
FUNCTION SPACES VIII

BANACH CENTER PUBLICATIONS, VOLUME 79

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2008

SOME RESULTS ON FUNCTION SPACESOF VARYING SMOOTHNESSJAN SCHNEIDERMax-Plank-Institute for Mathematis in the SieneInselstrasse 22, 04103 Leipzig, GermanyE-mail: Jan.Shneider�mis.mpg.de
Abstrat. This paper deals with funtion spaes of varying smoothness B

S,s0
p (Rn), where thefuntion S : x 7→ s(x) determines the smoothness pointwise. Those spaes were de�ned in [2℄and treated also in [3℄. Here we prove results about interpolation, trae properties and presenta haraterization of these spaes based on di�erenes.1. Introdution. The idea of funtion spaes where the smoothness an vary from pointto point has quite a rih history. We desribed it in [2℄ and [3℄ with many referenes.There we presented our approah to a Besov-type funtion spae of varying smoothness

BS,s0
p (Rn). We reall the de�nition here. Let us denote by Bx,r the open ball in Rnentered at x with radius r > 0.Definition 1. Let 1 < p ≤ ∞ and let S : x 7→ s(x) be a bounded lower semi-ontinuousfuntion in Rn with smin ≥ s0 for a real number s0. Then

BS,s0
p (Rn) = {f ∈ S′(Rn) : ‖f |BS,s0

p (Rn)‖ < ∞},normed by
‖f |Bs0

p (Rn)‖ + sup
K∈N,x∈Rn

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖,(1)where

sK,x = inf
|y−x|≤2−K+2

s(y).Here s0 ≤ smin = infy∈Rn s(y) plays the role of a global smoothness index but nowomplemented by the funtion s(x), that gives for every point x ∈ Rn a possibly di�erent2000 Mathematis Subjet Classi�ation: Primary 46E35; Seondary 42B35.Key words and phrases: Besov spaes, varying smoothness, interpolation, traes, harateri-zation by di�erenes.Researh of the author supported by Junior Researh Team �Fratal Analysis�, University ofJena, Germany.The paper is in �nal form and no version of it will be published elsewhere.[187℄ © Instytut Matematyzny PAN, 2008



188 J. SCHNEIDERsmoothness value. By Bs
p(Rn) we denote the usual Besov spae Bs

p,q(R
n) in the ase p = qand by Bs

p(Ω) we mean its restrition to the domain Ω.Let us desribe what happens in the norm (1). The �rst term heks the global smooth-ness s0 of a given funtion f , whereas the supremum term onerns loal improvementsby the following proedure. For a �xed point x ∈ Rn we onsider a ball entered in xwith radius 2−K and ask if f belongs to the Besov spae with smoothness sK,x ≥ s0 inthis ball. Now we inrease K and therefore shrink the ball around x and ask the samequestion again with respet to a possibly higher degree of smoothness. We ontinue thisproedure for all K, then all x, and �nally hek if the supremum over all these normsmultiplied by the weight fator 2−K(sK,x−s0) is �nite. This fator appears in a naturalway when we ompare Besov spae norms on balls with di�erent smoothness levels, formore details we refer to [2℄ and [3℄.In [2℄ we proved that BS,s0
p (Rn) is a Banah spae and some basi properties for

s0 < 1/p like a pointwise multiplier assertion and an embedding theorem. One mainresult was a haraterization by the following wavelet-expansion. An arbitrary funtion
f belonging to a Besov spae an be written as

f(x) =

2n−1
∑

l=0

∞
∑

j=0

∑

m∈Zn

λl
j,m(f)Ψl(2jx − m),where Ψl are �xed funtions with ompat support and λl

j,m(f) are omplex numbersontaining all the information about f , for details we refer to [8℄. By means of thisexpansion we stated in [2℄ (setion 5) the wavelet haraterization of BS,s0
p (Rn) with thehelp of weighted sequene spaes.This result was the starting point for further investigations, for example, we provedan interesting onnetion to the so-alled 2-miroloal spaes Cs,s′

(x0), see [2℄ (setion6.3) and [1℄ for more details.In the ase of negative smoothness the whole theory is published in [3℄. For positivesmoothness the theory is not yet satisfatory but we postpone this disussion to anotherpaper.In the next setion we ollet some new results on interpolation and traes of the spaes
BS,s0

p (Rn) whih are not ontained in [2℄ or [3℄. In setion 3 we disuss a haraterizationof BS,s0
p (Rn) by di�erenes. Now we list two older results on Besov spaes that we willneed later on.Proposition 2. Let 1 < p ≤ ∞, −∞ < s < 1/p and 0 < λ ≤ 1, then

