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70 V. CRISMALEThe paper is organized as follows. Setion 2 is devoted to reall some de�nitions,suh as algebrai probability spae, singleton ondition and uniform boundedness of themixed moments, whih will be used in the suessive setions. In Setion 3 the notion ofsymmetri projetive independene is given and its relation with the singleton onditionis analyzed. This allows us to prove our main result, i.e. a entral limit theorem. Themain di�erene between the result presented in these notes and that obtained in [1℄onsists in the fat that here eah term of the limiting proess is perturbed by a Riemannintegrable funtion on the unit interval. As a onsequene the entral limit theorem hasto be modi�ed: we need some stronger onditions on the limiting proess and, moreover,the notion of independene used is less general with respet to that onsidered in [1℄. InSetion 4 we �nd a suitable representation for the limit obtained in our main theorem. Infat, by the reonstrution theorem of [4℄, the limit proess of an algebrai entral limittheorem is given by a family of elements of an algebrai probability spae (B, ψ). We showthat a GNS representation of suh a spae is realized by a 1-mode type interating Fokspae on L
2([0, 1]). More preisely the ψ-moments of a family of elements of B are thevauum moments of reation and annihilation operators in 1-mode type interating Fokspae, whose test funtions are exatly the perturbational terms of the limiting proess.2. De�nitions and notations. This setion an be seen as a olletion of notationsand de�nitions whih are the preparatory tools to reah our main result.An algebrai probability spae is a pair {A, ϕ} where A is a unital ∗-algebra withunit 1 and ϕ : A → C is a linear, normalized (ϕ(1) = 1) and positive (ϕ(a∗a) ≥ 0, for all

a ∈ A) funtional.If (Ai)i∈I is a family of (unital) ∗-subalgebras of A, we will suppose that eah ∗-subalgebra is generated by a set of generators {aεi ; ε ∈ F}, where F is a �nite set suhthat F = Fs ∪Fa with Fs ∩Fa = ∅. Fs and Fa are alled respetively the symmetri andnon-symmetri part of F . The upper su�es in (aεi )i∈I are needed by onrete examplesof entral limit theorems and are natural whenever {A, ϕ} an be onstruted startingfrom the 1-mode type interating Fok spae (IFS), as shown in the following example(see[1℄ also).Example 1. Let H be a separable Hilbert spae and {λn}n∈N a sequene of positive, realnumbers suh that λ0 = λ1 := 1 and for any m > n λm = 0 if λn = 0. For eah n ≥ 2,on the algebrai tensor produt spae H⊙n we de�ne a pre-salar produt as follows:
〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gn〉 := λn

n∏

j=1

〈fj , gj〉for any f1, . . . , fn, g1, . . . , gn ∈ H. After taking quotient and ompleting one gets a Hilbertspae Hn and, with the onventions H0 := C,H1 := H, the 1-mode type IFS over H withinterating funtions {λn}n∈N is given by
Γ(H,{λn}n∈N) := CΦ ⊕H⊕

∞⊕

n=2

Hnwhere Φ := 1 ⊕ 0 ⊕ 0 ⊕ · · · denotes the vauum vetor.



PROJECTIVE CENTRAL LIMIT THEOREM 71The reation operator A+(f) with f ∈ H as the test funtion is de�ned in the followingway:
A+(f)Φ := f,

(A+(f)(f1 ⊗ · · · ⊗ fn)) := f ⊗ f1 ⊗ · · · ⊗ fn, ∀n ∈ N, ∀ f1, . . . , fn ∈ H.The annihilation operator A(f) is de�ned as the adjoint of the reation operator:
A(f)Φ := 0,

(A(f)(f1 ⊗ · · · ⊗ fn)) :=
λn
λn−1

〈f, f1〉f2 ⊗ · · · ⊗ fn, ∀n ∈ N, ∀ f1, . . . , fn ∈ Hwith the onvention 0
0 := 0. Given α := (αm) ∈ l∞(R) and the identity operator I ∈

