR 301for whih fn = 0 but for a �nite number of n's. This matrix for the familiar reationoperator was set out in [21℄.First we need to determine D(N∗) and relate it to D(N). If 0 < q < 1 then eah Dnis bounded. In that ase Remark 9 in [20℄ gives us
D(N∗) =

∞
⊕

n=0

D(S∗
n). (19)If q > 1 then eah SnD−1

n is bounded. Aording to Proposition 4.5 in [11℄ and Corollary 8in [20℄ we an dedue (19) as well. In either ase, what we get is the adjoint of N anbe taken as a matrix of adjoints (whih is rather an exeptional ase). Beause the sameargument onerning the adjoint of a matrix operator applies now to N
∗ we an assertthat the losure operation for the operator N goes entrywise as well. Now, due to thefat that the apparent norm equality for N and N

∗ holds on D(N), we get essentialnormality of N . Consequently,
S is subnormal and N̄ is its tight and ∗-tight normal extension. (20)

Subnormality in the q-osillatorThe ase of S bounded. The next result says a little more about boundedness ofsolutions of (Oq,D).Proposition 16. Suppose S is bounded and satis�es (Oq,D). (a) If q < 0 then ‖S‖ >

(1 − q)−1/2. (b) If 0 6 q < 1 then ‖S‖ 6 (1 − q)−1/2. () If q > 1 then no suh an Sexists.Proof. For (a) look at ‖Sf‖2 = ‖f‖2 + q‖S∗f‖2 > ‖f‖2 + q‖S‖2‖f‖2, and for (b) at
‖Sf‖2 = ‖f‖2 + q‖S∗f‖2 6 ‖f‖2 + q‖S‖2‖f‖2. For () write ‖Sf‖2 = ‖f‖2 + q‖S∗f‖2 >

q‖S‖2‖f‖2 whih gives 1 > q. The ase of q = 1 is exluded by the well known result ofWinter.The ase of q < 0. Here we get at oneCorollary 17. For q < 0 the only bounded operator S with norm ‖S‖ = (1 − q)−1/2satisfying (Oq,D) is that given by (10).Proof. By Proposition 16 (a) and Proposition 3 (b) S∗|D is hyponormal. On the otherhand, by Proposition 4 (b) and () S|D is hyponormal too. Proposition 6 makes theonlusion.Pauli matries, whih are neither hyponormal nor ohyponormal 5, provide an ex-ample of operators satisfying (O−1,op) with norm 1 > 2−1/2 = (1 − q)−1/2. Are therebounded operators satisfying (Oq,op) with norm not equal to (1 − q)−1/2 for arbitrary
q < 0, di�erent from −1 say?

5 An operator A is said to be ohyponormal if A∗ is hyponormal; for unbounded A this maynot be the same as A∗|D(A) being hyponormal.



302 F. H. SZAFRANIECThe ase of 0 6 q < 1. We list two results whih hold in this ase.Proposition 18. Suppose S satis�es (Oq,D) with D dense in H. If 0 6 q < 1, then thefollowing fats are equivalent:(i) S is bounded and ‖S‖ 6 (1 − q)−1/2;(ii) S is bounded;(iii) S is subnormal;(iv) S is hyponormal.Proof. Beause of onlusion (a) of Proposition 4 the only remaining impliation to arguefor is (ii)⇒(iii). But, in virtue of (13), this follows from the Halmos-Bram haraterization[4℄ of subnormality of bounded operators.Theorem 19. If 0 6 q < 1, then the following fats are equivalent:(i) there is an orthonormal basis (en)∞n=0 in H suh that Sen =
√

[n + 1]q en+1,
n = 0, 1, . . . ;(ii) S is irreduible 6, satis�es (Oq,D) with some D dense in H, is bounded and ‖S‖ =

(1 − q)−1/2;(iii) S is irreduible, satis�es (Oq,D) with some D dense in H, is bounded and ‖S‖ 6

(1 − q)−1/2;(iv) S is irreduible, satis�es (Oq,D) with some D dense in H and is bounded;(v) S is irreduible, satis�es with some D dense in H (Oq,D) and is subnormal;(vi) S is irreduible, satis�es (Oq,D) with some D dense in H and is hyponormal.Proof. Proposition 18 establishes the equivalene of (ii) up to (vi).Beause sup{
√

[n + 1]q; n > 0} = (1 − q)−1 and beause S is a weighted shift
‖S‖ = sup{

√

[n + 1]q; n > 0}, we get (i)⇒(ii).Assume (iv). Beause D(S̄) = D(S∗), ondition () of Lemma 15 let us alulate theweights of S̄ starting with e0 ∈ N (N∗). Beause S is irreduible the sequene (en)∞n=0 isomplete. This establishes (i).Remark 20. From Theorem 19 and Example 5 we get that there are two, of di�erentnature, solutions of (Oq,D). Are there any others?The ase of q > 1. No bounded solution exists, f. Proposition 16().Let us reord what is known already in the bounded ase in the following tableau.
6 Let us reall relevant de�nitions: a subspae D ⊂ D(A) is invariant for A if AD ⊂ D;

