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Abstract. In this paper we study approximate quasi-probability distribution functions of non-

classical states such as incoherent states, Kerr states, squeezed states and k-photon coherent

states in interacting Fock space.

1. Introduction. Sometimes it is useful to describe the state of the field in terms of

coherent states rather than with photon number states [3, 5, 6, 7]. This presents some

difficulties as the coherent states are not orthogonal and are overcomplete. However, this

overcompleteness allows us to obtain a useful diagonal expansion of the density operator in

terms of complex matrix elements P (α). This representation is called a quasi-probability

distribution function as it is not positive definite. Quasi-probability function is applied

in the evaluation of correlation functions of the electromagnetic field. Dynamics of quasi-

probability distribution function can under appropriate conditions be expressed in the

form of a Fokker-Planck equation. As the position and momentum cannot be defined

simultaneously with an infinite precision, the description of the quantum mechanical

state in phase space is not unique. Hence there are a family of quasi-probabilities of

which the Glauber-Sudarshan P , Husimi Q and Wigner functions are widely used.

Phase space methods have been widely used in quantum mechanics and in quantum

optics. Within the framework of the phase space formalism, a state of a quantum me-

chanical system can be completely described with the help of quasi-probability density

distributions. From an operational point of view Q function plays a very important role
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in quantum mechanics and can be associated with a simultaneous measurement of two

conjugated observables.

In this paper we shall discuss the behavior of Q functions for incoherent states, Kerr

states, squeezed states and k-photon coherent states for large photon numbers in the

interacting Fock space [8]. In this method the lengthy and complicated infinite sums of

the exact result reduce to a simpler analytic expression. Thus we gain a deeper insight

into the physics and mathematics of the quasi-probability function and the importance

of the quasi-probability approach is visualized.

The paper is organized as follows. In section 2, we describe the basic facts of interacting

Fock space which we will need throughout the paper. In section 3, we discuss quasi-

probability functions for incoherent states, Kerr states, squeezed states and k-photon

coherent states in details. In section 4, we give a conclusion.

2. Basic concepts. Here we discuss some basic concepts which will be utilized through-

out the paper.

As a vector space one mode interacting Fock space Γ(C) is defined by

(1) Γ(C) =

∞
⊕

n=0

C|n〉.

where C|n〉 is called the n-particle subspace. The different n-particle subspaces are or-

thogonal, that is, the sum in (1) is orthogonal. The norm of the vector |n〉 is given by

(2) 〈n|n〉 = λn

where {λn} ≥ 0 and if for some n we have {λn} = 0, then {λm} = 0 for all m ≥ n. The

norm introduced in (2) makes Γ(C) a Hilbert space.

An arbitrary vector f in Γ(C) is given by

(3) f ≡ c0|0〉 + c1|1〉 + c2|2〉 + . . .+ cn|n〉 + . . .

for any n ∈ N with ‖f‖ = (
∑∞

n=0 |cn|2λn)1/2 <∞.

We now consider the following actions on Γ(C):

(4)

a∗|n〉 = |n+ 1〉,
a|n+ 1〉 = λn+1

λn
|n〉,

a|0〉 = 0.

a∗ is called the creation operator and its adjoint a is called the annihilation operator. To

define the annihilation operator we have taken the convention 0/0 = 0.

We observe that

(5) 〈n|n〉 = 〈a∗(n− 1), n〉 = 〈(n− 1), an〉 =
λn

λn−1
〈n− 1, n− 1〉 = . . .

and

(6) ‖|n〉‖2 =
λn

λn−1
.
λn−1

λn−2
. . .

λ1

λ0
〈0|0〉 = λn.

Throughout the paper we assume the condition λ0 = 1.
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The commutation relation takes the form

(7) [a, a∗] =
λN+1

λN
− λN

λN−1

where N is the number operator defined by N |n〉 = n|n〉.
In a recent paper [4] we have proved that the set { |n〉√

λn
, n = 0, 1, 2, 3, . . .} forms a

complete orthonormal set and the solution of the following eigenvalue equation

(8) afα = αfα

is given by

(9) fα = ψ(|α|2)−1/2
∞
∑

n=0

αn

λn

∣

∣

∣

∣

n

〉

where ψ(|α|2) =
∑∞

n=0 |α|2n/λn. We call fα a coherent vector in Γ(C).

Now, we observe that

aa∗ =
λN+1

λN
, a∗a =

λN

λN−1
.

We further observe that (λN+1

λN
− λN

λN−1
) commutes with both a∗a and aa∗.

3. Quasi-probability distribution. Q function is defined as the diagonal matrix ele-

ment of the density operator in a pure coherent state

(10) Q(fα) =
〈fα|ρ|fα〉

π
.