B(H), we de�ne the preservation operator with intensity (α, I):
Λα(I)(f1 ⊗ · · · ⊗ fn) := αn(f1 ⊗ · · · ⊗ fn) ∀n ∈ N, ∀ f1, . . . , fn ∈ H.Furthermore we onsider

A := ∗-alg{I, A(f), Λα(I) : f ∈ H, α = (αm) ∈ l∞(R)},

ϕ := 〈Φ, ·Φ〉,hene it follows {A, ϕ} is an algebrai probability spae. If ε ∈ {−1, 0, 1} and
Aε(f, α, I) :=







A(f) if ε = −1,

Λα(I) if ε = 0,

A+(f) if ε = 1,then F = {−1, 0, 1}, Fs = {−1, 1}, Fa = {0}.Let S be a nonempty ordered set. Reall that a partition of S is a family σ = (Vi)i∈Iof mutually disjoint nonempty subsets of S whose union is S and I is an index set. Any
Vi ∈ σ is alled a blok of the partition σ. Denote by P(S) the set of all partitions of Sand for any q ∈ N

∗, let P(q) := P({1, . . . , q}). We identify two partitions σ1 = (Vi)i∈Iand σ2 = (Uj)j∈I in P(S) if there exists π a permutation on I suh that for any i ∈ I

Vi = Uπ(i). A partition σ of S uniquely de�nes an equivalene relation ∼σ on S where,for eah i, j ∈ S, i ∼σ j if and only if i, j belong to the same blok of σ.
σ = {V1, . . . , Vl} ∈ P(S) is alled a pair partition if |Vi| = 2 for any i = 1, . . . , l, where

| · | denotes the ardinality of a set.Let q ∈ N∗. Given a map k : {1, . . . , q} → I, for any l = 1, . . . , q we indiate its imageby kl or k(l) and denote
• Range(k) the range of k, i.e.

Range(k) := {k1, . . . , km} ⊂ I, m ∈ N
∗, m 6 q, ki 6= kj for i 6= j

• for j = 1, . . . ,m, Vk,j := k−1(kj) = {l ∈ {1, . . . , q} : k(l) = kj}.Clearly the Vk,j 's are the bloks of a partition σ := {Vk,1, . . . , Vk,m} ∈ P(q). If j =

1, · · · ,m, for a �xed Vk,j = k−1(kj), denote εVk,j
the restrition of ε to Vk,j , i.e. εVk,j

:=

{εl : l ∈ Vk,j}.



72 V. CRISMALEThe symbol I{1,...,q} denotes the set of all mappings from {1, . . . , q} into I. If k,
l ∈ I{1,...,q}, we say that k is equivalent to l, and we write k ≈ l, if they indue the samepartition of {1, . . . , q}. Namely:(i) |Range(k)| = |Range(l)| =: m;(ii) k−1(kj) = l−1(lj), for all j = 1, . . . ,m.We denote [k] := {l ∈ I{1,...,q} suh that k ≈ l} the ≈-equivalene lass of k.Conversely, any partition σ ∈ P(q) de�nes a unique equivalene lass [k] where k is anymap taking onstant value on every blok of σ. Therefore we have a natural identi�ation
I{1,...,q}/≈ ≡ P(q) and in the following we will often use the identi�ation [k] ≡ σ.In Setion 3 we deal with projetive independene and the related entral limit the-orem, where an important role is played by the singleton and the uniform boundednessof the mixed moments onditions.Definition 2.1. Let {A, ϕ} be an algebrai probability spae and{Ai}i∈I a family of
∗-subalgebras of A. A family {aεi ; i ∈ I, ε ∈ F} in {A, ϕ} suh that for any i ∈ I and
ε ∈ F, aεi ∈ Ai, is said to satisfy the singleton ondition (with respet to ϕ) if for any
n > 1, for any hoie of i1, . . . , in ∈ I, ε1, . . . , εn ∈ F

