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Abstrat. The present paper is devoted to the study of the �quality� of the ompatness of thetrae operator. More preisely, we haraterize the asymptoti behaviour of entropy numbers ofthe ompat map

trΓ : B
s

p1,q(R
n
, w

Γ

κ ) → Lp2
(Γ),where Γ is a d-set with 0 < d < n and wΓ

κ a weight of type wΓ

κ (x) ∼ dist(x, Γ)κ near Γ with
κ > −(n − d). There are parallel results for approximation numbers.1. Introdution. The aim of this paper is to study the ompatness of the trae op-erator ating between a weighted Besov spae and an approximation spae on a fratal
d-set Γ. More preisely, we use known results on entropy numbers in unweighted settingsto investigate the behavior of entropy and approximation numbers of ompat embed-dings between weighted Besov spaes Bs

pq(R
n, wΓ

κ
), where wΓ

κ
is a funtion that measuresthe distane of a given point x ∈ R

n to a ertain fratal set Γ, wΓ
κ
(x) = dist(x, Γ)κ.In partiular, we onsider the trae operator from spaes Bs

pq(R
n, wΓ

κ
) into Lebesguespaes Lp(Γ), where Γ is a d-set. Furthermore, we generalize this onept to so-alled

(d, Ψ)-sets. We will study the weight funtion vΓ
κ
(x) = (dist(x, Γ))κΨ(dist(x, Γ)), where

Ψ is an admissible funtion, see (2.7), and Γ a orresponding (d, Ψ)-set. Moreover, weompute approximation numbers of the embeddings between funtion spaes of the abovetype.The paper is organized as follows. In the next setion we ollet some notation andreall de�nitions and known results on Mukenhoupt weights. In partiular, we de�nethe weighted Besov spaes Bs
pq(R

n, w) with w ∈ A∞. Moreover, we give the de�nition2000 Mathematis Subjet Classi�ation: Primary 46E35; Seondary 42B35, 47B06.Key words and phrases: entropy numbers, approximation numbers, weighted funtion spaes,Mukenhoupt weights, d-sets, (d, Ψ)-sets.Researh supported by Junior Researh Team �Fratal Analysis�.The paper is in �nal form and no version of it will be published elsewhere.[173℄ © Instytut Matematyzny PAN, 2008



174 I. PIOTROWSKAof Besov spaes of generalized smoothness and related (d, Ψ)-sets with an admissiblefuntion Ψ. The third setion is devoted to traes of weighted spaes on d- and (d, Ψ)-sets. We �rst give lassial statements of the trae problem on R
n−1. Subsequently wedesribe extensions of this problem to an arbitrary losed set Γ ⊂ R

n with |Γ| = 0. Weonlude this setion by presenting reent results on traes of weighted Besov spaes on
d- and (d, Ψ)-sets [Pio℄ whih are the main tool in prove our further results. The fourthsetion ontains results on entropy numbers of the trae operator between weighted Besovspaes. More preisely, we investigate the asymptoti behavior of the entropy numbers ofthe ompat embedding

id : Bs1

p1q1
(Rn, wΓ

κ
) → Bs2

p2q2
(Rn, wΓ

κ
).Here Γ denotes a d-set or (d, Ψ)-set. In the �nal setion we give estimates of approximationnumbers of a trae operator of weighted Besov spaes, e.g.

ek(trΓ : Bs
pp(R

n, wΓ
κ
) → Lp(Γ)) ∼ k

1
d ( n+κ

p −s)− 1
p ∼ ak(trΓ : Bs

pp(R
n, wΓ

κ
) → Lp(Γ)).2. Funtion spaes and weights2.1. De�nitions. In this setion we ollet some notation that remains �xed through-out this paper. As usual, R

n denotes the n-dimensional real Eulidean spae and theEulidean salar produt of x = (x1, . . . , xn) and y = (y1, . . . , yn) is given by xy =

x1y1 + · · · + xnyn, as usual. Let N0 = N ∪ {0} stand for the non-negative integers.We denote by S(Rn) the Shwartz spae of all omplex-valued rapidly dereasing in-�nitely di�erentiable funtions and by S ′(Rn) its dual spae of all tempered distributionson R
n. As usual, the Fourier transform de�ned on S ′(Rn) is given by(2.1) Ff(ξ) = f̂(ξ) = (2π)−n/2

