FUNCTION SPACES VIII BANACH CENTER PUBLICATIONS, VOLUME 79 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2008

LINEAR OPERATORS ON NON-LOCALLY CONVEX ORLICZ SPACES

MARIAN NOWAK and AGNIESZKA OELKE

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra Szafrana 4a, 65-516 Zielona Góra, Poland E-mail: M.Nowak@wmie.uz.zgora.pl, A.Oelke@wmie.uz.zgora.pl

Abstract. We study linear operators from a non-locally convex Orlicz space L^{Φ} to a Banach space $(X, \|\cdot\|_X)$. Recall that a linear operator $T: L^{\Phi} \to X$ is said to be σ -smooth whenever $u_n \stackrel{(o)}{\to} 0$ in L^{Φ} implies $\|T(u_n)\|_X \to 0$. It is shown that every σ -smooth operator $T: L^{\Phi} \to X$ factors through the inclusion map $j: L^{\Phi} \to L^{\overline{\Phi}}$, where $\overline{\Phi}$ denotes the convex minorant of Φ . We obtain the Bochner integral representation of σ -smooth operators $T: L^{\Phi} \to X$. This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on a locally convex Orlicz space.

1. Introduction and preliminaries. The theory of linear operators on Banach function spaces (in particular, L^p -spaces and Orlicz spaces L^{Φ}) has been developed by many authors (see [D], [G], [DP], [Ph], [Z], [DS], [D₁], [D₂], [D₃], [U], [C], [W]). Linear operators on non-locally convex Orlicz spaces L^{Φ} have been studied in [P], [T₁], [T₂], [K].

We denote by $\sigma(L, K)$ and $\tau(L, K)$ the weak topology and the Mackey topology on L with respect to the dual pair (L, K). Given a topological vector space (L, τ) we will denote by $(L, \tau)^*$ its topological dual. For terminology concerning vector lattices and function spaces we refer to [AB], [KA], [Z].

Let (Ω, Σ, μ) be a σ -finite atomless measure space, and let L^0 denote the set of μ equivalence classes of real valued measurable functions defined on Ω . Then L^0 is a super Dedekind complete Riesz space under the ordering $u \leq v$ whenever $u(\omega) \leq v(\omega) \mu$ -a.e. on Ω . By $\mathcal{S}(\Sigma)$ we will denote the set of all Σ -simple functions defined on Ω .

Now we recall notation and some basic results concerning Orlicz spaces (see [MO₁], [MaO], [M], [RR]). By an *Orlicz function* we mean here a mapping Φ : $[0, \infty) \rightarrow [0, \infty)$ that is non-decreasing, left continuous, continuous at 0, vanishing only at 0 and

[157]

²⁰⁰⁰ Mathematics Subject Classification: 46E30, 47B38.

Key words and phrases: Orlicz spaces, Lebesgue topology, modular topology, σ -smooth operators, Bochner integral representation, Radon-Nikodym property.

The paper is in final form and no version of it will be published elsewhere.

lim $\inf_{t\to\infty} \frac{\Phi(t)}{t} > 0$. By Φ^* we denote the convex Orlicz function complementary to Φ in the sense of Young, i.e., $\Phi^*(s) = \sup\{st - \Phi(t) : t \ge 0\}$ for $s \ge 0$. Note that Φ^* takes only finite values whenever $\liminf_{t\to\infty} \frac{\Phi(t)}{t} = \infty$ and jumps to ∞ whenever $\liminf_{t\to\infty} \frac{\Phi(t)}{t} < \infty$ (see [N₃, Lemmas 2.2 and 2.3]). The function $\overline{\Phi}(t) = (\Phi^*)^*(t)$ for $t\ge 0$ is called the *convex minorant* of Φ , because it is the largest convex Orlicz function smaller than Φ on $[0,\infty)$. Recall that Φ satisfies the Δ_2 -condition (in symb. $\Phi \in \Delta_2$) if $\Phi(2t) \le c\Phi(t)$ for all $t\ge 0$ and some c > 0. An Orlicz function Φ determines a functional $\varrho_{\Phi}: L^0 \to [0,\infty]$ by

$$\varrho_{\Phi}(u) = \int_{\Omega} \Phi(|u(\omega)|) \, d\mu.$$

The Orlicz space L^{Φ} is an ideal of L^0 defined by

 $L^{\Phi} = \{ u \in L^0 : \varrho_{\Phi}(\alpha u) < \infty \quad \text{ for some } \alpha > 0 \}$