ϕ(aεn

in
· · · aε1i1 ) = 0 (2.1)whenever {i1, . . . , in} has a singleton is and ϕ(aεs

is
) = 0.Definition 2.2. The family {aεi ; ε ∈ F, i ∈ I} in the algebrai probability spae {A, ϕ}is said to satisfy the ondition of uniform boundedness of mixed moments if for eah

m ∈ N∗, there exists a positive onstant Dm suh that
|ϕ(aεm

im
· · · aε1i1 )| 6 Dm (2.2)for any hoie of im, . . . , i1 ∈ I and and εm, . . . , ε1 ∈ F.3. Projetive independene and entral limit theorem. The notion of projetiveindependene was introdued in [1℄. In this paper we will use only its symmetri (i.e.

Fa = ∅) part. The following notations are useful to desribe it. Given {A, ϕ} an alge-brai probability spae and a family {aεi ; ε ∈ Fs, i ∈ I} of elements of A, for any
k : {1, . . . , q} → I, and aεq

kq
, . . . , aε1k1

∈ A, we denote:
• aεVk,j :=

∏←
s∈Vk,j

aεs

kj

where ∏← denotes the produt of the aεl′
kl
s in the same orderas they appear in aεq

kq
· · · aε1k1

and, as usual, Vk,j = k−1(kj) for any j. We use theonvention ϕ(
∏← a∅) := 1.Definition 3.1. Let {A, ϕ} be an algebrai probability spae. The family {aεi ; ε ∈

Fs, i ∈ I} of elements of A is alled ϕ-symmetri projetively independent if for any
q ∈ N

∗, any ε = (εq, . . . , ε1) ∈ F qs , k : {1, . . . , q} → I, and aεq

kq
, . . . , aε1k1

∈ A, there exist
ω(k, ε) ≥ 0 suh that

ϕ(a
εq

kq
· · · aε1k1

) = ω(k, ε)

|Range(k)|
∏

j=1

ϕ(aεVk,j ) (3.1)



PROJECTIVE CENTRAL LIMIT THEOREM 73From now on we will write indi�erently ω(k, ε) or ω(τ, ε), where τ is the partitionindued by the map k on {1, . . . , q}.Remark 3.1. This de�nition abstrats the situation desribed in the paper [3℄, relativeto 1�mode type interating Fok spaes (see Example 1). In that ase the expliit formof Fs is {−1,+1}, whereas the oe�ients ω(k, ε) are produts of the symmetri Jaobioe�ients {ωn} of the distribution uniquely assoiated with the interating Fok spaeby the Aardi-Bo»ejko theorem (see [2℄ for more details). In order to be more expliitwe present the following example.Example 2. Let H be a separable Hilbert spae and onsider the 1-mode type IFS
Γ(H,{λn}n∈N) over H with interating sequene {λn} ⊂ R+ and vauum vetor Φ, asintrodued in Example 1. If A+(f) and A(f) are respetively the reation and annihilationoperators with test funtion f , ε ∈ {−1, 1} and

Aε(f) :=

{
A(f) if ε = −1,

A+(f) if ε = 1,then Fs = {−1, 1}. Let µ be the one dimensional symmetri distribution assoiated withthe IFS with Jaobi parameters (ωn := λn

λn−1
)n∈N (see [2℄, Theorem 5.2). Then, �xed

f1, f2 ∈ H, one has
〈Φ, A(f1)A(f2)A

+(f2)A
+(f1)Φ〉 = ω1 · ω2〈Φ, A(f1)A

+(f1)Φ〉〈Φ, A(f2)A
+(f2)Φ〉.Therefore ω(k, ε) = ω1ω2.Lemma 3.1. Let {aεi ; ε ∈ Fs, i ∈ I} be a family of ϕ-symmetri projetively independentelements of an algebrai probability spae {A, ϕ} with mean zero, i.e. ϕ(aεi ) = 0 for any