‖f(λ·)|Bs
p(B1)‖ ∼ λs−n/p‖f |Bs

p(Bλ)‖,(2)where the equivalene onstants are independent of f ∈ Bs
p(Bλ) and λ.This has been formulated brie�y in [7℄, setion 5.20, p. 69, and proved in [6℄, 3.9(iii).Proposition 3. Let 1 < p ≤ ∞, s ∈ R and 0 < λ ≤ 1, then

‖f(λ·)|Bs
p(B1)‖ ≥ cλs−n/p‖f |Bs

p(Bλ)‖,(3)where the equivalene onstants are independent of f and λ.This has been stated as Proposition 2.4 in [2℄.



FUNCTION SPACES OF VARYING SMOOTHNESS 189These two homogeneity properties were essential for the methods of the proofs in [2℄and [3℄, they also will be important for our purpose in this paper.2. Supplements to the spae BS,s0
p (Rn). In this setion we treat two standard ques-tions in the theory of funtion spaes, whih are quite di�erent from eah other: interpo-lation and traes.2.1. Interpolation. We restrit ourselves to the ase p1 = p2 = p and the same basi levelof smoothness s0 in both spaes of the interpolation ouple (BS

1,s0
p (Rn), BS

2,s0
p (Rn)). Thenby means of the well-known K-method we an state the following.Theorem 4. Let 1 < p < ∞ and let S1, S2 be negative lower semi-ontinuous funtionsin Rn with s0 ≤ (s1

min, s
2
min). Then
(BS

1,s0
p (Rn), BS

2,s0
p (Rn))Θ,p →֒ BS,s0

p (Rn),if s(x) = (1 − Θ)s1(x) + Θs2(x) for 0 < Θ < 1.Proof. Let f ∈ (BS
1,s0

p (Rn), BS
2,s0

p (Rn))Θ,p and
‖f |(BS

1,s0
p (Rn), BS

2,s0
p (Rn))Θ,p‖ =

(
∫ ∞

0

t−ΘpK(t, f)p
S1,S2

dt

t

)1/p

,where the K-funtional is de�ned by
K(t, f)S1,S2 = inf

f=f1+f2

fi∈B
Si,s0
p (Rn),i=1,2

(‖f1|B
S
1,s0

p (Rn)‖ + t‖f2|B
S
2,s0

p (Rn)‖).

Now we estimate the K-funtional
K(t, f)S1,S2 ≥ inf

f=f1+f2

f1,f2∈B
s0
p (Rn)

(‖f1|B
s0
p (Rn)‖ + t‖f2|B

s0
p (Rn)‖)

+ inf
f=f1+f2

fi∈B
Si,s0
p (Rn),i=1,2

(sup
x,K

2−K(s1
K,x−s0)‖f1|B

s1
K,x

p (Bx,2−K )‖

+t sup
x,K

2−K(s2
K,x−s0)‖f2|B

s2
K,x

p (Bx,2−K )‖).The �rst in�mum is the de�nition of K(t, f)s0
in obvious notation. The seond in�mumis estimated further with the help of homogeneity:

inf
f=f1+f2

fi∈B
Si,s0
p (Rn),i=1,2

(sup
x,K

2−K(s1
K,x−s0)‖f1|B

s1
K,x

p (Bx,2−K )‖

+t sup
x,K

2−K(s2
K,x−s0)‖f2|B

s2
K,x

p (Bx,2−K )‖)

≥ c sup
x,K

2−K(n/p−s0) inf
f=f1+f2

fi∈B
si

K,x
p (B

x,2−K ),i=1,2

(‖f1(2
−K ·)|B

s1
K,x

p (Bx,1)‖ + t‖f2(2
−K ·)|B

s2
K,x

p (Bx,1)‖)

= c sup
x,K

2−K(n/p−s0)K(t, f(2−K ·))s1
K,x

,s2
K,x



190 J. SCHNEIDERagain in obvious notation. Therefore, we get for the K-funtionals
K(t, f)S1,S2 ≥ K(t, f)s0

+ c sup
x,K

2−K(n/p−s0)K(t, f(2−K ·))s1
K,x

,s2
K,x

.Inserting this estimate into the norm of the interpolation spae, we have
‖f |(BS