∫

Rn

f(x)e−ixξdx.Here dx denotes the n-dimensional Lebesgue measure. The Fourier transform is a one-to-one mapping from S(Rn) onto S(Rn). As usual, F−1f or f∨, stands for the inverse Fouriertransform, given by the right-hand side of (2.1) with i in plae of −i. Let ϕ ∈ S(Rn)with supp ϕ ⊂ {y ∈ R
n : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1. Furthermore, let ϕ0 = ϕ andfor eah j ∈ N we put(2.2) ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x).Then(2.3) ∞∑

j=0

ϕj(x) = 1 for all x ∈ R
n.The system of funtions {ϕj}∞j=0 is alled a smooth dyadi resolution of unity.We will also need the following de�nition from fratal geometry.Definition 2.1. Let 0 < d < n. A set Γ ⊂ R

n is alled d-set if there exists a Borelmeasure µ in R
n suh that suppµ = Γ and there are onstants c1, c2 > 0 suh that forarbitrary γ ∈ Γ and all 0 < r < 1,

c1r
d ≤ µ(B(γ, r) ∩ Γ) ≤ c2r

d.



ENTROPY AND APPROXIMATION NUMBERS 175Remark 2.2. Note that self-similar fratals are outstanding examples of d-sets. For in-stane, the Cantor set in R
1 is a d-set for d = ln 2/ ln 3, and the Koh urve in R

2 is a
d-set for d = ln 4/ ln 3.Let Γ be a d-set and let 0 < p ≤ ∞. Then Lp(Γ) are the usual omplex Lp-spaeswith respet to the Borel measure µ, quasi-normed by

‖f |Lp(Γ)‖ =

(∫

Γ

|f(γ)|p µ(dγ)

)1/p

,with usual modi�ation for p = ∞.2.2. Mukenhoupt weights and Besov spaes. We reall some known fats and de�nitionson Ap Mukenhoupt lasses.We say that w belongs to the Mukenhoupt lass Ap with 1 < p < ∞ if there existsa onstant 0 < A < ∞ suh that for all balls B the following inequality holds(2.4) (
1

|B|

∫

B

w(x) dx

)1/p

·
(

1

|B|

∫

B

w(x)−p′/p dx

)1/p′

≤ A,where p′ is the dual exponent to p given by 1/p′+1/p = 1 and |B| stands for the Lebesguemeasure of the ball B.Futhermore, let M be the Hardy-Littlewood maximal operator given by
Mf(x) = sup

B(x,r)∈B

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy, x ∈ R
n,where B is the olletion of all open balls B(x, r) = {y ∈ R

n : |y − x| < r}, r > 0. Aweight w belongs to the Mukenhoupt lass A1 if there exists a onstant 0 < A < ∞ suhthat the inequality
Mw(x) ≤ Aw(x)holds for almost all x ∈ R

n.We also onsider the Mukenhoupt lass A∞ de�ned by(2.5) A∞ =
⋃

p≥1

Ap.Remark 2.3. The lass of Ap weights was introdued by B. Mukenhoupt in [Mu72a℄A systemati treatment of these lasses of weights funtions may be found, in partiular,in the monographs [GR85℄, [ST89℄, and [Ste93, Chapter V℄.The most famous example of a Mukenhoupt weight w ∈ Ap, 1 < p < ∞, is givenby w(x) = |x|δ with −n < δ < n(p − 1). In the sequel, we are more interested in thefollowing example.Example 2.4. Let Γ be a d-set with 0 < d < n introdued in De�nition 2.1 and let
κ ∈ R. We study the weight wΓ

κ
(x), x ∈ R

n, given by
wΓ

κ
(x) :=

{
dist(x, Γ)κ, dist(x, Γ) ≤ 1,

1, otherwise.