ε ∈ Fs, i ∈ I. If (αi)i∈I ⊂ C, then the family {αia
ε
i ; ε ∈ Fs, i ∈ I} satis�es the singletonondition. If in partiular for any i ∈ I αi := 1, then {aεi ; ε ∈ Fs, i ∈ I} satis�es thesingleton ondition.Proof. Fix q ∈ N∗ and k : {1, . . . , q} → I. Consider the produt (αkq

a
εq

kq
) · · · (αk1

aε1k1
). Ifthere exists l ∈ {1, . . . , q} suh that |Vk,l| = 1, by the ϕ-symmetri projetive indepen-dene, one has

ϕ((αkq
a
εq

kq
) · · · (αk1

aε1k1
)) = ω(k, ε)

( q
∏

j=1

αkj

)

ϕ(aεl

kl
)

|Range(k)|−1
∏

j=1
j 6=l

ϕ(aεVk,j ) = 0.

Hene the singleton ondition is ful�lled. The last part of the statement learly follows.Lemma 3.2. Let {aεn; ε ∈ Fs, n ∈ N} be a family in {A, ϕ} satisfying the uniform bound-edness of the mixed moments and the singleton onditions. Let {fn : C → C}n∈N be afamily of bounded maps, i.e. there exists {Mn}n∈N, sequene of positive numbers suhthat for eah n ∈ N, z ∈ C |fn(z)| ≤Mn. Then, for any m ∈ N, k : {1, . . . ,m} → N and
N ∈ N

lim
N→∞

1

Nm/2

∑

1≤k1,...,km≤N

ϕ(aεm

km
fm(zm) · · · aε1k1

f1(z1))



74 V. CRISMALEis equal to zero if m is odd. If m = 2p it is equal to
lim
N→∞

1

Np

∑

π:{1,...,2p}→{1,...,p}
2−1 map ∑

σ:{1,...,p}→{1,...,N}order preserving ϕ(a
ε2p

σ◦π(2p)f2p(z2p) · · · a
ε1
σ◦π(1)f1(z1)).

Proof. Indeed, arguing as in Lemmata 2.3 and 2.4 of [5℄
lim
N→∞

1

Nm/2

∑

1≤k1,...,km≤N

ϕ(aεm

km
fm(zm) · · · aε1k1

f1(z1))

= lim
N→∞

1

Nm/2

∑

1≤p≤m

∑

π:{1,...,m}→{1,...,p}surjetive ∑

σ:{1,...,p}→{1,...,N}order preserving ϕ(aεm

km
fm(zm) · · · aε1k1

f1(z1))

where for all k : {1, . . . ,m} → {1, . . . , N}, p denotes the ardinality of the range of k. Weshow the limit above vanishes when p < m/2. In fat, let Cm,p be the ardinality of thesurjetive maps from {1, . . . ,m} onto {1, . . . , p} and IN (p) the ardinality of the orderpreserving maps from {1, . . . , p} in {1, . . . , N}. Then, from (2.2),
∣
∣
∣N−m/2

∑

π:{1,...,m}→{1,...,p}surjetive ∑

σ:{1,...,p}→{1,...,N}order preserving ϕ(aεm

km
fm(zm) · · · aε1k1

f1(z1))
∣
∣
∣

≤ N−m/2Cm,pDm

∣
∣
∣

m∏

j=1

fj(zj)
∣
∣
∣IN (p) ≤ N−m/2Cm,pDm

∣
∣
∣

m∏

j=1

Mj

∣
∣
∣

(
N

p

)

Sine
lim
N→∞

N−m/2
(
N

p

)

= lim
N→∞

1

p!
N (p−m/2)the result is ahieved. Up to slight modi�ations, the remaining part of the proof runsalong the same arguments developed in [5℄, Lemma 2.4.Let {aεn; ε ∈ Fs, n ∈ N} be a family of elements in an algebrai probability spae