and equipped with the complete topology \mathcal{T}_{Φ} of the *F*-Riesz norm

$$|u|_{\Phi} := \inf\{\alpha > 0 : \varrho_{\Phi}(u/\alpha) \le \alpha\}.$$

The space $(L^{\Phi}, \mathcal{T}_{\Phi})$ is locally convex if and only if $L^{\Phi} = L^{\Phi_0}$ for some convex Orlicz function Φ_0 (see [MaO]). In case Φ is a convex Orlicz function \mathcal{T}_{Φ} can be generated by two Riesz norms:

$$||u||_{\Phi} := \inf \{\alpha > 0 : \varrho_{\Phi}(u/\alpha) \le 1\}$$

and

$$\|u\|_{\Phi}^{0} := \sup\bigg\{\int_{\Omega} |u(\omega)v(\omega)| \, d\mu : v \in L^{\Phi^{*}}, \ \varrho_{\Phi^{*}}(u) \le 1\bigg\}.$$

Let $(L^{\Phi})'$ stand for the Köthe dual of L^{Φ} . Then $(L^{\Phi})' = L^{\Phi^*}$ (see [N₃, Theorem 3.3], [MW]). Let $(L^{\Phi})_n^{\sim}$ denote the order continuous dual of L^{Φ} . Then $(L^{\Phi})_n^{\sim}$ can be identified with L^{Φ^*} through the mapping: $L^{\Phi^*} \ni v \mapsto \varphi_v \in (L^{\Phi})_n^{\sim}$, where

$$\varphi_v(u) = \int_{\Omega} u(\omega)v(\omega) \, d\mu \quad \text{ for all } u \in L^{\Phi}.$$

The functional ρ_{Φ} restricted to L^{Φ} is a modular (see [MO₁], [MO₂], [M]). Recall that a sequence (u_n) in L^{Φ} is said to be modularly convergent to $u \in L^{\Phi}$ (in symb. $u_n \xrightarrow{\rho_{\Phi}} u$) if $\rho_{\Phi}(\alpha(u_n - u)) \to 0$ for some $\alpha > 0$.

For $\varepsilon > 0$ let $U_{\Phi}(\varepsilon) = \{u \in L^{\Phi} : \varrho_{\Phi}(u) \leq \varepsilon\}$. Then the family of all sets of the form: $\bigcup_{n=1}^{\infty} (\sum_{i=1}^{n} U_{\Phi}(\varepsilon_i))$, where (ε_i) is a sequence of positive numbers, forms a local base at 0 (consisting of solid subsets of L^{Φ}) for a topology $\mathcal{T}_{\Phi}^{\wedge}$ on L^{Φ} , and called the *modular* topology (see [N₁], [N₂], [N₄]). The basic properties of $\mathcal{T}_{\Phi}^{\wedge}$ are included in the following theorem (see [N₁, Theorem 1.1], [N₂, Theorem 2.5 and 3.2], [N₄, Theorem 2.2]).

THEOREM 1.1. Let Φ be an Orlicz function. Then the following statements hold:

- (i) $\mathcal{T}_{\Phi}^{\wedge}$ is the finest of all linear topologies ξ on L^{Φ} for which $u_n \xrightarrow{\varrho_{\Phi}} 0$ implies $u_n \xrightarrow{\xi} 0$.
- (ii) $\mathcal{T}_{\Phi}^{\wedge}$ is the finest Lebesgue topology on L^{Φ} .
- (iii) $\mathcal{T}_{\Phi}^{\wedge} \subset \mathcal{T}_{\Phi}$, with equality if and only if $\Phi \in \Delta_2$.
- (iv) $(\tilde{L}^{\Phi}, \mathcal{T}^{\wedge}_{\Phi})^* = (L^{\Phi})^{\sim}_n = \{\varphi_v : v \in L^{\Phi^*}\}.$

(v) $\tau(L^{\Phi}, L^{\Phi^*})$ is equal to the restriction of the modular topology $\mathcal{T}^{\wedge}_{\overline{\Phi}}$ i.e., $\tau(L^{\Phi}, L^{\Phi^*})$ $=\mathcal{T}_{\overline{\Phi}}^{\wedge} \upharpoonright_{L^{\Phi}}$. In particular, $\tau(L^{\Phi}, L^{\Phi^*}) = \mathcal{T}_{\Phi}^{\wedge}$ whenever Φ is convex.

In view of [O] the dual space $(L^{\Phi})^* (= (L^{\Phi}, \mathcal{T}_{\Phi})^*)$ is a Banach space under the norm $\|\varphi\|_{\Phi} = \sup\{|\varphi(u)| : u \in L^{\Phi}, \rho_{\Phi}(u) < 1\}$

for $\varphi \in (L^{\Phi})^*$. Moreover, by [O, 1.31] the following inequality holds:

(1.1)
$$|\varphi(u)| \le \|\varphi\|_{\Phi}(\varrho_{\Phi}(u)+1) \quad \text{for all } u \in L^{\Phi}.$$

From now on we assume that $(X, \|\cdot\|_X)$ is a real Banach space, and X^* stands for its Banach dual. We distinguish two classes of linear operators $T: L^{\Phi} \to X$ (see [OW]).