176 I. PIOTROWSKANote that the weight funtion wΓ
κ
belongs to the Mukenhoupt lass Ap for 1 < p < ∞if, and only if, −(n − d) < κ < (n − d)(p − 1). For the proof and more details we referthe reader to [HP℄.Let w ∈ A∞ aording to (2.5). We de�ne the weighted Lebesgue spae Lp(R

n, w) with
0 < p ≤ ∞ as the olletion of all measurable funtions suh that

‖f |Lp(R
n, w)‖ =

(∫

Rn

|f(x)|pw(x)dx

)1/p

is �nite. Note that orresponding spae for p = ∞ oinides with the unweighted spae
L∞(Rn).Definition 2.5. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and let {ϕj}∞j=0 be a smoothdyadi resolution of unity. Assume w ∈ A∞. The weighted Besov spae Bs

pq(R
n, w) isthe set of all distributions f ∈ S ′(Rn) suh that(2.6) ‖f |Bs

pq(R
n, w)‖ =

( ∞∑

j=0

2jsq‖F−1(ϕjFf)|Lp(R
n, w)‖q

)1/q

is �nite. In the limiting ase q = ∞ the usual modi�ation is required.Remark 2.6. The above de�nition does not depend on the hoie of the resolution ofunity {ϕj}∞j=0. The spaes Bs
pq(R

n, w) are quasi-Banah spaes (Banah spaes for p, q ≥
1). Furthermore, it is lear that F−1(ϕjFf) is an entire analyti funtion on R

n for any
f ∈ S ′(Rn). We have, in partiular, that F−1(ϕjFf)(x) make sense pointwise. One analso onsider the weighted Triebel-Lizorkin spaes F s

pq(R
n, w), 0 < p < ∞, 0 < q ≤ ∞,

s ∈ R, by interhanging the order of ℓq- and Lp-quasi-norms in (2.6), see [Bui82℄, [Bui84℄and also [HP℄, [Pio06℄ and referenes therein. Moreover, for the weight funtion w ≡ 1we obtain lassial (unweighted) versions of these spaes. The best referenes here arethe monographs by H. Triebel [Tri83℄, [Tri92℄ and [Tri06℄. A systemati treatment of theBesov spaes with weights from the lass A∞ is due to H. Q. Bui in [Bui82℄, [Bui84℄ withsubsequent papers [BPT96℄ and [BPT97℄.2.3. Besov spaes of generalized smoothness and (d, Ψ)-sets. Now, we reall de�nitionsand results on spaes of generalized smoothness and related (d, Ψ)-sets that will be ofimportane in the next setion.Definition 2.7. A positive monotone funtion Ψ on the interval (0, 1] is alled admissibleif(2.7) Ψ(2−k) ∼ Ψ(2−2k), k ∈ N0.Example 2.8. Let b ∈ R. Then
Ψb(x) = (1 + | log(x)|)b, x ∈ (0, 1],where the log is taken with respet to base 2, is an admissible funtion aording to theabove de�nition.



ENTROPY AND APPROXIMATION NUMBERS 177Definition 2.9. Let Γ be a non-empty losed subset of R
n.(i) Let 0 < d < n and let Ψ be an admissible funtion aording to De�nition2.7. Then Γ is alled a (d, Ψ)-set if there exist a Radon measure µ on R

n with
supp µ = Γ and two positive onstants c1 and c2 suh that

(2.8) c1r
dΨ(r) ≤ µ(B(γ, r)) ≤ c2r

dΨ(r)for any ball B(γ, r) in R
n entered at γ ∈ Γ and of radius r ∈ (0, 1).(ii) Let Ψ be a dereasing admissible funtion aording to De�nition 2.7 with Ψ(x) →

∞, if x → 0. Then Γ is alled an (n, Ψ)-set if there is a Radon measure µ in R
nwith the above properties and d = n in (2.8).Remark 2.10. Obviously, for Ψ ≡ 1 we obtain d-sets with 0 < d < n as introdued inDe�nition 2.1. Let 0 < d < n and let Ψ be an admissible funtion, then for any ouple

(d, Ψ) there exists a (d, Ψ)-set in R
n, see [ET99, Proposition 2.8℄. Furthermore any (d, Ψ)-set in R

n with d < n satis�es the so-alled ball ondition, for more information see [Tri01,Proposition 22.6(iv)℄.Let {ϕj}∞j=0 be a smooth resolution of unity given by (2.2) and (2.3).Definition 2.11. Let 0 < p, q ≤ ∞ and s ∈ R. Moreover, let Ψ be an admissible funtionaording to De�nition 2.7. Then Bs,Ψ
pq (Rn) is the olletion of all tempered distributions