{A, ϕ}. Denote by L([0, 1]) the spae of all omplex valued Riemann integrable funtionsde�ned on [0, 1]. For 1 ≤ n ≤ N, f ∈ L([0, 1]), onsider the entered sum
SN (aε, f) :=

N∑

n=1

aεnf(
n

N
)where ε ∈ Fs.Theorem 3.1. Let {aεn; ε ∈ Fs, n ∈ N} be a family of elements of an algebrai probabilityspae {A, ϕ} whih is symmetri ϕ-projetively independent, with mean zero, i.e. ϕ(aεn) =

0 for all ε ∈ Fs and suh that for any ε1, ε2 ∈ Fs, ϕ(aε1n a
ε2
n ) = C(ε1, ε2) for any n ∈ N.We also suppose suh a family satis�es the uniform boundedness ondition. If m ≥ 1,

f1, . . . , fm ∈ L([0, 1]), then
lim
N→∞

1

Nm/2
ϕ(SN (aεm , fm) · · ·SN (aε1 , f1))

= lim
N→∞

1

Nm/2

∑

1≤k1,...,km≤N

ϕ

(

aεm

km
fm

(
km
N

)

· · · aε1k1
f1

(
k1

N

))



PROJECTIVE CENTRAL LIMIT THEOREM 75is zero if m is odd and, if m = 2p, is equal to
lim
N→∞

1

Np

∑

k:{1,...,2p}→{1,...,p}
2−1 map ∑

1≤k1,...,k2p≤N
j=1,...,p

ϕ

(

a
ε2p

k2p
f2p

(
k2p

N

)

· · · aε1k1
f1

(
k1

N

))

=
∑

τ∈P.P.(2p)

ω(τ, ε)

p
∏

j=1

(

C(εlj , εrj
)

∫ 1

0

flj (x)frj
(x)dx

) (3.2)where P.P.(2p) denotes the set of all pair partitions of {1, . . . , 2p} and {lj , rj}
p
j=1 is theleft-right index set relative to the pair partition τ ∈ P.P.(2p).Proof. In fat

1

Nm/2
ϕ(SN (aεm , fm) · · ·SN (aε1 , f1))

=
1

Nm/2

∑

1≤k1,...,km≤N

ϕ

(

aεm

km
fm

(
km
N

)

· · · aε1k1
f1

(
k1

N

))

. (3.3)From Lemma 3.1 it follows that the family {aεnf(x), ε ∈ Fs, n ∈ N,f ∈ L([0, 1])} satis�esthe singleton ondition and the same onsequently ours for {aεn, ε ∈ Fs, n ∈ N}. More-over the family {aεn; ε ∈ Fs, n ∈ N} veri�es the uniform boundedness ondition. Then,from Lemma 3.2, it follows that the limit of (3.3) an be di�erent from zero only ifm = 2pand k: {1, . . . , 2p} → {1, . . . , p} is a 2 − 1 map whose range {k1, . . . , km} takes values in
{1, . . . , N}; it is well known that suh a map indues a pair partition on {1, . . . , 2p}. If
{lj , rj} := k−1(kj) with lj > rj , for all j = 1, . . . , p, i.e. klj = krj

= kj , the limit for
N → ∞ of the right hand side in (3.3) an be written as follows

lim
N→∞

1

Np

∑

k:{1,...,2p}→{1,...,p}
2−1 map ∑

1≤k1,...,k2p≤N
j=1,...,p

( p
∏

j=1

(fljfrj
)

(
kh
N

))

ϕ(· · ·a
εlj

klj

· · · a
εrj

krj

· · · ).