1,s0
p (Rn), BS

2,s0
p (Rn))Θ,p‖

p

≥ c

∫ ∞

0

t−ΘpK(t, f)p
s0

dt

t
+ c sup

x,K
2−K(n/p−s0)p

∫ ∞

0

t−ΘpK(t, f(2−K ·))p
s1

K,x
,s2

K,x

dt

t

= c‖f |(Bs0
p (Rn), Bs0

p (Rn))Θ,p‖
p

+c sup
x,K

2−K(n/p−s0)p‖f(2−K ·)|(B
s1

K,x
p (Bx,1), B

s2
K,x

p (Bx,1))Θ,p‖
p.By well known interpolation results on Besov spaes, see hapters 2.4.1. and 4.3.1. in [4℄,we an further write

‖f |(BS
1,s0

p (Rn), BS
2,s0

p (Rn))Θ,p‖
p

≥ c‖f |Bs0
p (Rn)‖p + c sup

x,K
2−K(n/p−s0)p‖f(2−K ·)|BsK,x

p (Bx,1)‖
p.Finally, by homogeneity we arrive at

‖f |(BS
1,s0

p (Rn), BS
2,s0

p (Rn))Θ,p‖
p

≥ c‖f |Bs0
p (Rn)‖p + c sup

x,K
2−K(sK,x−s0)p‖f |BsK,x

p (Bx,2−K )‖p ≥ c‖f |BS,s0
p (Rn)‖p,whih proves the theorem.Remark 5. The interpolation meets exatly our expetations and is a generalization ofwell-known lassial results. Of ourse, it is desirable to have also the onverse embedding,that would mean (BS

1,s0
p (Rn), BS

2,s0
p (Rn))Θ,p = BS,s0

p (Rn), but unfortunately the methodof the above proof does not arry over to the opposite diretion. The reason is that thein�mum appearing in the de�nition of the K-funtional an be moved inside of the normin BS,s0
p (Rn) only by making the term smaller.2.2. Traes. Let us �rst provide an older result that is needed in this subsetion.Proposition 6. Let 1 < p ≤ ∞ and S : x 7→ s(x) be a bounded lower semi-ontinuousfuntion in Rn. Then for K0 ∈ N

‖f |Bs0
p (Rn)‖ + sup

x∈Rn

sup
K≥K0

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖is an equivalent norm in BS,s0

p (Rn).A proof of this proposition an be found in [3℄ (Proposition 3.7). It tells us that onlylarge values of K, orresponding to small balls, are of interest in the norm of BS,s0
p (Rn).Now we are interested in the trae of a funtion f on the hyperplane yn = 0, whih weidentify with Rn−1. We de�ne the operator Tr : f(y) 7→ f(y′, 0) with y = (y′, yn) ∈ Rn,where the ′ always indiates a oordinate in R

n−1. For the expressions sK,x and Bx,r wedenote the (n − 1)-dimensional ounterparts with s̄K,x′ and B̄x′,r.



FUNCTION SPACES OF VARYING SMOOTHNESS 191Theorem 7. Let 1 < p ≤ ∞ and let S be a positive lower semi-ontinuous funtion in
R

n with s0 > n/p. Then
Tr : BS,s0

p (Rn) → Bs(x′,0)−1/p,s0−1/p
p (Rn−1)is a bounded linear operator if

s(x′, xn) ≥ s(x′, 0) for all |xn| ≤ ε for an ε > 0.(4)Remark 8. The ondition we atually need in the following proof is
sK,x′ = s̄K,x′ for all x′ ∈ R

n−1 and all K ≥ K0 ∈ N.But ondition (4) is su�ient for that and means that the funtion s(x) has a loalminimum along the hyperplane yn = 0, whih is not really natural but on the other handnot very restritive.Proof. We have to show
‖f(y′, 0)|Bs(x′,0)−1/p,s0−1/p

p (Rn−1)‖ ≤ c‖f |BS,s0
p (Rn)‖.(5)The global part of (5) is lear by hapter 2.7.2 in [5℄. The loal part reads as follows

(6) sup
K,x′

2−K(s̄K,x′−s0)‖f(y′, 0)|B
s̄K,x′−1/p
p (B̄x′,2−K )‖

≤ c sup
x,K

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖.We start to estimate the norm on the left-hand side. By de�nition we have