f ∈ S ′(Rn) for whih(2.9) ‖f |Bs,Ψ
pq (Rn)‖ =

( ∞∑

j=0

2jsqΨ(2−j)q‖(ϕj f̂)∨ |Lp(R
n)‖q

)1/q

(with the usual modi�ation for q = ∞) is �nite.Remark 2.12. The spaes Bs,Ψ
pq (Rn) were introdued by D. E. Edmunds and H. Triebelin [ET98℄. For a omplete treatment of these spaes we refer the reader to the work ofS. D. Moura, [Mou01℄, see also [ET96℄, [Tri97℄ and [Tri01℄ for more details. One may alsoonsider the Triebel-Lizorkin spaes of generalized smoothness F s,Ψ

pq (Rn), 0 < p < ∞,
0 < q ≤ ∞, s ∈ R, by interhanging the order of ℓq- and Lp- quasi-norms in (2.9).The spaes Bs,Ψ

pq (Rn) are quasi-Banah spaes (Banah spaes if p ≥ 1 and q ≥ 1). It isknown that the spae Bs,Ψ
pq (Rn) does not depend on the hosen smooth resolution of unity

{ϕj}∞j=0 (in the sense of equivalent quasi-norms). Taking Ψ ≡ 1 we obtain the lassialBesov spaes Bs
pq(R

n).We give an extension of Example 2.4 to (d, Ψ)-sets.Example 2.13. Let Γ be a (d, Ψ)-set, 0 < d < n, Ψ an admissible funtion, κ ∈ R, and
vΓ

κ
(x) :=

{
(dist(x, Γ))κ Ψ(dist(x, Γ)), for dist(x, Γ) ≤ 1,

Ψ(1), otherwise.Analogously to the d-set ase we obtain that vΓ
κ
∈ A∞ if, and only if, −(n − d) < κ <

(n − d)(p − 1), see [Pio06, Proposition 5.6℄.



178 I. PIOTROWSKA3. Traes on fratals of weighted Besov spaes3.1. Preliminaries. This setion gives a brief survey of the results on trae problemsof Besov spaes on fratals. Our hoie of fratal sets are d- and (d, Ψ)-sets. Let x =

(x′, xn) ∈ R
n with x′ ∈ R

n−1. Reall that the trae of f on R
n−1 is the mapping(3.1) trRn−1 : f(x) 7→ f(x′, 0).In other words, trRn−1 restrits funtions on R

n to the hyperplane H = {x ∈ R
n : xn =

0}. Given a funtion spae X ⊂ D′(Rn), the trae problem onsists in �nding a spae
Y ⊂ S ′(Rn−1) suh that trRn−1 is a bounded linear surjetion from X to Y . We referto [Tri92, Setion 4.4.1 and 4.4.2℄ for the lassial trae problem. We shall explain themeaning of the trae (3.1) if we onsider a suitable ompat d-set instead of R

n−1. We willinterpret any funtion fΓ ∈ Lp(Γ), 1 ≤ p < ∞, as a tempered distribution f ∈ S ′(Rn)given by
f(ϕ) =

∫

Γ

fΓ(γ)(ϕ|Γ)(γ)µ(dγ), ϕ ∈ S(Rn),where the restrition ϕ|Γ of ϕ is understood pointwise and µ is a Radon measure on Γ.Let Γ be a losed set in R
n with |Γ| = 0. We assume that there exists a Radon measure µon R

n with supp µ = Γ. The restrition trΓ ϕ = ϕ|Γ understood pointwise is well-de�nedfor any ϕ ∈ S(Rn). Moreover, let us suppose that for s > 0 and 0 < p, q < ∞ there is aonstant c > 0 suh that for all ϕ ∈ S(Rn),(3.2) ‖ trΓ ϕ|Lp(Γ)‖ ≤ c‖ϕ|Bs
pq(R

n, wΓ
κ
)‖.Sine the Shwartz lass S(Rn) is dense in Bs

pq(R
n, wΓ

κ
), the inequality (3.2) may beextended by ompletion to all f ∈ Bs

pq(R
n, wΓ

κ
). The resulting limit of trΓ ϕ will bedenoted by trΓ f . Note that it is independent of the approximation of f ∈ Bs

pq(R
n, wΓ

κ
)by S(Rn)-funtions due to (3.2).3.2. Traes of weighted Besov spaes on d-sets. In this subsetion we present reentresults for the trae problem of weighted Besov spaes. For proofs and more details fromthis and the next subsetion we refer the reader to [Pio℄, [Pio06℄.Theorem 3.1. Let 0 < d < n, κ > −(n− d), 0 < p < ∞, 0 < q ≤ min(1, p) and let Γ bea d-set. Then we have(3.3) trΓ B