(3.4)By the de�nition of symmetri ϕ-projetive independene, (3.4) is equal to:
lim
N→∞

∑

τ :={lj ,rj}
p

j=1
∈P.P.(2p)

ω(τ, ε)
1

Np

×
∑

1≤klj
=krj

≤N

j=1,...,p

( p
∏

j=1

[(

fljfrj

)(
klj
N

)]

ϕ(a
εlj

k′
lj

a
εrj

k′
rj

)

) (3.5)
where in the last equality we used the natural identi�ation [k] ≡ τ between the set of
2 − 1 maps {1, . . . , 2p} → {1, . . . , p} and P.P.(2p). Sine

p
∏

j=1

(
1

N

N∑

klj
=krj

=1

(fljfrj
)

(
klj
N

)

ϕ(a
εlj

klj

a
εrj

krj

)

)

=

p
∏

j=1

C(εlj , εrj
)

(
1

N

N∑

klj
=krj

=1

(fljfrj
)

(
klj
N

))



76 V. CRISMALEon the right hand side above we reognize Riemann sums. Therefore the limit (3.5) isequal to
∑

τ∈P.P.(2p)

ω(τ, ε)

p
∏

j=1

(

C(εlj , εrj
)

∫ 1

0

flj (x)frj
(x)dx

)

.Remark 3.2. The symmetri entral limit theorem in [1℄ is ahieved without the Rie-mann integrable funtions: in this sense the result above ould seem more general.On the other hand in [1℄ the authors performed the proof under a weaker onditionon the mean ovariane. Namely the ondition above suh that for any ε1, ε2 ∈ Fs,

ϕ(aε1n a
ε2
n ) = C(ε1, ε2) for any n ∈ N, is there replaed by

lim
N→∞

1

N

N∑

k=1

ϕ(aε1k a
ε2
k ) = C(ε1, ε2).

4. Representation of the limit proess. Throughout this setion we will take Fs :=

{−1,+1} and for any a ∈ A, a−1 = (a1)∗. Our goal onsists in �nding Fok represen-tations for the limit proess arising from Theorem 3.1. In fat, as a onsequene of thereonstrution theorem by Aardi, Frigerio and Lewis (see [4℄), one knows that thereexist an algebrai probability spae (B, ψ) and random variables a−1
ψ , a1

ψ in this spaesuh that
lim
N→∞

1

Nm/2
ϕ(SN (aεm , fm) · · ·SN (aε1 , f1))

=
∑

τ∈P.P.(2p)

ω(τ, ε)

p
∏

j=1

(

C(εlj , εrj
)

∫ 1

0

flj (x)frj
(x)dx

)

= ψ(aεm

ψ · · · aε1ψ ). (4.1)If (Hψ,Φψ) is a GNS spae of (B, ψ), then
ψ(aεm

ψ · · · aε1ψ ) = 〈Φψ, A
εm · · ·Aε1Φψ〉where the Aεj 's are operators in Hψ. We would like to write them onretely as operatorsof reation and annihilation in a suitable Fok spae. To this purpose it seems neessaryto make some onstraints on the family {aεi , ε ∈ Fs, i ∈ I} in {A, ϕ} as de�ned in Setion3, i.e. we need something more than the projetive independene. Therefore we supposethat for any ε1,ε2 ∈ Fs

C(ε1, ε2) =

{
c > 0 if ε1 = −1, ε2 = 1,

0 otherwise, (4.2)and without loss of generality we take c = 1. Under this assumption, there are some termswhih do not give any ontribution to the sum ∑

τ∈P.P.(2p) above. In order to identifythem, we write ε ∈ {−1, 1}2p
+ if ε ∈ {−1, 1}2pand

•
∑2p
j=1 ε(j) = 0;

• for any k = 1, . . . , 2p
∑k
j=1 ε(j) ≥ 0.Let τ ∈ P.P.(2p) and {lj , rj}

p
j=1 be the left-right index set relative to τ. It is easyto hek (4.2) implies that, if ε = (ε(l1), . . . , ε(lp), ε(r1), . . . , ε(rp)) does not belong to

{−1, 1}2p
+ , the orresponding term in the summation is zero. Furthermore from (4.2) one