‖f(y′, 0)|B
s̄K,x′−1/p
p (B̄x′,2−K )‖ = inf ‖g|B

s̄K,x′−1/p
p (Rn−1)‖,(7)where the in�mum is taken over all funtions g with g|B̄

x′,2−K
= f(y′, 0). By the wellknown trae result for Besov spaes (we refer again to hapter 2.7.2. in [5℄) we know thatfor every suh funtion g there is an extended funtion G living on R

n with
‖g|B

s̄K,x′−1/p
p (Rn−1)‖ ≤ c‖G|B

s̄K,x′

p (Rn)‖.Beause of our assumption (4) together with Remark 9 we an write sK,x′ instead of
s̄K,x′ on the right-hand side for large K. If we now restrit the in�mum in (7) onlyto those funtions g suh that for the orresponding extended funtion G the equality
G|B

x′,2−K
= f holds, whih we denote by ∗, then we �nd

‖f(y′, 0)|B
s̄K,x′−1/p
p (B̄x′,2−K )‖ ≤ c inf

∗
‖G|B

sK,x′

p (Rn)‖ = c‖f |B
sK,x′

p (Bx′,2−K )‖.Inserting this into the left-hand side of (6) we �nally get with Proposition 6
sup
K,x′

2−K(s̄K,x′−s0)‖f(y′, 0)|B
s̄K,x′−1/p
p (B̄x′,2−K )‖

≤ c sup
K>K0,x′

2−K(s̄K,x′−s0)‖f |B
sK,x′

p (Bx′,2−K )‖

≤ c sup
K>K0,x′

2−K(sK,x′−s0)‖f |B
sK,x′

p (Bx′,2−K )‖

≤ c sup
K,x

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖,where we used sK,x′ = s̄K,x′ for large K again. This is the desired inequality (6).



192 J. SCHNEIDERRemark 9. The ondition s0 > n/p in Theorem 8 stands somehow in ontrast to theondition s0 < 1/p whih appears almost in the whole theory beause in the proofs thehomogeneity property (2) is always needed, see [2℄. But talking about traes we need aontinuous representative in BS,s0
p (Rn) and so the range of parameters is restrited to

s > n/p. That means that the Theorem is in some sense still isolated from the rest of thetheory.Remark 10. To prove that B
s(x′,0)−1/p,s0−1/p
p (Rn−1) is the exat trae spae, we haveto show that there exists a bounded linear extension operator

Ext : Bs(x′,0)−1/p,s0−1/p
p (Rn−1) → BS,s0

p (Rn).Unfortunately, no suh result is available yet.3. Charaterization by di�erenes. In [2℄ we developed the theory of BS,s0
p (Rn) forgeneral smoothness. But it turned out that for positive smoothness the arguments werenot straightforward. We always had to ompensate the lak of homogeneity for the Besovspae norm. H.-G. Leopold suggested substituting the loal term in (1) by a semi-normbased on di�erenes in suh a way that the homogeneity would be provided for positivesmoothness. To present the essene of this idea is the aim of this setion.3.1. Preliminaries. First we make some preparations and �x the notation here. For h ∈ Rand M ∈ N we put

∆M,i
h f(x) =

M
∑

l=0

(

M

l

)

(−1)lf(x + (M − l)hei)and set
∆M,i

h f(x, Ω) =

{

∆M,i
h f(x), x + (M − l)hei ∈ Ω ∀ l = 0, . . . , M,

0, otherwise,for a domain Ω in Rn. Now we de�ne the following semi-norm for s < M :
‖f |Bs

p(Ω)‖∆M =

(

n
∑

i=1

∫

|h|

|h|−sp‖∆M,i
h f(·, Ω)|Lp(Ω)‖p dh

|h|

)1/p

.Here the integration is meant to be over |h| ≤ dist(Ω). We denote by Bx,r the ball withradius r > 0 entered at x ∈ Rn. In the ase x = 0 we omit it and write only Br.Proposition 11. Let 1 < p ≤ ∞ and M > s > 0, then
‖f(λ·)|Bs

p(B1)‖∆M = λs−n/p‖f |Bs
p(Bλ)‖∆M .(8)Proof. We prove the assertion for M = 1 beause for di�erenes of higher order the proofis analogous. Putting f(λ·) = g we have ∆kg(y) = ∆λkf(λy). Now we aulate with