3.1. Incoherent state. For incoherent state

(11) ρ =

∞
∑

n=0

pn

∣

∣

∣

∣

n√
λn

〉〈

n√
λn

∣

∣

∣

∣

with pn ≥ 0,
∑

pn = 1.

Now we have

Q(fα) =
1

π
〈fα|ρ|fα〉(12)

=
1

π

〈

fα

∣

∣

∣

∣

∞
∑

n=0

pn

∣

∣

∣

∣

n√
λn

〉〈

n√
λn

∣

∣

∣

∣

fα

〉

=
1

π

∞
∑

n=0

pn

∣

∣

∣

∣

〈

fα

∣

∣

∣

∣

n√
λn

〉∣

∣

∣

∣

2

=
1

π

∑

n

pn

∣

∣

∣

∣

{ψ(|α|2)}−1/2
∞
∑

m=0

|α|m
λm

e−imθ1

〈

m

∣

∣

∣

∣

n√
λn

〉
∣

∣

∣

∣

2
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=
1

π

∑

n

pn

∣

∣

∣

∣

{ψ(|α|2)}−1/2 |α|n
λn

e−inθ1λn
1√
λn

∣

∣

∣

∣

2

=
1

π

∑

n

pn

∣

∣

∣

∣

{ψ(|α|2)}−1/2 |α|n√
λn

e−inθ1

∣

∣

∣

∣

2

=
1

π
{ψ(|α|2)}−1

∑

n

pn
|α|2n

λn
.

For λn ∼ n! we get

(13) Q(fα) ∼ 1

π
{ψ(|α|2)}−1

∑

n

pn
|α|2n

n!

and with [ψ(|α|2)]−1 ∼ (
∑∞

n=0
|α|2n

n! )−1 = e−|α|2 we arrive at

(14) Q(fα) ∼ 1

π
e−|α|2

∑

n

pn
|α|2n

n!
.

3.2. Kerr state. For Kerr state

(15) |φk
β〉 =

∞
∑

n=0

[

{ψ(|β|2)}−1/2β
n

λn
e

i
2 γ λn

λn−1
( λn

λn−1
−1)

]
∣

∣

∣

∣

n

〉

we have

Q(fα) =
1

π
|〈fα|φk

β〉|2(16)

=
1

π
|{ψ(|α|2)}−1/2

∞
∑

m=0

|α|m
λm

e−imθ1〈m|{ψ(|β|2)}−1/2

·
∞
∑

n=0

|β|n
λn

einθ2e
iγ
2

λn
λn−1

( λn
λn−1

−1)|n〉|2

=
1

π
|{ψ(|α|2)}−1/2{ψ(|β|2)}−1/2

∞
∑

m,n=0

|α|m|β|n
λmλn

e−imθ1einθ2

· e
iγ
2

λn
λn−1

( λn
λn−1

−1)〈m|n〉|2

=
1

π

∣

∣

∣

∣

{ψ(|α|2)}−1/2{ψ(|β|2)}−1/2
∞
∑

n=0

|α|n|β|n
λ2

n

ein(θ2−θ1)

· e
iγ
2

λn
λn−1

( λn
λn−1

−1)
λn

∣

∣

∣

∣

2

.

For λn ∼ n! we get

(17) Q(fα) ∼ 1

π

∣

∣

∣

∣

e−|α|2/2e−|β|2/2
∞
∑

n=0

|α|n|β|n
n!

ein(θ2−θ1)e
iγ
2 (n2−n)

∣

∣

∣

∣

2

.

If we allow to take |α| = |β| we arrive at

(18) Q(fα) ∼ 1

π

∣

∣

∣

∣

∞
∑

n=0

|α|2n

n!
e−|α|2ein(θ2−θ1)e

iγ
2 (n2−n)

∣

∣

∣

∣

2

.
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Using Gaussian approximation to a Poisson distribution we get

Q(fα) ∼ 1

π

∣

∣

∣

∣

∞
∑

n=0

(2π|α|2)−1/2e
− (n−|α|)2

2|α|2 ein(θ2−θ1)e
iγ
2 (n2−n)

∣

∣

∣

∣

2

(19)

=
1

2π2|α|2
∣

∣

∣

∞
∑

n=0

e−(nA−B)2e−1/2eB2
∣

∣

∣

2

∼ 1

2π2|α|2
∣

∣

∣

∣

1

A

√
π

2
e−1/2eB2

∣

∣

∣

∣

2

=
1

8π|α|2
1

e

∣

∣

∣

∣

1

A
eB2

∣

∣

∣

∣

2

where

A =
( 1
|α|2 − iγ)1/2

√
2

, B =

1
|α| + i(θ2 − θ1 − γ

2 )
√

2( 1
|α|2 − iγ)1/2

.