PROJECTIVE CENTRAL LIMIT THEOREM 77has that the nonzero ontributions are determined exatly by those ε ∈ {−1, 1}2p
+ suhthat for any j = 1, . . . , p, ε(lj) = −1 and ε(rj) = 1. To avoid the introdution of newsymbols, whenever we shall write ε ∈ {−1, 1}2p

+ we will require the onditions ε(lj) = −1and ε(rj) = 1 are satis�ed. Moreover we assume:1. For any q ∈ N∗, any ε ∈ {−1, 1}m, k : {1, . . . ,m} → I

ϕ(aεm

km
· · · aε1k1

) = 0 (4.3)when there is a rossing in k, i.e. there exist h < i < j < l suh that kh = kj ,

ki = kl. As a onsequene, only the nonrossing pair partitions appear in the sumon the left hand side of (4.1). Sine it is known (see [7℄, Lemma 22.6 for details)that any nonrossing pair partition τ in {1, . . . , 2p} is uniquely determined by ε ∈
{−1, 1}2p

+ , from now on we will write ω(τ, ε) as ω(ε).2. (Fatorization priniple) For any ε ∈ {−1, 1}2p
+

ϕ(a
ε2p

k2p
· · · aε1k1

) = ϕ
( rd1∏

h=ld1

aεh

kh

)

· · ·ϕ
(

rdm+1∏

h=ldm+1

aεh

kh

) (4.4)
where m and {dj}

m+1
j=1 are determined by ε = {lh, rh}

p
h=1 and 1 ≤ m < 2p, 1 =

d1 < · · · < dm+1 ≤ 2p, rdh
= ldh−1

+ 1, h = 2, . . . ,m + 1, rd1 = 1, ldm+1
= 2p.Eah blok {εldj

, . . . , εrdj
}, j = 1, . . . ,m+1 is alled a onneted omponent of thepartition ε.3. (Rule to ompute the mixed moments) Let us introdue the following notation:

ω1 := ω(ε = {−1, 1})and generally, for any n ≥ 2

ωn := ω(ε = {−1, . . . ,−1
︸ ︷︷ ︸

n-times , 1, . . . , 1
︸ ︷︷ ︸

n-times }).Let us take
ϕ(a−1

k1
a1
k1

) = ω1 (4.5)and, if ε ∈ {−1, 1}2p
+ and

ϕ(a
ε2p

k2p
· · · aε1k1

) =

r∏

j=1

ω
lj
j (4.6)where r ≤ p, lj ∈ N, j = 1, . . . , r, then

ϕ(a−1
k2p+1

a
ε2p

k2p
· · · aε1k1

a1
k2p+1

) = ω1

r∏

j=1

ω
lj
j+1. (4.7)For example, if

ϕ(a−1
3 a1

3a
−1
2 a−1

1 a1
1a

1
2) = ω2

1ω2then
ϕ(a−1

4 a−1
3 a1

3a
−1
2 a−1

1 a1
1a

1
2a

1
4) = ω1ω

2
2ω3.By means of (4.4),. . . ,(4.7), one an indutively ompute all the mixed moments.



78 V. CRISMALEFix ε ∈ {−1, 1}2p
+ , and, as in [3℄, we introdue the depth funtion of the string ε, i.e.the map dε : {1, . . . , 2p} → {0,±1, . . . ,±2p} suh that for any j ∈ {1, . . . , q}

dε(j) :=

j
∑

k=1

ε(k).Let H := L
2([0, 1]). If

λ0 := 1, λ1 := ω1 (4.8)and for any n ≥ 2

λn := λn−1ωn (4.9)we onsider the 1-mode type IFS over H as in Example 1. Sine by the de�nition eahof the ωn's is nonnegative, from (4.8) and (4.9), it follows that the λn's are nonnegativefor any n ∈ N. As a onsequene, on the algebrai n-th tensor produt H⊙n, we de�ne apre-salar produt in the following way: for any f1, . . . , fn, g1, . . . , gn ∈ H

