ON THE H-PROPERTY AND ROTUNDITY OF CESÀRO DIRECT SUMS OF BANACH SPACES

SAARD YOUYEN
Department of Mathematics, Faculty of Science, Naresuan University
Pitsanuloke, 55000, Thailand
E-mail: saard_youyen@hotmail.com

SUTHEP SUANTAI
Department of Mathematics, Faculty of Science, Chiang Mai University
Chiang Mai, 50200, Thailand
E-mail: scmti005@chiangmai.ac.th

Abstract

In this paper, we define the direct sum $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ of Banach spaces X_{1}, \ldots, X_{n} and consider it equipped with the Cesàro p-norm when $1 \leq p<\infty$. We show that $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ has the H-property if and only if each X_{i} has the H-property, and $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ has the Schur property if and only if each X_{i} has the Schur property. Moreover, we also show that $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ is rotund if and only if each X_{i} is rotund.

1. Introduction. The geometric properties of direct sums of Banach spaces has been studied by many mathematicians (see [5, 9]). It is well-known that the direct sum $\left(\oplus_{i=1}^{n} X_{i}\right)_{2}$ of normed spaces $X_{i}(i=1,2, \ldots, n)$ equipped with the 2 -norm $\|\cdot\|_{2}$ given by

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{2}=\sqrt{\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}}
$$

is rotund if and only if each X_{i} is rotund and $\left(\oplus_{i=1}^{n} X_{i}\right)_{2}$ is uniformly rotund if and only if each X_{i} is uniformly rotund (see [6]). Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $p \in[1, \infty]$. We use $\left(\oplus_{i=1}^{n} X_{i}\right)_{p}$ to denote the product space $\oplus_{i=1}^{n} X_{i}$ equipped with the $\operatorname{norm}\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{p}=\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}}(1 \leq p<\infty)$ and $\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{\infty}=$ $\max _{1 \leq i \leq n}\left\|x_{i}\right\| .$,

[^0]In 1984, Landes [3, 4] showed that if X_{1} and X_{2} has weak normal structure (WNS), then $\left(X_{1} \oplus X_{2}\right)_{1}$ need not have WNS.

In 2001 Marino, Pietramala and Xu [5] showed that if X_{1} and X_{2} has property (K) and the non-strict Opial property, then for each $p \in[1, \infty),\left(X_{1} \oplus X_{2}\right)_{p}$ has both property (K) and the non-strict Opial property.

The concept of Ψ-direct sum of Banach spaces X and Y equipped with the norm $\|(x, y)\|_{\Psi}=\|(\|x\|,\|y\|)\|_{\Psi}$ for $x \in X$ and $y \in Y$ was introduced by Saito and Kato. Note that the Ψ direct sum $X \oplus_{\Psi} Y$ is a generalization of the p-direct sum $(X \oplus Y)_{p}$, and they proved that $X \oplus_{\Psi} Y$ is strictly convex if and only if X and Y are strictly convex and Ψ is strictly convex. Building on this result, Saito and Kato [7] also proved that $X \oplus_{\Psi} Y$ is uniformly convex if X and Y are uniformly convex and Ψ is strictly convex.

For a Banach space X, we denote by $S(X)$ and $B(X)$ the unit sphere and unit ball of X, respectively. A point $x_{0} \in S(X)$ is called
a) an extreme point of the unit ball of X if for $y, z \in S(X)$ the equation $2 x_{0}=y+z$ implies $y=z$,
b) an H-point if for any sequence $\left(x_{n}\right)$ in X such that $\left\|x_{n}\right\| \rightarrow 1$ as $n \rightarrow \infty$, the weak convergence of $\left(x_{n}\right)$ to x_{0} (write $x_{n} \xrightarrow{w} x_{0}$) implies that $\left\|x_{n}-x_{0}\right\| \rightarrow 0$.

A Banach space X is said to be rotund if every point of $S(X)$ is an extreme point of $B(X)$. It is well-known that X is rotund if and only if $\left\|\frac{x+y}{2}\right\|<1$ whenever $x, y \in S(X)$ with $x \neq y$. If every point in $S(X)$ is an H-point of $B(X)$, then X is said to have the H-property.