DFINITION 1.1. A linear operator $T: L^{\Phi} \to X$ is said to be σ -smooth (resp. modularly *continuous*) if $u_n \xrightarrow{(0)} 0$ (resp. $u_n \xrightarrow{\varrho_\Phi} 0$) in L^{Φ} implies $||T(u_n)||_X \to 0$.

In Section 2, we study a relationship between σ -smooth operators, modularly continuous operators and $(\mathcal{T}_{\Phi}^{\wedge}, \|\cdot\|_X)$ -continuous linear operators $T: L^{\Phi} \to X$. It is shown that every σ -smooth linear operator $T: L^{\Phi} \to X$ factors through the inclusion map $j: L^{\Phi} \to L^{\overline{\Phi}}$, where $\overline{\Phi}$ stands for the convex minorant of Φ . In Section 3, we obtain a Bochner integral representation of σ -smooth operators $T: L^{\Phi} \to X$. This extends some earlier results due to J. J. Uhl [U, Theorem 1], where Φ is supposed to be convex and $\Phi \in \Delta_2$.

2. **Smooth operators.** We first establish a relationship between different classes of linear operators $T: L^{\Phi} \to X$.

THEOREM 2.1. Let Φ be an Orlicz function. Then for a linear operator $T: L^{\Phi} \to X$ the following statements are equivalent:

- (i) T is modularly continuous.
- (ii) T is σ -smooth.
- (iii) $x^* \circ T \in (L^{\Phi})_n^{\sim}$ for all $x^* \in X^*$.
- (iv) T is $(\sigma(L^{\Phi}, L^{\Phi^*}), \sigma(X, X^*))$ -continuous.
- (v) T is $(\tau(L^{\Phi}, L^{\Phi^*}), \|\cdot\|_X)$ -continuous.
- (vi) T is $(\mathcal{T}_{\overline{\Phi}}^{\wedge} \upharpoonright_{L^{\Phi}}, \|\cdot\|_X)$ -continuous. (vii) T is $(\mathcal{T}_{\overline{\Phi}}^{\wedge}, \|\cdot\|_X)$ -continuous.

Proof. (i) \Rightarrow (ii). Assume that T is modularly continuous and let $u_n \xrightarrow{(o)} 0$ in L^{Φ} . Then by the Lebesgue dominated convergence theorem $u_n \xrightarrow{\varrho_{\Phi}} 0$, so $||T(u_n)||_X \to 0$. This means that T is σ -smooth.

(ii) \Rightarrow (iii). Assume that T is σ -smooth. Hence $x^* \circ T \in (L^{\Phi})^{\sim}_c = (L^{\Phi})^{\sim}_n$ for every $x^* \in X^*$.

- $(iii) \Leftrightarrow (iv)$. See [AB, Theorem 9.26].
- $(iv) \Leftrightarrow (v)$. See [Wi, Corollary 11-1-3, Corollary 11-2-6].
- (v) \Leftrightarrow (vi). It is obvious, because $\tau(L^{\Phi}, L^{\Phi^*}) = \mathcal{T}_{\overline{\Phi}}^{\wedge} \upharpoonright_{L^{\Phi}}$ (see [N₄, Theorem 2.2]).
- (vi) \Rightarrow (vii). Clear, because $\mathcal{T}_{\overline{\Phi}}^{\wedge} \upharpoonright_{L^{\Phi}} \subset \mathcal{T}_{\Phi}^{\wedge}$.

(vii) \Rightarrow (i). It is obvious, because $u_n \xrightarrow{\varrho_{\Phi}} 0$ in L^{Φ} implies $u_n \to 0$ for $\mathcal{T}_{\Phi}^{\wedge}$.

Now, we consider the problem of extension of linear operators $T: L^{\Phi} \to X$.

THEOREM 2.2. Let Φ be an Orlicz function. Assume that $T: L^{\Phi} \to X$ is a $(\mathcal{T}_{\Phi}^{\wedge}, \|\cdot\|_X)$ continuous linear operator. Then there exists a $(\mathcal{T}_{\Phi}^{\wedge}, \|\cdot\|_X)$ -continuous linear operator $\overline{T}: L^{\overline{\Phi}} \to X$ such that $\overline{T}(u) = T(u)$ for all $u \in L^{\Phi}$.