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gn〉 := λn

n∏

k=1

〈fk, gk〉.By taking quotient and ompleting, H⊙n beomes a Hilbert spae, whih will be denotedby Hn. The 1-mode type IFS over H with interating sequene {λn}n is
Γ(H, {λn}n) := CΦ ⊕

⊕

n≥1

Hnwhere Φ is the vauum vetor. Sine
λn = 0 =⇒ λm = 0 ∀m ≥ n, n ∈ None de�nes, as in Example 1 the reation operator with test funtion f ∈ H and theannihilation operator as its adjoint.Lemma 4.1. The family of reation and annihilation operators is symmetrially proje-tively independent with respet to the vauum state 〈Φ, ·Φ〉 in 1-mode type IFS over H.Proof. In fat for any p ∈ N, any ε = (ε(l1), . . . , ε(lp), ε(r1), . . . , ε(rp)) ∈ {−1, 1}2p

+ ,

f1, . . . , f2p ∈ H, by Lemma 4.2 of [3℄, one has
〈Φ, A

ε(2p)
2p (f2p) · · ·A

ε(1)
1 (f1)Φ〉 =

p
∏

j=1

ωdε(rj)〈flj , frj
〉where {lj , rj}

p
j=1 is the unique nonrossing pair partition indued by ε. The statementfollows after notiing that the terms of the produt on the right hand side above dependonly on ε.Let f be an element of L([0, 1]) and Q(f) := A(f)+A+(f) the �eld operator in 1-modetype IFS over H. As in example 1, we use the following notation: for any ε ∈ {−1, 1}

Aε(f) :=

{
A(f) if ε = −1,

A+(f) if ε = 1.



PROJECTIVE CENTRAL LIMIT THEOREM 79Moreover we introdue the onvention suh that for any f ∈ L([0, 1]), ε ∈ {−1, 1}

fε :=

{
f if ε = −1,

f if ε = 1.The next result gives us the Fok representation of the limit proess.Theorem 4.1. The limit proess {a−1
ψ , a1

ψ} is represented in Γ(H, {λn}), that is
lim
N→∞

1

Nm/2
ϕ(SN (aεm , fεm

m ) · · ·SN (aε1 , fε11 )) = 〈Φ, Q(fm) · · ·Q(f1)Φ〉where fj ∈ L([0, 1]) for any j = 1, . . . ,m.Proof. Indeed
〈Φ, Q(fm) · · ·Q(f1)Φ〉 =

∑

ε∈{−1,1}m

〈Φ, Aεm(fm) · · ·Aε1(f1)Φ〉. (4.10)One an hek that the right hand side of (4.10) is equal to (see Lemma 4.2 of [3℄ fordetails)
∑

ε∈{−1,1}2p

+

[ p
∏

j=1

ωdε(rj)〈flj , frj
〉
] (4.11)

where m = 2p and {lj , rj}
p
j=1 is the nonrossing pair partition determined by ε. By theone to one orrespondene between {−1, 1}2p

+ and the set NCP.P.(2p) of nonrossing pairpartitions on {1, 2, . . . , 2p}, we write (4.11) as
∑

NCP.P.(2p)

[ p
∏

j=1

ωdε(rj)〈flj , frj
〉
]

.On the other hand, from (4.1) and the assumption 1., one has:
lim
N→∞

1

Nm/2
ϕ(SN (aεm , fεm

m ) · · ·SN (aε1 , fε11 ))

=
∑

NCP.P.(2p)

ω(ε)

p
∏

j=1

(∫ 1

0

f lj (x)frj
(x)dx

)

.From (4.4)�(4.7), it follows that
ω(ε) =

p
∏

j=1

ωdε(rj).Aknowledgments. The author thanks Prof. Y. G. Lu for useful disussions.
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