For $p \in[1, \infty)$, the Cesàro sequence space ces_{p} is defined as the space of all real sequences $x=(x(j))_{i=1}^{\infty}$ such that

$$
\|x\|_{p}=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p}\right)^{1 / p}<\infty \quad \text { and } \quad\|x\|_{\infty}=\sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{i=1}^{n}|x(i)|<\infty
$$

For $n \in \mathbb{N}$, $\operatorname{ces}_{p}^{n}$ is the space \mathbb{R}^{n} equipped with the norm

$$
\|x\|_{p}=\left(\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{i=1}^{k}|x(i)|\right)^{p}\right)^{1 / p} .
$$

It is well-known that $\operatorname{ces}_{p}(1<p<\infty)$ is rotund, and so is the space $\operatorname{ces}_{p}^{n}$. For $p \in$ $[1, \infty]$, we use $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ to denote the product $\oplus_{i=1}^{n} X_{i}$ equipped with the Cesàro p-norm $\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{\text {ces }_{p}}=\left(\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{i=1}^{k}\left\|x_{i}\right\|\right)^{p}\right)^{1 / p}$ and $\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{\operatorname{ces}_{\infty}}=$ $\max _{1 \leq k \leq n} \frac{1}{k} \sum_{i=1}^{k}\left\|x_{i}\right\|$.
2. Main results. We first show that $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ has the Schur property if and only if each X_{i} has the Schur property. To do this, we need the following lemmas.

Lemma 2.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $p \in[1, \infty)$, and let $\left(x_{1}^{(k)}, x_{2}^{(k)}\right.$, $\left.\ldots, x_{n}^{(k)}\right)_{k=1}^{\infty}$ be a sequence in $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$. Then $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right) \rightarrow(0,0, \ldots, 0)$ as $k \rightarrow \infty$ if and only if $x_{i}^{(k)} \rightarrow 0$ as $k \rightarrow \infty$ for all $i=1,2, \ldots, n$.

Proof. Since

$$
\left\|\left(x_{1}^{(k)}, \ldots, x_{n}^{(k)}\right)\right\|_{\operatorname{ces}_{p}}=\left(\left\|x_{1}^{(k)}\right\|^{p}+\cdots+\left(\frac{\left\|x_{1}^{(k)}\right\|+\left\|x_{2}^{(k)}\right\|+\cdots+\left\|x_{n}^{(k)}\right\|}{n}\right)^{p}\right)^{1 / p}
$$

it follows that $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right) \rightarrow(0,0, \ldots, 0)$ as $k \rightarrow \infty$ if and only if $x_{i}^{(k)} \rightarrow 0$ as $k \rightarrow \infty$ for all $i=1,2, \ldots, n$.
Lemma 2.2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and let $f_{i} \in X_{i}^{*}(i=1,2, \ldots, n)$. For each $i \in\{1,2, \ldots, n\}$ define $f_{i}^{\prime}: \oplus_{i=1}^{n} X_{i} \rightarrow R$ by $f_{i}^{\prime}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{i}\left(x_{i}\right)$. Then $f_{i}^{\prime} \in\left(\oplus_{i=1}^{n} X_{i}\right)_{\text {ces }_{p}}^{*}$ for each $i=1,2, \ldots, n$.
Proof. It is easy to see that f_{i}^{\prime} is linear. We will show that f_{i}^{\prime} is continuous at zero. To do this, suppose that $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right) \in\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ such that $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right) \rightarrow$ $(0,0, \ldots, 0)$. By lemma 2.1, $x_{i}^{(k)} \rightarrow 0$ as $k \rightarrow \infty$, hence $f_{i}\left(x_{i}^{(k)}\right) \rightarrow 0$ as $k \rightarrow \infty$. It follows that $f_{i}^{\prime}\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right) \rightarrow 0$ as $k \rightarrow \infty$. Hence f_{i}^{\prime} is continuous at zero. Therefore $f_{i}^{\prime} \in\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}^{*}$.
LEmma 2.3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and let $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)_{k=1}^{\infty}$ be a sequence in $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ and let $\left(x_{1}, \ldots, x_{n}\right) \in\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$. If $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right) \xrightarrow{w}$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as $k \rightarrow \infty$, then $x_{i}^{(k)} \xrightarrow{w} x_{i}$ as $k \rightarrow \infty$ for each $i=1,2, \ldots, n$.
Proof. Let $f_{i} \in X_{i}^{*}(i=1,2, \ldots, n)$. Define $f_{i}^{\prime}: \oplus_{i=1}^{n} X_{i} \rightarrow R$ by $f_{i}^{\prime}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $f_{i}\left(x_{i}\right)$. By Lemma 2.2, f_{i}^{\prime} is a bounded linear functional on $\oplus_{i=1}^{n} X_{i}$, so $f_{i}^{\prime}\left(x_{1}^{(k)}, \ldots, x_{n}^{(k)}\right)$ $\longrightarrow f_{i}^{\prime}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Thus $f_{i}\left(x_{i}^{(k)}\right) \rightarrow f_{i}\left(x_{i}\right)$ as $k \rightarrow \infty$, hence $x_{i}^{(k)} \xrightarrow{w} x_{i}$ as $k \rightarrow \infty$ for all $i=1,2, \ldots, n$.