Proof. In view of Theorem 2.1, T is $(\mathcal{T}_{\overline{\Phi}}^{\wedge} \upharpoonright_{L^{\Phi}}, \|\cdot\|_X)$ -continuous. Now let $u \in L^{\overline{\Phi}}$. Then there exists a sequence (s_n) in $\mathcal{S}(\Sigma)$ such that $s_n(\omega) \to u(\omega) \mu$ -a.e., and $|s_n(\omega)| \leq |u(\omega)| \mu$ -a.e., that is, $s_n \xrightarrow{(\circ)} 0$ in $L^{\overline{\Phi}}$. Hence $s_n \to u$ for $\mathcal{T}_{\overline{\Phi}}^{\wedge}$, because $\mathcal{T}_{\overline{\Phi}}^{\wedge}$ is a Lebesgue topology on $L^{\overline{\Phi}}$. Then (s_n) is a Cauchy sequence in $(L^{\Phi}, \mathcal{T}_{\overline{\Phi}}^{\wedge} \upharpoonright_{L^{\Phi}})$, so $(T(s_n))$ is a Cauchy sequence in $(X, \|\cdot\|_X)$. Let us put $\overline{T}(u) := \lim T(s_n)$ in $(X, \|\cdot\|_X)$. Note that if $u \in L^{\Phi}$, then $T(u) = \lim T(s_n)$ in $(X, \|\cdot\|_X)$ and $\overline{T}(u) = T(u)$.

Now we shall show that if (s_n^1) and (s_n^2) are sequences in $\mathcal{S}(\Sigma)$ such that $s_n^1 \xrightarrow{(o)} u$ and $s_n^2 \xrightarrow{(o)} u$ in $L^{\overline{\Phi}}$, then $\lim T(s_n^1) = \lim T(s_n^2)$ in $(X, \|\cdot\|_X)$. Indeed, we have $s_n^1 \to u$ for $\mathcal{T}_{\overline{\Phi}}^{\wedge}$ and $s_n^2 \to u$ for $\mathcal{T}_{\overline{\Phi}}^{\wedge}$, so $s_n^1 - s_n^2 \to 0$ for $\mathcal{T}_{\overline{\Phi}}^{\wedge} \upharpoonright_{L^{\Phi}}$. Hence $\|T(s_n^1) - T(s_n^2)\|_X \to 0$. Set $x_1 = \lim T(s_n^1)$ and $x_2 = \lim T(s_n^2)$ in $(X, \|\cdot\|_X)$. Then

$$||x_1 - x_2||_X \le ||x_1 - T(s_n^1)||_X + ||T(s_n^1) - T(s_n^2)||_X + ||T(s_n^2) - x_2||_X,$$

and it follows that $||x_1 - x_2||_X = 0$, so $x_1 = x_2$.

We shall now show that a linear operator $\overline{T}: L^{\overline{\Phi}} \to X$ is $(\mathcal{T}^{\wedge}_{\overline{\Phi}}, \|\cdot\|_X)$ -continuous. Indeed, let $B_{\mathcal{T}^{\wedge}_{\overline{\Phi}}}$ stand for the local base at 0 for $\mathcal{T}^{\wedge}_{\overline{\Phi}}$, and let $\varepsilon > 0$ be given. Since T is $(\mathcal{T}^{\wedge}_{\overline{\Phi}} \upharpoonright_{L^{\Phi}}, \|\cdot\|_X)$ -continuous, there exists $W \in B_{\mathcal{T}^{\wedge}_{\overline{\Phi}}}$ such that $T(L^{\Phi} \cap W) \subset B_X(\varepsilon)$ $(= \{x \in X: \|x\|_X \leq \varepsilon\})$. It is enough to show that $\overline{T}(W) \subset B_X(\varepsilon)$. In fact, let $w \in W$. Then there exists a sequence (s_n) in $\mathcal{S}(\Sigma)$ such that $s_n \to w$ for $\mathcal{T}^{\wedge}_{\overline{\Phi}}$. Hence there exists $n_0 \in \mathbb{N}$ such that $s_n \in L^{\Phi} \cap W$ for all $n \geq n_0$; so $T(s_n) \in B_X(\varepsilon)$ for $n \geq n_0$. It follows that $\overline{T}(w) \in B_X(\varepsilon)$, as desired.

As a consequence of Theorem 2.1 and Theorem 2.2 we obtain the following factorization of σ -smooth operators $T: L^{\Phi} \to X$.