Wilson-Gordon et al. [9] determined the range of parameters for which the Kerr states

are minimum uncertainty states. Accordingly we assume that γ is small and hence we

neglect cube and higher powers of γ to finally get

(20) Q(fα) =
1

4π

(

1 − γ2|α|4
2

)

exp(−|α|2t2 − 2|α|3tγ − |α|4γ2 + |α|6t2γ2)

where t = θ2 − θ1 − γ
2 . In Fig. 1, we have plotted Q(fα) taking γ = 0.01 and t = 1, 2, 3

when λn = n!, given from (20).
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Fig. 1. Plot of Q distribution as a function of |α|

3.3. Squeezed state. For squeezed state [4]

(21) |ψ〉 = c0

∞
∑

n=0

βnλ1λ3 . . . λ2n−1

λ2λ4 . . . λ2n

∣

∣

∣

∣

2n

〉
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we have

Q(fα) =
1

π
|〈fα|ψ〉|2(22)

=
1

π

∣

∣

∣

∣

{ψ(|α|2)}−1/2
∞
∑

m=0

|α|m
λm

e−imθ1

〈

m

∣

∣

∣

∣

c0

∞
∑

n=0

βnλ1λ3 . . . λ2n−1

λ2λ4 . . . λ2n

∣

∣

∣

∣

2n

〉
∣

∣

∣

∣

2

=
1

π

∣

∣

∣

∣

{ψ(|α|2)}−1/2c0

∞
∑

m,n=0

|α|m
λm

e−imθ1βnλ1λ3 . . . λ2n−1

λ2λ4 . . . λ2n
〈m|2n〉

∣

∣

∣

∣

2

=
1

π

∣

∣

∣

∣

{ψ(|α|2)}−1/2c0

∞
∑

n=0

|α|2n

λ2n
e−2inθ1βnλ1λ3 . . . λ2n−1

λ2λ4 . . . λ2n
λ2n

∣

∣

∣

∣

2

For λn ∼ n! we get

Q(fα) ∼ 1

π

∣

∣

∣

∣

e−|α|2/2c0

∞
∑

n=0

|α|2n

2nn!
e−2inθ1 |β|neinθ2

∣

∣

∣

∣

2

(23)

=
1

π

∣

∣

∣

∣

e−|α|2/2c0

∞
∑

n=0

[|α|2|β|ei(θ2−2θ1)/2]n

n!

∣

∣

∣

∣

2

=
1

π
|e−|α|2/2c0e

[|α|2|β|ei(θ2−2θ1)/2]|2

=
|c0|2
π

e−|α|2e|α|2|β| cos(θ2−2θ1)

=
|c0|2
π

e−|α|2[1−|β| cos(θ2−2θ1)].

In Fig. 2, we have plotted Q(fα) when λn = n!, obtained from (23).
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Fig. 2. Plot of Q distribution as a function of |α| and |β|

3.4. k-Photon coherent state. Let us try to obtain the eigenstate of the operator ak where

a is the annihilation operator of the field,

(24) ak|αk〉 = αk|αk〉
where

(25) |αk〉 =
∞
∑

n=0

c(k)
n

∣

∣

∣
n
〉

.
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Then

ak|αk〉 =

∞
∑

n=0

c(k)
n ak

∣

∣

∣
n
〉

(26)

=
∞
∑

n=1

c(k)
n ak−1 λn

λn−1

∣

∣

∣

∣

n− 1

〉

= . . . . . . . . . . . . . . .

=

∞
∑

n=k

c(k)
n

λn

λn−1

λn−1

λn−2
. . .

λn−(k−1)

λn−k

∣

∣

∣

∣

n− k

〉

=

∞
∑

n=k

c(k)
n

λn

λn−k

∣

∣

∣

∣

n− k

〉

=
∞
∑

n=0

c
(k)
n+k

λn+k

λn

∣

∣

∣

∣

n

〉

.

Again

(27) αk|αk〉 =

∞
∑

n=0

αkc
(k)
n

∣

∣

∣
n
〉

.

From (24), (26) and (27) we now have

(28) c
(k)
n+k

λn+k

λn
= αkc

(k)
n

which gives

(29) c(k)
n =

λn−k

λn
αkc

(k)
n−k.

In (29) we replace n by n− k to get

c(k)
n =

λn−k

λn
αkc

(k)
n−k(30)

=
λn−k

λn
αk
λn−2k

λn−k
αkc

(k)
n−2k

= . . . . . . . . . . . . . . . . . .

=
λn−k

λn
αk
λn−2k

λn−k
αk . . .

λn−nk

λn−(n−1)k
αkc

(k)
n−nk

= (αk)nλn−nk

λn
c
(k)
n−nk.