κ

p + n−d
p

pq (Rn, wΓ
κ
) = Lp(Γ),in the sense that trΓ f ∈ Lp(Γ) for any f ∈ B

κ

p + n−d
p

pq (Rn, wΓ
κ
) and any fΓ ∈ Lp(Γ) is atrae of a suitable g ∈ B

κ

p + n−d
p

pq (Rn, wΓ
κ
) on Γ and(3.4) ‖fΓ |Lp(Γ)‖ ∼ inf ‖g |B

κ

p + n−d
p

pq (Rn, wΓ
κ
)‖,where the in�mum is taken over all g ∈ B

κ

p + n−d
p

pq (Rn, wΓ
κ
) suh that trΓ g = fΓ.Motivated by the quasi-norm (3.4) we introdue the following trae spaes.



ENTROPY AND APPROXIMATION NUMBERS 179Definition 3.2. Let Γ be a d-set in R
n aording to De�nition 2.1 with 0 < d < n. Let

s > 0, 0 < p ≤ ∞, and 0 < q ≤ ∞. Let us de�ne(3.5) B
s
pq(Γ) = trΓ B

s+ n−d
p

pq (Rn).We equip this spae with the quasi-norm(3.6) ‖f |Bs
pq(Γ)‖ = inf ‖g| B

s+ n−d
p

pq (Rn)‖,where the in�mum ranges over all g ∈ B
s+ n−d

p
pq (Rn) with trΓ g = f .Theorem 3.3. Let 0 < d < n, s > 0, 0 < p < ∞, 0 < q ≤ ∞ and −(n − d) < κ <

sp − (n − d). Then
trΓBs

pq(R
n, wΓ

κ
) = B

s−n−d
p −κ

p
pq (Γ).3.3. Traes of weighted Besov spaes on (d, Ψ)-sets. We begin with the ounterpart ofDe�nition 3.2 for the trae spaes with respet to the Besov spaes of generalized smooth-ness.Definition 3.4. Let 0 < p, q ≤ ∞, s > 0, Ψ be an admissible funtion and let Γ be a

(d, Ψ)-set in R
n with 0 < d < n. We de�ne(3.7) B

s
pq(Γ) := trΓ B

s+ n−d
p ,Ψ1/p

pq (Rn).We equip this spae with the quasi-norm(3.8) ‖f |Bs
pq(Γ)‖ = inf ‖g |Bs+ n−d

p ,Ψ1/p

pq (Rn)‖,where the in�mum is taken over all g ∈ B
s+ n−d

p ,Ψ1/p

pq (Rn) with trΓ g = f .Note that for Ψ ≡ 1, Γ is a d-set aording to De�nition 2.1, and then the above de�ni-tion overs De�nition 3.2. Let vΓ
κ

be the Mukenhoupt weight introdued inExample 2.13. We have the following generalization of Theorem 3.3.Theorem 3.5. Let 0 < d < n, s ∈ R, −(n − d) < κ, 0 < p < ∞, 0 < q ≤ ∞, Ψ be anadmissible funtion and let Γ be a (d, Ψ)-set aording to De�nition 2.9(i). Then(3.9) trΓ Bs
pq(R

n, vΓ
κ
) = trΓ B

s−κ

p ,Ψ1/p

pq (Rn),whenever these spaes exist. Moreover, when −(n − d) < κ < sp − (n − d), then(3.10) trΓ Bs
pq(R

n, vΓ
κ
) = B

s−κ

p −n−d
p

pq (Γ).4. Entropy numbers of embeddings between weighted Besov spaes4.1. De�nitions. Let X and Y be quasi-Banah spaes and let T : X → Y be a boundedlinear operator. Let
UX := {x ∈ X : ‖x |X‖ ≤ 1}be the unit ball in the quasi-Banah spae X. An operator T is alled ompat if for anygiven ε > 0 we an over the image of the unit ball UX with �nitely many balls in Y ofradius ε.