COROLLARY 2.3. Let Φ be an Orlicz function and let $T: L^{\Phi} \to X$ be a σ -smooth linear operator. Then T may be factorized: $T = \overline{T} \circ j$, where $j: L^{\Phi} \to L^{\overline{\Phi}}$ is the inclusion map and $\overline{T}: L^{\overline{\Phi}} \to X$ is a σ -smooth linear operator.

3. Integral representation of smooth operators. In this section we obtain a Bochner integral representation of σ -smooth linear operators $T: L^{\Phi} \to X$, where Φ is an Orlicz function (not necessarily convex) and X has the Radon-Nikodym Property. We extend some earlier results due to J. J. Uhl (see [U, Theorem 1]), where Φ is supposed to be convex and $\Phi \in \Delta_2$. The problem of Bochner integral representation of linear operators $T: L^p \to X$ (p > 1) has been studied in [DU, Theorem 3.4.8], [D₁], [D₂], [D₃].

For terminology concerning vector measures and Banach-space valued function spaces we refer to [DU, Chap. 3.1], [L]. Denote by $L^0(X)$ the set of μ -equivalence classes of all strongly Σ -measurable functions $g: \Omega \to X$. For $g: \Omega \to X$ let us put $\tilde{g}(\omega) = ||g(\omega)||_X$ for $\omega \in \Omega$. For an Orlicz function Φ the Orlicz-Bochner space $L^{\Phi}(X)$ is defined by

$$L^{\Phi}(X) = \{ g \in L^0(X) : \widetilde{g} \in L^{\Phi} \}.$$

A linear operator $T: L^{\Phi} \to X$ is said to be *regular* if there exists $0 \leq v \in L^{\Phi^*}$ such that $||T(u)||_X \leq \varphi_v(|u|) = \int_{\Omega} |u(\omega)|v(\omega) d\mu$ for all $u \in L^{\Phi}$ (see [Bu, Def. 1.2]).

From now on we will assume that (Ω, Σ, μ) is a finite atomless measure space. Recall that a Banach space X has the *Radon-Nikodym property* (with respect to μ) (briefly $X \in RNP(\mu)$) if for each μ -continuous vector measure $m : \Sigma \to X$ of bounded variation (i.e., $|m|(\Omega) < \infty$) there exists $g \in L^1(X)$ such that

$$m(A) = \int_A g(\omega) \, d\mu$$
 for all $A \in \Sigma$.

Then $|m|(A) = \int_A ||g(\omega)||_X d\mu$ for all $A \in \Sigma$. Motivated by the variation $|m|(\Omega)$ and following $[D_1]$, $[D_3]$ we can define a norm functional of operators $T: L^{\Phi} \to X$ by

$$|||T|||_{\Phi} := \sup \Big\{ \sum_{i=1}^{n} ||\alpha_i T(1_{A_i})||_X : s = \sum_{i=1}^{n} \alpha_i 1_{A_i} \in \mathcal{S}(\Sigma), \ \varrho_{\Phi}(s) \le 1 \Big\}.$$

Now we are in a position to state our main result.

THEOREM 3.1. Let Φ be an Orlicz function and let $X \in RNP(\mu)$. Then for a linear operator $T: L^{\Phi} \to X$ the following statements are equivalent:

- (i) $|||T|||_{\Phi} < \infty$ and T is modularly continuous.
- (ii) $|||T|||_{\Phi} < \infty$ and T is σ -smooth.
- (iii) $|||T|||_{\Phi} < \infty$ and T is $(\tau(L^{\Phi}, L^{\Phi^*}), ||\cdot||_X)$ -continuous.
- (iv) $|||T|||_{\Phi} < \infty$ and T is $(\mathcal{T}_{\Phi}^{\wedge}, ||\cdot||_X)$ -continuous.
- (v) There exists $g \in L^{\Phi^*}(X)$ such that

$$T(u) = T_g(u) = \int_{\Omega} u(\omega)g(\omega) \, d\mu \quad \text{for all } u \in L^{\Phi}$$

and

$$||T_g||_{\Phi} = ||\varphi_{\widetilde{g}}||_{\Phi} = \sup\bigg\{\bigg|\int_{\Omega} u(\omega)\widetilde{g}(\omega)\,d\mu\bigg|: u \in L^{\Phi}, \,\varrho_{\Phi}(u) \leq 1\bigg\}.$$

In particular, if Φ is a convex Orlicz function, then

$$|||T_g|||_{\Phi} = ||\widetilde{g}||_{\Phi^*}^0 = ||g||_{L^{\Phi^*}(X)}^0.$$

(vi) T is regular.

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) follow from Theorem 2.1.

(i) \Rightarrow (v). Assume that $|||T|||_{\Phi} < \infty$ and T is modular continuous.