A|D stands for the restrition of A to D. On the other hand, a losed subspae L is invariantfor A if A(L ∩ D(A)) ⊂ D(A); then the restrition A↾L
def

= A|L∩D(A). A step further, a losedsubspae L redues an operator A if both L and L⊥ are invariant for A as well as PD(A) ⊂ D(A),where P is the orthogonal projetion of H̃ onto L; all this is the same as to require PA ⊂ AP .Then the restrition A↾L is alled the part of A in L. A is irreduible if it has no nontrivialreduing subspae. Compared to the more familiar ase of bounded operators some nuanesbeome requisite here. Therefore, if L redues A, then (A↾L) = Ā↾L and (A↾L)∗ = A∗↾L.
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q < 0 0 6 q < 1 1 6 qnormal general SOMEExa. 10 SOMEExa. 10unilat. shift SOMETh. 19subnormal bilat. shift NONEExa. 7 NONEExa. 7others SOMEExa. 5 SOMEExa. 5 NONEProp. 16(a)unilat. shifts SOMETh. 19hyponormal bilat. shift NONEExa. 7 NONEExa. 7other SOMEExa. 5 SOMEExa. 5The ase of S unboundedThe ase of q < 0. There is no hope to �nd subnormal solutions of (Oq,op) amongweighted shifts, neither one- nor two-sided.The only one-sided weighted shifts satisfying (Oq,op) are for −1 < q < 0 and they aregiven as in (i) of Theorem 19. They are apparently not hyponormal (their weights arenot inreasing).The only two-sided weighted shifts whih satisfy (Oq,op) are those of Example 7.They are normal bilateral weighted shifts. So if there are subnormal operators satisfying(Oq,op) they annot be weighted shifts or bounded operators of norm less than or equalto (1 − q)−1/2, f. Corollary 17.The ase of 0 6 q < 1. Lemma 10 does not leave any hope for subnormal solutionsdi�erent than those in Theorem 19 but they must neessarily be bounded.The ase of q > 1. This is the right ase for unbounded solutions to exist.Theorem 21. For a densely de�ned losable operator S in a omplex Hilbert spae Honsider the following onditions:(i) H is separable and has an orthonormal basis of the form {en}∞n=0 ontained in

D(S̄) and suh that
S̄en =

√

[n + 1]q en+1, n = 0, 1, . . . ; (21)(ii) S is irreduible, satis�es (Oq,D) with some D invariant for S and S∗ and beinga ore of S, and S is a subnormal operator having a tight and ∗-tight normalextension;(iii) S is irreduible, satis�es (Oq,D) with some D being a ore of both S and S∗;(iv) S is irreduible, satis�es (Oq,w) and D(S̄) = D(S∗);



304 F. H. SZAFRANIEC(v) S is irreduible, satis�es (Oq,w) with D(S̄) ∩ D(S∗) dense in H, N (S∗) 6= {0}and S̄n(N (S∗)) ⊂ D(S̄) ∩ D(S∗) for n = 0, 1, . . . .Then (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(i).Proof. The impliation (i)⇒(ii) follows from (20). Proposition 1 leads us from (ii) to (iii),and then Lemma 15 drives us up to (v). Now, like in the proof of Theorem 19, alulatingthe weights loses the hain of impliations.Now we visualize this setion's �ndings in the following table.
q < 0 0 6 q < 1 1 6 qnormal general NONEProp. 6unilat. shiftsubnormal bilat. shift NONEExa. 7others NONEProp. 3(b) NONEProp. 3(a)unilat. shiftshyponormal bilat. shift NONEProp. 3(b)others MAYProp. 4(a)&(b)The q-osillator: models in RKHSA general look. A reproduing kernel Hilbert spae H and its kernel K whih suitsour onsiderations is of the form

K(z, w)
def

=
+∞
∑

n=0

cnznwn, z, w ∈ D, D = C or D = {z; |z| < R 6 1}. (22)Notie (
√

cnZn)+∞
n=0 is an orthonormal basis of H.The following fat is a byprodut of some general results on subnormality in [16℄; wegive here an ad ho argument. Let us make a shorthand notation

H ⊂ L2(C, µ) isometrially. (23)Proposition 22. There is a measure µ suh that (23) holds if and only if there is aStieltjes moment sequene (an)+∞
n=0 suh that
a2n = c−1

n , n = 0, 1, . . . (24)If this happens then a measure µ an be hosen to be rotationally invariant 7, that is suhthat µ(ei tσ) = µ(σ) for all t's and σ's.
7 Or radial as some authors say.