180 I. PIOTROWSKADefinition 4.1. Let X, Y be quasi-Banah spaes and let T ∈ L(X, Y ). Then for all
k ∈ N, the kth dyadi entropy number ek(T ) of T is de�ned by(4.1) ek(T ) = inf

{
ε > 0 : T (UX) ⊂

2k−1⋃

j=1

(yj + εUY ) for some y1, . . . , y2k−1 ∈ Y
}
,where UX and UY denote the unit balls in X and Y , respetively.These numbers have various elementary properties partly realled in the followinglemma.Lemma 4.2. Let X, Y and Z be quasi-Banah spaes, let S, T ∈ L(X, Y ) and R ∈

L(Y, Z).(i) (Monotoniity): ‖T‖ ≥ e1(T ) ≥ e2(T ) ≥ · · · ≥ 0. Moreover ‖T‖ = e1(T ), pro-vided that Y is a Banah spae.(ii) (Additivity): If Y is a p-Banah spae (0 < p ≤ 1), then for all j, k ∈ N

ep
j+k−1(S + T ) ≤ ep

j (S) + ep
k(T ).(iii) (Multipliativity): For all j, k ∈ N

ej+k−1(RT ) ≤ ej(R)ek(T ).(iv) (Compatness): T is ompat if, and only if, limk→∞ ek(T ) = 0.Proofs of the above properties may be found for instane in [ET96, Lemma 1.3.1/1℄.For more information, we reommend the monographs [ET96℄ and [CS90℄.Remark 4.3. Let us brie�y disuss the onnetion between eigenvalues of a ompatlinear map and its entropy numbers, though appliations of that kind are out of thesope of this paper. Let T : X → X be a ompat linear operator in a quasi-Banah spae
X and let (λn(T )) be the sequene of all nonzero eigenvalues of T , repeated aordingto algebrai multipliity and ordered so that |λ1(T )| ≥ |λ2(T )| ≥ . . . ≥ 0. Then Carl'sinequality states

|λn(T )| ≤
√

2en(T ), n ∈ N.General referenes here are again [ET96℄ and [CS90℄. Based on this inequality, and havingin mind appliation to spetral theory of ertain pseudo-di�erential operators, there wasinitiated a program to investigate the behavior of the entropy numbers in the ontextof weighted funtion spaes of Besov and Triebel-Lizorkin type, see [ET96℄ and [HT94a℄,[HT94b℄. For a reent aount we refer to the series of papers by T. Kühn et al. [KLSS06a℄,[KLSS06b℄, [KLSS℄.4.2. Results and proofs. Let us �rst reall a result for entropy numbers in the orre-sponding unweighted situation, see [Tri97, Theorem 20.6℄.Theorem 4.4. Let Γ be a ompat d-set in R
n with 0 < d < n aording to De�ni-tion 2.1. Let B

s
pq(Γ) be the spaes introdued in De�nition 3.2, notationally omplementedby B

0
pq(Γ) = Lp(Γ) for any 0 < p ≤ ∞ and 0 < q ≤ ∞. Let

0 ≤ s2 < s1 < ∞, 0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞,
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s1 − s2 − d

(
1

p1
− 1

p2

)

+

> 0.Then the embedding
id : B

s1

p1q1
(Γ) → B

s2

p2q2
(Γ)is ompat and the related entropy numbers satisfy(4.2) ek(id) ∼ k−

s1−s2
d , k ∈ N.Remark 4.5. Reall that equivalene ∼ in (4.2) means that there exist two positivenumbers c1 and c2 suh that for all k ∈ N,

c1k
−

s1−s2
d ≤ ek(id) ≤ c2k

−
s1−s2

d .Assume that 0 < q ≤ ∞ and
s − d

(
1

p1
− 1

p2

)

+

> 0.Then (4.2) with s1 = s and s2 = 0 an be rewritten in the form(4.3) ek(trΓ : B
s+ n−d

p1
p1q (Rn) → Lp2

(Γ)) ∼ k− s
d , k ∈ N.For more details, see [Tri97, Chapter IV, p.172℄.We an now present results on entropy numbers for weighted Besov spaes.Theorem 4.6. Let Γ be a d-set in R

n with 0 < d < n aording to De�nition 2.1. Let
n−d+κ

p2
≤ s2 < s1 < ∞, 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞, and(4.4) −(n − d) < κ < min(s1p1, s2p2) − (n − d).Let(4.5) s1 − s2 > (κ + n − d)