Define a vector measure $m_T : \Sigma \to X$ by $m_T(A) = T(1_A)$ for $A \in \Sigma$. We shall now show that m_T is μ -continuous. Indeed, let $\mu(A_n) \to 0$ with $A_n \in \Sigma$. Then

$$\varrho_{\Phi}(1_{A_n}) = \int_{\Omega} \Phi(1_{A_n}(\omega)) \, d\mu = \Phi(1)\mu(A_n) \to 0,$$

 \mathbf{so}

$$||m_T(A_n)||_X = ||T(1_{A_n})||_X \to 0.$$

It follows that m_T is countably additive and μ -continuous. Now, choose $\alpha > 0$ such that $\rho_{\Phi}(\alpha 1_{\Omega}) \leq 1$. For any finite Σ -partition $\{A_i : 1 \leq i \leq n\}$ of Ω we have $\alpha 1_{\Omega} = \sum_{i=1}^n \alpha 1_{A_i}$,

 \mathbf{so}

$$\alpha \sum_{i=1}^{n} \|m_T(A_i)\|_X = \sum_{i=1}^{n} \|\alpha T(1_{A_i})\|_X \le |||T|||_{\Phi}.$$

Hence $|m_T|(\Omega) < \infty$, and since $X \in RNP(\mu)$ there exists $g \in L^1(X)$ such that

$$m_T(A) = \int_A g(\omega) d\mu$$
 and $|m_T|(A) = \int_A ||g(\omega)||_X d\mu$ for $A \in \Sigma$.

Then for $s = \sum_{i=1}^{n} \alpha_i 1_{A_i} \in \mathcal{S}(\Sigma)$ we have

$$T(s) = \sum_{i=1}^{n} \alpha_i T(1_{A_i}) = \sum_{i=1}^{n} \alpha_i m_T(A_i)$$
$$= \sum_{i=1}^{n} \alpha_i \int_{A_i} g(\omega) \, d\mu = \int_{\Omega} s(\omega) g(\omega) \, d\mu.$$
(3.1)

We now show that for $s = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i} \in \mathcal{S}(\Sigma)$ with $\varrho_{\Phi}(s) \leq 1$ we have

$$\sum_{i=1}^{n} |\alpha_{i}| \int_{A_{i}} \|g(\omega)\|_{X} \, d\mu = \sum_{i=1}^{n} |\alpha_{i}| \, |m_{T}|(A_{i}) \leq |||T|||_{\Phi}$$

Indeed, let $\varepsilon > 0$ be given. Then for each $1 \le i \le n$ there exists a Σ -partition $(A_{i,j})_{j=1}^{k_i}$ of A_i such that

$$|m_T|(A_i) \le \sum_{j=1}^{k_i} ||m_T(A_{i,j})||_X + \frac{\varepsilon}{n|\alpha_i|} = \sum_{j=1}^{k_i} ||T(1_{A_{i,j}})||_X + \frac{\varepsilon}{n|\alpha_i|}.$$

Hence

$$\sum_{i=1}^{n} |\alpha_{i}| |m_{T}|(A_{i}) \leq \sum_{i=1}^{n} \left(\sum_{j=1}^{k_{i}} \|\alpha_{i}T(1_{A_{i,j}})\|_{X} \right) + \varepsilon \leq |||T|||_{\Phi} + \varepsilon_{1}$$

because

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{k_i} \alpha_i \mathbf{1}_{A_{i,j}} \right) = \sum_{i=1}^{n} \alpha_i \, \mathbf{1}_{A_i}.$$

Then

$$\begin{split} \sum_{i=1}^{n} \|\alpha_{i}T(1_{A_{i}})\|_{X} &= \sum_{i=1}^{n} |\alpha_{i}| \|m_{T}(A_{i})\|_{X} \leq \sum_{i=1}^{n} |\alpha_{i}| |m_{T}|(A_{i}) \\ &= \sum_{i=1}^{n} |\alpha_{i}| \int_{A_{i}} \|g(\omega)\|_{X} \, d\mu = \int_{\Omega} \Big(\sum_{i=1}^{n} |\alpha_{i}| 1_{A_{i}}(\omega) \Big) \|g(\omega)\|_{X} \, d\mu \\ &= \int_{\Omega} |s(\omega)| \widetilde{g}(\omega) \, d\mu \leq |||T|||_{\Phi}. \end{split}$$

Taking suprema on the left, we get

$$|||T|||_{\Phi} = \sup\left\{\int_{\Omega} |s(\omega)|\tilde{g}(\omega) \, d\mu : s \in \mathcal{S}(\Sigma), \, \varrho_{\Phi}(s) \le 1\right\}.$$
(3.2)