Lemma 2.4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $p \in[1, \infty)$. Then X_{i} is isometrically isomorphic to a subspace of $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$.
Proof. For each $i=1,2, \ldots, n$, let $X_{i}^{\prime}=\left\{\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right) \in\left(\oplus_{j=1}^{n} X_{j}\right): x_{i} \in X_{i}\right\}$. It is clear that X_{i}^{\prime} is a subspace of $\oplus_{i=1}^{n} X_{i}$. We define $T_{i}: X_{i} \rightarrow X_{i}^{\prime}$ by

$$
T_{i}\left(x_{i}\right)=\left(0, \ldots, 0, \alpha_{i} x_{i}, 0, \ldots, 0\right) \quad \text { where } \quad \alpha_{i}=\left(\frac{1}{\sum_{j=i}^{n}\left(\frac{1}{j}\right)^{p}}\right)^{\frac{1}{p}}
$$

Then T_{i} is linear and

$$
\begin{aligned}
\left\|T_{i} x\right\| & =\left\|\left(0, \ldots, 0, \alpha_{i} x, 0, \ldots, 0\right)\right\|=\left(\left(\left\|\frac{\alpha_{i} x}{i}\right\|\right)^{p}+\left(\left\|\frac{\alpha_{i} x}{i+1}\right\|\right)^{p}+\cdots+\left(\left\|\frac{\alpha_{i} x}{n}\right\|\right)^{p}\right)^{\frac{1}{p}} \\
& =\left(\left\|\alpha_{i} x\right\|^{p}\left[\frac{1}{i^{p}}+\frac{1}{(i+1)^{p}}+\cdots+\frac{1}{n^{p}}\right]\right)^{\frac{1}{p}}=\|x\|
\end{aligned}
$$

hence $T_{i}: X_{i} \rightarrow X_{i}^{\prime}$ is isometrically isomorphic from X_{i} onto X_{i}^{\prime}.
Theorem 2.5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $p \in[1, \infty)$. Then $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ has the Schur property if and only if each X_{i} has the Schur property.

Proof. Necessity is obvious, since each X_{i} is isometrically isomorphic to a subspace of $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ and every subspace of a normed space with the Schur property has also the Schur property.

Sufficiency. Suppose that each X_{i} has the Schur property for $i=1,2, \ldots, n$.
Let $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right),\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ such that $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)$ $\xrightarrow{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. By Lemma 2.3, we have $x_{i}^{(k)} \xrightarrow{w} x_{i}$ as $k \rightarrow \infty$. Since X_{i} has the Schur property, $x_{i}^{(k)} \rightarrow x_{i}$ as $k \rightarrow \infty$. That is, $\left\|x_{i}^{(k)}-x_{i}\right\| \rightarrow 0$ as $k \rightarrow \infty$ for each $i=1,2, \ldots, n$. Since