(
1

p1
− 1

p2

)
+ d

(
1

p1
− 1

p2

)

+

.Then for the weight wΓ
κ
introdued in Example 2.4 the embedding(4.6) id : trΓBs1

p1q1
(Rn, wΓ

κ
) −→ trΓBs2

p2q2
(Rn, wΓ

κ
)is ompat for the related entropy numbers satisfy(4.7) ek(id) ∼ k

−
s1−s2

d +(κ+n−d
d )

(
1

p1
− 1

p2

)

, k ∈ N.Proof. The proof is a simple onsequene of Theorem 3.3 and Theorem 4.4. We have
(4.8) ek

(
id : trΓBs1

p1q1
(Rn, wΓ

κ
) −→ trΓBs2

p2q2
(Rn, wΓ

κ
)
)

ek(id : B
s1−

κ

p1
−n−d

p1
p1q1

(Γ) −→ B
s2−

κ

p2
−n−d

p2
p2q2

(Γ)).By virtue of (4.2) with s̄1 − s̄2 − d
(

1
p1

− 1
p2

)

+
> 0 we obtain

ek(id : B
s1−

κ

p1
−n−d

p1
p1q1

(Γ) −→ B
s2−

κ

p2
−n−d

p2
p2q2

(Γ)) ∼ k−
s̄1−s̄2

d , k ∈ N,where
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s̄i = si −
κ

pi
− n − d

pi
for i = 1, 2.One immediately heks the ompatibility of (4.4) and (4.5). This �nishes the proof.Remark 4.7. Let s = δ + n−d

p1
+ κ

p1
. From Theorem 3.3 we onlude that

trΓBs
p1q(R

n, wΓ
κ
) = B

δ
p1q(Γ), δ > 0.Furthermore, by De�nition 13 we get

B
δ
p1q(Γ) = trΓB

δ+ n−d
p1

p1q (Rn).Comparing this with (4.3) and the above theorem we obtain the following result.Proposition 4.8. Let Γ be a d-set in R
n with 0 < d < n aording to De�nition 2.1.Let 0 < p1, p2 < ∞, 0 < q ≤ ∞, −(n − d) < κ < sp1 − (n − d), and let wΓ

κ
be a weightfuntion given by Example 2.4. Moreover, let

s − 1

p1
(κ + n − d) − d

(
1

p1
− 1

p2

)

+

> 0.The trae operator trΓ of Bs
p1q(R

n, wΓ
κ
) into Lp2

(Γ) is ompat and the related entropynumbers satisfy(4.9) ek

(
trΓ : Bs

p1q(R
n, wΓ

κ
) → Lp2

(Γ)
)
∼ k

1
d

(
n+κ

p1
−s

)
− 1

p1 .One an extend this result to the (d, Ψ)-sets, where Ψ is an admissible funtion a-ording to De�nition 2.7. In [ET99, Theorem 2.24℄ there is a generalization restrited to
1 < p1, p2 ≤ ∞ and the target spaes Lp. The ase 0 < p ≤ 1 has been onsidered byS. D. Moura in [Mou01,Theorem 3.3.2℄. She dealt with target spaes of Besov type. Let Ψbe an admissible funtion aording to De�nition 2.7 and let Γ be a (d, Ψ)-set aordingto De�nition 2.9. Let now B

s
pq(Γ) be the trae spaes introdued in De�nition 3.4. Byassumption we have 0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞, and s1 ≥ s2 ≥ 0 with
s1 − s2 − d

(
1

p1
− 1

p2

)

+

> 0,suh that the embedding
id : B

s1

p1q1
(Γ) → B

s2

p2q2
(Γ)is ompat. Furthermore, the related entropy numbers satisfy(4.10) ek(id) ∼

[
kΨ(k−1)