λk = h

‖f(λ·)|Bs
p(B1)‖

p
∆ =

n
∑

i=1

∫

|k|≤2

|k|−sp‖∆i
kg(·, B1)|Lp(B1)‖

p dk

|k|

=
n
∑

i=1

∫

|k|≤2

|k|−sp‖∆i
λkf(λ·, B1)|Lp(B1)‖

p dk

|k|
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=

n
∑

i=1

∫

|k|≤2

|k|−spλ−n‖∆i
λkf(·, Bλ)|Lp(Bλ)‖p dk

|k|

=

n
∑

i=1

∫

|λ−1h|≤2

|λ−1h|−spλ−n‖∆i
hf(·, Bλ)|Lp(Bλ)‖pλ−1 dh

|λ−1h|

= λsp−n
n
∑

i=1

∫

|h|≤2λ

|h|−sp‖∆i
hf(·, Bλ)|Lp(Bλ)‖p dh

|h|

= λsp−n‖f |Bs
p(Bλ)‖p

∆.Inspeting the proof one easily veri�es that
‖f(λ·)|Bs

p(R
n)‖∆M = λs−n/p‖f |Bs

p(Rn)‖∆M(9)holds as well.We add here the following fat beause we shall need it in the sequel.Proposition 12. Let 1 < p ≤ ∞, s > 0, s ≥ s0 ∈ R and Ω ⊆ Rn. Then
‖f |Bs

p(Ω)‖ ∼ ‖f |Bs0
p (Ω)‖ + ‖f |Bs

p(Ω)‖∆M .(10)The proof is left to the reader.3.2. Equivalene theorem. First we need an older equivalene assertion to prove the newone.Theorem 13. Let 1 < p ≤ ∞ and S : x 7→ s(x) be a bounded lower semi-ontinuousfuntion in Rn with smax − m < 1/p for a natural number m. Then for s0 < 1/p

‖f |Bs0
p (Rn)‖ + sup

K∈N,x∈Rn

2−K(sK,x−s0)
∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖(11)is an equivalent norm in BS,s0

p (Rn).This was proved in [2℄, setion 3.2.Now we provide our main result in this setion and disuss its history afterwards.Theorem 14. Let 1 < p ≤ ∞ and let S be a positive lower semi-ontinuous funtion in
Rn with s0 < 1/p. Then

‖f |Bs0
p (Rn)‖ + sup

K,x
2−K(sK,x−s0)‖f |BsK,x

p (Bx,2−K )‖∆M(12)is an equivalent norm in BS,s0
p (Rn).Proof. We have to handle the supremum term only. For one diretion we start withfomula (3) and get by (10)

‖f |BsK,x
p (Bx,2−K )‖

≤ c2K(sK,x−n/p)‖f(2−K ·)|BsK,x
p (Bx,1)‖

≤ c2K(sK,x−n/p)(‖f(2−K ·)|Bs0
p (Bx,1)‖ + ‖f(2−K ·)|BsK,x

p (Bx,1)‖∆M ).Now the formulas (2) and (8) provide homogeneity for both terms in the brakets and wearrive at the desired estimate for one diretion. For the opposite diretion we start withformula (8) and get by (10)
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‖f |BsK,x
p (Bx,2−K )‖∆M ≤ c2K(sK,x−n/p)‖f(2−K ·)|BsK,x

p (Bx,1)‖∆M

≤ c2K(sK,x−n/p)‖f(2−K ·)|BsK,x
p (Bx,1)‖.Now we are in the same situation as in the proof of Theorem 13, see step 2 of the proofof Theorem 3.2 in [2℄. Just like there we arrive by homogeneity at

‖f |BsK,x
p (Bx,2−K )‖∆M

≤ c2K(sK,x−s0)‖f |Bs0
p (Rn)‖ + c

∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖and with Theorem 13 an onlude

sup
K,x

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖∆M

≤ c‖f |Bs0
p (Rn)‖ + c sup

K,x
2−K(sK,x−s0)

∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖

≤ c‖f |Bs0
p (Rn)‖ + c sup

K,x
2−K(sK,x−s0)‖f |BsK,x

p (Bx,2−K )‖,whih is the seond diretion.One an take the �niteness of (12) for the de�nition of a spae of varying smoothness,say ∆

BS,s0
p (Rn). Now one an ask whether the results in [2℄ for positive smoothness analso be obtained for this spae diretly, beause the loal part of the norm de�ned bydi�erenes is easier to handle than the Fourier-analytial one de�ned via restrition. Onegoal would be to prove a wavelet haraterization as in Theorem 6.3 in [2℄ without anyrestritions on s0. In fat, the homogeneity (8) make things muh simpler, but the proofswould often have to use the equivalene (10), onsequently they need also the homogeneityof the global term in (12) and therefore, by (2), we still must keep the ondition s0 < 1/pin ruial ases. That is the reason why the spae ∆

BS,s0
p (Rn) would not yet yield anessential progress for the theory of varying smoothness.Aknowledgements. The author thanks Prof. H.-G. Leopold and Prof. D. D. Haroske(both University of Jena) for their support.
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