$$
\begin{aligned}
\|\left(x_{1}^{(k)}, \ldots, x_{n}^{(k)}\right)-\left(x_{1}, \ldots,\right. & \left.x_{n}\right) \|_{\operatorname{ces}_{p}} \\
= & \left\|\left(x_{1}^{(k)}-x_{1}, x_{2}^{(k)}-x_{2}, \ldots, x_{n}^{(k)}-x_{n}\right)\right\|_{\operatorname{ces}_{p}} \\
= & \left(\left\|x_{1}^{(k)}-x_{1}\right\|^{p}+\left(\frac{\left\|x_{1}^{(k)}-x_{1}\right\|+\left\|x_{2}^{(k)}-x_{2}\right\|}{2}\right)^{p}+\ldots\right. \\
& \left.+\left(\frac{\left\|x_{1}^{(k)}-x_{1}\right\|+\left\|x_{2}^{(k)}-x_{2}\right\|+\cdots+\left\|x_{n}^{(k)}-x_{n}\right\|}{n}\right)^{p}\right)^{\frac{1}{p}},
\end{aligned}
$$

it follows that $\left\|\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)-\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{\operatorname{ces}_{p} \rightarrow 0 .}$
Thus $\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as $k \rightarrow \infty$. Hence $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ has the Schur property.

If $X_{1}, X_{2}, \ldots, X_{n}$ are Banach spaces and $\mathrm{p} \in[1, \infty)$, we will show that $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ has the H-property if and only if each X_{i} has the H-property. To do this, it is enough to show only that $\left(X_{1} \oplus X_{2}\right)_{\operatorname{ces}_{p}}$ has the H-property if and only if X_{1} and X_{2} has the H-property.

Theorem 2.6. Let X_{1} and X_{2} be Banach spaces and $p \in[1, \infty)$. Then $\left(X_{1} \oplus X_{2}\right)_{\operatorname{ces}_{p}}$ has the H-property if and only if X_{1} and X_{2} have the H-property.

Proof. Necessity follows from the fact that each X_{i} is isometrically isomorphic with a subspace of $\left(X_{1} \oplus X_{2}\right)_{\operatorname{ces}_{p}}$ (Lemma 2.4) and every subspace of the space having the H-property has also the H-property.

Sufficiency. Let $\left(x_{1}^{(k)}, x_{2}^{(k)}\right),\left(x_{1}, x_{2}\right) \in S\left(X_{1} \oplus X_{2}\right)_{\operatorname{ces}_{p}}$ such that $\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \xrightarrow{w}\left(x_{1}, x_{2}\right)$ as $k \rightarrow \infty$. By Lemma 2.3, we have $x_{i}^{(k)} \xrightarrow{w} x_{i}$ as $k \rightarrow \infty$ for each $i=1,2$. Next we shall show that $\left\|x_{i}^{(k)}\right\| \rightarrow\left\|x_{i}\right\|$ as $k \rightarrow \infty$ for $i=1,2$. We have $\left\|x_{i}\right\| \leq \liminf _{k \rightarrow \infty}\left\|x_{i}^{(k)}\right\|$. We will show that $\lim \sup _{k \rightarrow \infty}\left\|x_{i}^{(k)}\right\| \leq\left\|x_{i}\right\|$ for $\mathrm{i}=1,2$. If not, we get that lim $\sup _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\|$ $>\left\|x_{1}\right\|$ or $\lim \sup _{k \rightarrow \infty}\left\|x_{2}^{(k)}\right\|>\left\|x_{2}\right\|$.
CASE 1: $\lim \sup _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\|>\left\|x_{1}\right\|$. Then there exists a subsequence $\left(m_{k}\right)$ of (k) such that $\left\|x_{1}^{\left(m_{k}\right)}\right\|>\left\|x_{1}\right\|+\epsilon_{1}$ for some $\epsilon_{1}>0$ for all $k \in \mathbb{N}$. Now we consider lim $\sup _{k \rightarrow \infty}\left\|x_{2}^{\left(m_{k}\right)}\right\|$. CASE 1.1: $\lim \sup _{k \rightarrow \infty}\left\|x_{2}^{\left(m_{k}\right)}\right\|>\left\|x_{2}\right\|$. Then there exists a subsequence $\left(m_{k}^{\prime}\right)$ of $\left(m_{k}\right)$ such that $\left\|x_{2}^{\left(m_{k}^{\prime}\right)}\right\|>\left\|x_{2}\right\|+\epsilon_{2}$ for some $\epsilon_{2}>0$ for all $k \in \mathbb{N}$. Hence, we have