]− s1−s2
d , k ∈ N.(Note that we take a1 = a2 = 0 in the original version of Theorem 3.3.2 in [Mou01℄,suh that De�nition 2.2.7 in [Mou01℄ of B-spaes overs De�nition 3.4.) The best generalreferene here is [Mou01, Chapter 3℄ and also [ET98℄ and [ET99℄.We an now give an extension of Theorem 4.6 to (d, Ψ)-sets.Proposition 4.9. Let Ψ be an admissible funtion, and let Γ be a (d, Ψ)-set aordingto De�nition 2.9. Let 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞, and(4.11) −(n − d) < κ < min(s1p1, s2p2) − (n − d).
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p2
. Then for the weight vΓ

κ
introdued inExample 2.13 the embedding(4.12) id : trΓBs1

p1q1
(Rn, vΓ

κ
) −→ trΓBs2

p2q2
(Rn, vΓ

κ
)is ompat and the related entropy numbers satisfy(4.13) ek(id) ∼

[
kΨ(k−1)

] s1−s2
d −(κ+n−d

d )
(

1
p1

− 1
p2

)

, k ∈ N.Proof. We follow the proof of Theorem 4.6. We onsider Theorem 3.5 and De�nition 3.4and arrive at
(4.14) ek(id : trΓBs1

p1q1
(Rn, vΓ

κ
) −→ trΓBs2

p2q2
(Rn, vΓ

κ
))

= ek(id : B
s1−

κ

p1
−n−d

p1
p1q1

(Γ) −→ B
s2−

κ

p2
−n−d

p2
p2q2

(Γ)).Combining this with (4.10) ompletes the proof.5. Approximation numbers of embeddings between weighted Besov spaes5.1. De�nition and results. In this setion we reall the basi de�nitions and propertiesonerning approximation numbers and present the results on approximation numbers ofthe ompat trae operator.Definition 5.1. Let T ∈ L(X, Y ), k ∈ N. The kth approximation number ak of T isde�ned by(5.1) ak(T ) = inf {‖T − L‖ : L ∈ L(X, Y ), rankL < k} ,where rankL is the dimension of the range of L.The approximation numbers have properties analogous to those of the entropy num-bers. We present them in the following lemma.Lemma 5.2. Let X, Y and Z be quasi-Banah spaes, let S, T ∈ L(X, Y ) and R ∈
L(Y, Z).(i) (Monotoniity): ‖T‖ = a1(T ) ≥ a2(T ) ≥ · · · ≥ 0.(ii) (Additivity): If Y is a p�Banah spae (0 < p ≤ 1), then for all j, k ∈ N

ap
j+k−1(S + T ) ≤ ap

j (S) + ap
k(T ).(iii) (Multipliativity): For all j, k ∈ N

aj+k−1(RT ) ≤ aj(R)ak(T ).(iv) (Rank property):
an(T ) = 0 if, and only if, rankT < n.The best general referenes here are [CS90℄ and [ET96℄. In the sequel, we restrit our-selves to d-sets to formulate our result. Reall that the funtion wΓ

κ
is a weight introduedin Example 2.4. We now state the main result for approximation numbers.Theorem 5.3. Let 0 < d < n, 1 < p < ∞, 1

p + 1
p′

= 1, n−d+κ

p < s ≤ n+κ

p , and
−(n − d) < κ. Let Γ be a d-set aording to De�nition 2.1. Then the trae operator(5.2) trΓ : Bs

pp(R
n, wΓ

κ
) → Lp(Γ)
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pp(R

n, wΓ
κ
) → Lp(Γ)) ∼ k

1
d ( n+κ

p −s)− 1
p , k ∈ N.Proof. As a onsequene of Theorem 3.3 and De�nition 3.2, from embedding (5.2) we get

trΓ : Bs
pp(R

n) → Lp(Γ).Combining this with Theorem 2 and Remark 9 (Example) in [Tri04℄ we obtain the desiredestimate (5.3). The ompatness is overed by Proposition 4.8 with p1 = p2 = q.Remark 5.4. Note that (4.9) oinides with (5.3) for p1 = p2 = q = p. One shouldexpet a di�erent behaviour of ek(trΓ) and ak(trΓ) for p1 6= p2. This study is postponedto a later oasion, as is the ounterpart of Proposition 4.9 for approximation numbers.Aknowledgments. This is a part of the author's PhD thesis, written under the super-vision of Dorothee D. Haroske at the University of Jena. The author wishes to expressher deepest appreiation to her for ative interest in the preparation of this paper. I alsowould like to thank Professor Hans Triebel for the helpful disussions and suggestions.
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