OPERATORS OF THE q-OSCILLATOR 305Proof. Suppose (23) holds. Beause (
√

cnZn)+∞
n=0 is an orthonormal sequene in L2(C, µ),we have

c−1
n =

∫

C

|z|2nµ(dz), n = 0, 1, . . .Let mµ be the measure on [0, +∞) transported from µ via the mapping C ∋ z → |z| ∈
[0, +∞). Then

an
def

=

∫ +∞

0

rnmµ(dr) =

∫

C

|z|nµ(dz), n = 0, 1, . . . (25)satis�es (24) as well as the sequene (an)+∞
n=0 is a Stieltjes moment sequene.If (an)+∞

n=0 is any Stieltjes moment sequene with a representing measure m andsatisfying (24) then the rotationally invariant measure
µ(σ)

def

= (2π)−1

∫ 2π

0

∫ +∞

0

χσ(r ei t)m(dr) dt, σ a Borel subset of C, (26)makes the imbedding (23) happen.Theorem 23. Under the irumstanes of Proposition 22 there exists a non-rotationallyinvariant measure µ suh that (23) holds if and only if there is a sequene (an)+∞
n=0satisfying (24) whih is not Stieltjes determinate.Proof. Suppose (23) with µ not rotationally invariant and de�ne (an)+∞

n=0 as in (25). Thusthere is and s ∈ R suh that µ(τ ) 6= µ(ei s τ ) for some subset τ of C; make τ maximallosed with respet to this property. Let ν be a measure on C transported from µ via therotation z → e− i s z and let mν be the measure on [0, +∞) onstruted from ν in the way
mµ was from µ, f. (25). Beause, by a straightforward alulation, mµ and mν di�er on
{|z|; z ∈ τ}, we get indeterminay of (an)+∞

n=0 at one.The other way around, if m1 and m2 are two di�erent measures on [0, +∞) repre-senting the Stieltjes moment sequene (an)+∞
n=0 satisfying (24), then the measure µ on Cde�ned by

µ(σ)
def

= (2π)−1(s

∫ a

0

dt

∫ +∞

0

χσ(r ei t)m1(dr) + (1− s)

∫ 2π

a

dt

∫ +∞

0

χσ(r ei t)(sm2(dr),

σ a Borel subset of C, 0 < s < 1, 0 < a < 2πis not rotationally invariant while still (23) is maintained.Résumé. De�ne two linear operators M and Dq ating on funtions
(Mf)(z)

def

= zf(z), (Dqf)(z)
def

=

{

f(z)−f(qz)
z−qz if q 6= 1,

f ′(z) if q = 1.
(27)It turns out that for a+ = M and a− = Dq the ommutation relation (1) is alwayssatis�ed. What Bargmann did in [3℄ was to �nd, for q = 1, a Hilbert spae of entirefuntions suh that M and D1 are formally adjoint. This for arbitrary q > 0 leads to thereproduing kernel Hilbert spae Hq of analyti funtions with the kernel

K(z, w)
def

= eq((1 − q)zw̄), z, w ∈ |1 − q|−1/2ωq,
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ωq =

{

{z; |z| < 1} if 0 < q < 1,
C if q > 1.Under these irumstanes we always have

〈Zm, Zn〉Hq
= δm,n[m]q!and the operator S = M ats as a weighted shift with the weights (

√

[n + 1]q) as inSample Theorem on p. 294.Our keynote, subnormality of M now means preisely that (23) with some µ is re-tained. Here we have three qualitatively di�erent situations:(a) for 0 < q < 1 the multipliation operator M is bounded and subnormal, thisimplies uniqueness of µ;(b) for q = 1 the multipliation operator is unbounded and subnormal, it has anormal extension of yli type in the sense of [17℄ and onsequently µ is uniquelydetermined as well;() for q > 1 the multipliation operator is unbounded and subnormal, it has nonormal extension of yli type in the sense of [17℄ though it does have plenty ofthose of spetral type in the sense of [17℄, whih are not unitarily equivalent 8;an expliit example, based on [2℄, an be found in [18℄ (one has to replae q by
q−1 there to get the ommutation relation (1) satis�ed), an expliit example of anon-radially invariant measure µ given in [9℄ also results from Theorem 23.The author's afterword. The fundamentals of this paper have been presented onseveral oasions for the last ouple of years, reently at the B�dlewo 9th Workshop Non-ommutative Harmoni Analysis with Appliations to Probability. It was Marek Bo»ejko'sontagious enthusiasm that atalysed onverting at long last my loose notes into a ohe-sive exposition.
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