Now we are ready to show $u\tilde{g} \in L^1$ for every $u \in L^{\Phi}$, i.e., $\tilde{g} \in (L^{\Phi})' = L^{\Phi^*}$. Indeed, let $u \in L^{\Phi}$. Then there exists a sequence (s_n) in $\mathcal{S}(\Sigma)$ such that $0 \leq s_n(\omega) \uparrow |u(\omega)|$ for

 $\omega \in \Omega$ (see [KA, Corollary I.6]). Choose $\alpha > 0$ such that $\rho_{\Phi}(\alpha u) \leq 1$. Then by Fatou's lemma and (3.2) we get

$$\int_{\Omega} \alpha |u(\omega)| \widetilde{g}(\omega) \, d\mu \leq \sup_{n} \int_{\Omega} \alpha s_{n}(\omega) \widetilde{g}(\omega) \, d\mu \leq |||T|||_{\Phi},$$

and this means that $\widetilde{g} \in (L^{\Phi})' = L^{\Phi^*}$ and $ug \in L^1(X)$. Thus we can define a linear operator $T_g: L^{\Phi} \to X$ by

$$T_g(u) = \int_{\Omega} u(\omega)g(\omega) \, d\mu \quad \text{ for } u \in L^{\Phi}$$

We shall now show that $T_g(u) = T(u)$ for $u \in L^{\Phi}$. Indeed, let $u \in L^{\Phi}$ and choose $\alpha > 0$ such that $\varrho_{\Phi}(2\alpha u) < \infty$. Then there exists a sequence (s_n) in $\mathcal{S}(\Sigma)$ such that $s_n(\omega) \to u(\omega) \mu$ -a.e. and $|s_n(\omega)| \leq |u(\omega)| \mu$ -a.e. ([KA, Corollary I.6]). By the dominated convergence theorem $\varrho_{\Phi}(\alpha(s_n - u)) \to 0$, and since T is modularly continuous, we get $||T(s_n) - T(u)||_X \to 0$.

On the other hand, $s_n(\omega)\tilde{g}(\omega) \to u(\omega)\tilde{g}(\omega) \mu$ -a.e. and $|s_n(\omega)|\tilde{g}(\omega) \leq |u(\omega)|\tilde{g}(\omega) \mu$ -a.e., where $u\tilde{g} \in L^1$. Using (3.1) we get

$$\|T(s_n) - T_g(u)\|_X = \left\| \int_{\Omega} s_n(\omega) g(\omega) d\mu - \int_{\Omega} u(\omega)g(\omega) d\mu \right\|_X$$
$$\leq \int_{\Omega} |s_n(\omega) - u(\omega)|\tilde{g}(\omega) d\mu \xrightarrow[n]{} 0.$$

It follows that

$$T(u) = T_g(u) = \int_{\Omega} u(\omega)g(\omega) \, d\mu \quad \text{ for } u \in L^{\Phi}.$$

Now assume that Φ is a convex Orlicz function. Then $\rho_{\Phi}(u) \leq 1$ if and only if $||u||_{\Phi} \leq 1$ and it follows that $||T_g||_{\Phi} = ||\widetilde{g}||_{\Phi}^0 = ||g||_{L^{\Phi^*}(X)}^0$.

 $(\mathbf{v}) \Rightarrow (\mathbf{v}i)$. Assume that there exists $g \in L^{\Phi^*}(X)$ such that

$$T(u) = T_g(u) = \int_{\Omega} u(\omega)g(\omega) d\mu$$
 for all $u \in L^{\Phi}$.

Then for $u \in L^{\Phi}$ we have

$$\|T(u)\|_X \le \int_{\Omega} |u(\omega)| \, \|g(\omega)\|_X \, d\mu = \varphi_{\widetilde{g}}(|u|),$$

where $\widetilde{g} \in L^{\Phi^*}$, i.e., T is regular.

(vi) \Rightarrow (ii). Assume that T is regular, i.e., there exists $0 \le v \in L^{\Phi^*}$ such that

$$||T(u)||_X \le \int_{\Omega} |u(\omega)|v(\omega) \, d\mu = \varphi_v(|u|) \quad \text{for all } u \in L^{\Phi}.$$