We now have

|αk〉 =

∞
∑

n=0

c(k)
n

∣

∣

∣
n
〉

(31)

=
∞
∑

n=0

(αk)nλn−nk

λn
c
(k)
n−nk

∣

∣

∣

∣

n

〉
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=

∞
∑

n=0

(αk)(nk+m) λm

λnk+m
c(k)
m

∣

∣

∣

∣

nk +m

〉

=

∞
∑

n=0

(αk
k)nαm

k

λm

λnk+m
c(k)
m

∣

∣

∣

∣

nk +m

〉

= αm
k c

(k)
m

∞
∑

n=0

(αk
k)n λm

λnk+m

∣

∣

∣

∣

nk +m

〉

= Cm

∞
∑

n=0

(αk)n λm

λnk+m

∣

∣

∣

∣

nk +m

〉

.

In (31) we have replaced n−nk by m in step 2 and in step 6 we have taken Cm ≡ αm
k c

(k)
m ,

αk
k ≡ αk.

By taking the trivial phase we find the normalization constant Cm to be

(32) Cm =

[ ∞
∑

n=0

|αk|2n λ2
m

λm+nk

]−1/2

whenever the series is convergent. In particular, when λn ∼ n!, we actually see that the

series is convergent.

Then, finally we get k-photon coherent state to be

(33) |αk〉 =

[ ∞
∑

n=0

|αk|2n λ2
m

λm+nk

]−1/2 ∞
∑

n=0

(αk)n λm

λm+nk

∣

∣

∣

∣

m+ nk

〉

.

To describe the quasi-probability distribution for k-photon coherent state we rewrite

the state |αk〉 as

(34) |αk〉 = Cm

∑ λm

λn
(αk)n

∣

∣

∣

∣

n

〉

.

Now

Q(fα) =
1

π
|〈fα|αk〉|2(35)

=
1

π

∣

∣

∣

∣

{ψ(|α|2)}−1/2
∞
∑

l=0

|α|l
λl

e−ilθ1

〈

l

∣

∣

∣

∣

Cm

∞
∑

n=0

λm

λn
(αk)n

∣

∣

∣

∣

n

〉
∣

∣

∣

∣

2

=
1

π

∣

∣

∣

∣

{ψ(|α|2)}−1/2
∞
∑

l,n=0

|α|l
λl

e−ilθ1Cm
λm

λn
(αk)n〈l|n〉

∣

∣

∣

∣

2

=
1

π

∣

∣

∣

∣

{ψ(|α|2)}−1/2
∞
∑

n=0

|α|n
λn

e−inθ1Cm
λm

λn
(αk)n〈n|n〉

∣

∣

∣

∣

2

=
1

π

∣

∣

∣

∣

{ψ(|α|2)}−1/2
∞
∑

n=0

|α|n
λn

e−inθ1Cm
λm

λn
(αk)nλn

∣

∣

∣

∣

2
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=
1

π
|Cm|2{ψ(|α|2)}−1

∣

∣

∣

∣

∞
∑

n=0

|α|ne−inθ1
λm

λn
(αk)n

∣

∣

∣

∣

2

=
1

π
|Cm|2{ψ(|α|2)}−1

∣

∣

∣

∣

∞
∑

n=0

λm

λn
|α|ne−inθ1(αk)n

∣

∣

∣

∣

2

=
1

π
|Cm|2{ψ(|α|2)}−1

∣

∣

∣

∣

∞
∑

n=0

λm

λn
|α|n|αk|nein(θ2−θ1)

∣

∣

∣

∣

2

.

For λn ∼ n! we get

Q(fα) ∼ 1

π
e−|α|2(m!)−2e−|α|2(m!)2

∣

∣

∣

∣

∞
∑

n=0

1

n!
|α|n|αk|nein(θ2−θ1)

∣

∣

∣

∣

2

(36)

=
1

π
e−2|α|2

∣

∣

∣

∣

∞
∑

n=0

(|α||αk|ei(θ2−θ1))n

n!

∣

∣

∣

∣

2

=
1

π
e−2|α|2 |e(|α||αk |ei(θ2−θ1))|2

=
1

π
e−2|α|2 |e(|α||αk | cos(θ2−θ1)+i|α||αk | sin(θ2−θ1))|2

=
1

π
e−2|α|2e2|α||αk | cos(θ2−θ1)

=
1

π
e−2|α|{|α|−|αk | cos(θ2−θ1)}.

From (36) we now have

(37) Q(fα) =
1

π
e−2|α|{|α|−|αk | cos(θ2−θ1)}.
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Fig. 3. Plot of Q distribution as a function of |α| and |αk|

In Fig. 3, we have plotted Q(fα) when λn = n! , obtained from (37).

4. Conclusion. Thus we have shown the usefulness of asymptotic approximation to

study quasi-probability distribution function. This method helps us to expressQ functions

by an analytic expression instead of cumbersome series expression and in its turn gives

a better understanding of Q function for incoherent states, Kerr states, squeezed states

and k-photon coherent states in interacting Fock space.
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