Let
$$s = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i} \in \mathcal{S}(\Sigma)$$
 with $\varrho_{\Phi}(s) \leq 1$. Then using (3.1) we get

$$\sum_{i=1}^{n} \|\alpha_i T(\mathbf{1}_{A_i})\|_X = \sum_{i=1}^{n} |\alpha_i| \|T(\mathbf{1}_{A_i})\|_X \leq \sum_{i=1}^{n} |\alpha_i| \int_{\Omega} \mathbf{1}_{A_i}(\omega) v(\omega) \, d\mu$$

$$= \int_{\Omega} \Big(\sum_{i=1}^{n} |\alpha_i| (\mathbf{1}_{A_i})(\omega) \Big) v(\omega) \, d\mu = \varphi_v(|s|)$$

$$\leq \|\varphi_{\widetilde{q}}\|_{\Phi} (\varrho_{\Phi}(s) + 1) \leq 2\|\varphi_{\widetilde{q}}\|_{\Phi}.$$

Hence $|||T_g|||_{\Phi} \leq 2||\varphi_{\widetilde{g}}||_{\Phi}$. Now assume that $u_n \xrightarrow{(\circ)} 0$ in L^{Φ} . Since $\varphi_v \in (L^{\Phi})_n^{\sim}$, we obtain that $||T(u_n)||_X \to 0$, i.e., T is σ -smooth.

References

- [AB] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, Orlando, 1985.
- [Bu] A. V. Bukhvalov, On an analytic representation of linear operators using vector-valued measurable function, Izv. Vyssh. Ucheb. Zaved. 7 (1977), 21–31.
- [C] J. Chaney, Banach lattices of compact maps, Math. Z. 129 (1972) 1–19.
- [D₁] N. Dinculeanu, *Vector Measures*, Pergamon Press, New York, 1967.
- [D₂] N. Dinculeanu, Integral representation of linear operators, I, II, Stud. Cerc. Mat. (1966), 349–385, 483–536.
- [D₃] N. Dinculeanu, *Linear operators on L^p-spaces*, in: Vector and Operator Valued Measures and Applications (Proc. Sympos., Utah 1972), Academic Press New York, 1973, 109–124.
- [DU] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977, Providence, RI.
- [D] N. Dunford, Integration and linear operators, Trans. Amer. Math. Soc. 40 (1936) 474– 494.
- [DP] N. Dunford and J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323–392.
- [DS] N. Dunford and J. Schwartz, *Linear Operators, Part I, General Theory*, Interscience Publ. Inc., New York, 1958.
- [G] I. Gelfand, Abstrakte Funktionen und Lineare Operatoren, Mat. Sbornik, N.S., 4 (46) (1938), 235–238.
- [K] N. Kalton, Compact and strictly singular operators on Orlicz spaces, Israel J. Math., 26 (1977), 126–136.
- [KA] L. V. Kantorovich and A. V. Akilov, Functional Analysis, 3rd ed., Nauka, Moscow, 1984 (in Russian).
- [L] P.-K. Lin, *Köthe-Bochner Function Spaces*, Birkhaüser, Boston, 2003.
- [MW] L. Maligranda and W. Wnuk, Landau type theorem for Orlicz spaces, Math. Z. 208 (1991), 57–64.
- [MaO] S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958), 97-119.
- [M] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer Verlag, Berlin, 1983.
- [MO₁] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
- [MO₂] J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 661–668.
- [N1] M. Nowak, On modular topology on Orlicz spaces, Bull. Pol. Acad. Sci. Math. 36 (1988), 553–562.
- [N₂] M. Nowak, Orlicz lattices with modular topology I, Comment. Math. Univ. Carolinae 30 (1989), 261–270.
- [N₃] M. Nowak, Order continuous linear functionals on non-locally convex Orlicz spaces, Comment. Math. Univ. Carolinae 33 (1992), 465-475.

- [N4] M. Nowak, On the strongest locally convex Lebesgue topology on Orlicz spaces, Results Math. 33 (1998), 134–138.
- [O] W. Orlicz, On integral representability of linear functionals over the space of φ integrable functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 661–668.
- [OW] W. Orlicz and W. Wnuk, Absolutely continuous and modularly continuous operators defined on spaces of measurable functions, Ricerche di Matematica 60 (1991), 243–258.
- [P] D. Pallaschke, The compact endomorphism of the metric linear space \mathcal{L}_{Φ} , Studia Math. 47 (1973), 123–133.
- [Ph] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516–541.
- [RR] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
- [T1] Ph. Turpin, Opérateurs linéaires entre espaces d'Orlicz non localement convexes, Studia Math. 46 (1973), 153-165.
- [T₂] Ph. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissert. Math. 131 (1976).
- [U] J. J. Uhl, On a class of operators on Orlicz spaces, Studia Math. 40 (1971), 17–22.
- [Wi] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, 1978.
- [W] T. K. Wong, On a class of absolutely p-summing operators, Studia Math. 39 (1971), 181–189.
- [Z] A. C. Zaanen, *Linear Analysis*, North-Holland, Amsterdam, 1953.