$$
\begin{aligned}
1 & =\left\|\left(x_{1}^{\left(m_{k}^{\prime}\right)}, x_{2}^{\left(m_{k}^{\prime}\right)}\right)\right\|_{\operatorname{ces}_{p}}=\left(\left\|x_{1}^{\left(m_{k}^{\prime}\right)}\right\|^{p}+\left(\frac{\left\|x_{1}^{\left(m_{k}^{\prime}\right)}\right\|+\left\|x_{2}^{\left(m_{k}^{\prime}\right)}\right\|}{2}\right)^{p}\right)^{\frac{1}{p}} \\
& >\left(\left(\left\|x_{1}\right\|+\epsilon_{1}\right)^{p}+\left(\frac{\left\|x_{1}\right\|+\epsilon_{1}+\left\|x_{2}\right\|+\epsilon_{2}}{2}\right)^{p}\right)^{\frac{1}{p}}>\left(\left\|x_{1}\right\|^{p}+\left(\frac{\left\|x_{1}\right\|+\left\|x_{2}\right\|}{2}\right)^{p}\right)^{\frac{1}{p}}=1,
\end{aligned}
$$

which is a contradiction.

CASE 1.2: $\lim \sup _{k \rightarrow \infty}\left\|x_{2}^{\left(m_{k}\right)}\right\| \leq\left\|x_{2}\right\|$. Since

$$
\left\|x_{2}\right\| \leq \lim \inf _{k \rightarrow \infty}\left\|x_{2}^{\left(m_{k}\right)}\right\| \leq \lim \sup _{k \rightarrow \infty}\left\|x_{2}^{\left(m_{k}\right)}\right\| \leq\left\|x_{2}\right\|
$$

we get that $\lim _{k \rightarrow \infty}\left\|x_{2}^{\left(m_{k}\right)}\right\|=\left\|x_{2}\right\|$. Therefore, there exists $k_{o} \in \mathbb{N}$ for each $k \geq k_{o}$, $\left\|x_{2}\right\|-\frac{\epsilon_{1}}{2} \leq\left\|x_{2}^{\left(m_{k}\right)}\right\|$. Hence, for each $k \geq k_{o}$ we have

$$
\begin{aligned}
1 & =\left\|\left(x_{1}^{\left(m_{k}\right)}, x_{2}^{\left(m_{k}\right)}\right)\right\|_{\operatorname{ces}_{p}}=\left(\left\|x_{1}^{\left(m_{k}\right)}\right\|^{p}+\left(\frac{\left\|x_{1}^{\left(m_{k}\right)}\right\|+\left\|x_{2}^{\left(m_{k}\right)}\right\|}{2}\right)^{p}\right)^{\frac{1}{p}} \\
& >\left(\left(\left\|x_{1}\right\|+\epsilon_{1}\right)^{p}+\left(\frac{\left\|x_{1}\right\|+\epsilon_{1}+\left\|x_{2}\right\|-\frac{\epsilon_{1}}{2}}{2}\right)^{p}\right)^{\frac{1}{p}} \\
& =\left(\left(\left\|x_{1}\right\|+\epsilon_{1}\right)^{p}+\left(\frac{\left\|x_{1}\right\|+\left\|x_{2}\right\|+\frac{\epsilon_{1}}{2}}{2}\right)^{p}\right)^{\frac{1}{p}} \\
& >\left(\left\|x_{1}\right\|^{p}+\left(\frac{\left\|x_{1}\right\|+\left\|x_{2}\right\|}{2}\right)^{p}\right)^{\frac{1}{p}}=1
\end{aligned}
$$

which is a contradiction.
CASE 2: $\lim \sup _{k \rightarrow \infty}\left\|x_{2}^{(k)}\right\|>\left\|x_{2}\right\|$. The proof of this case is analogous to that of case 1 which leads to a contradiction.

Hence we obtain that $\lim \sup _{k \rightarrow \infty}\left\|x_{i}^{(k)}\right\| \leq\left\|x_{i}\right\|$ for all $i=1,2$. This implies $\left\|x_{i}^{(k)}\right\| \rightarrow$ $\left\|x_{i}\right\|$ for each $i=1,2$. Since X_{i} has the H property, we have $x_{i}^{(k)} \rightarrow x_{i}$ as $k \rightarrow \infty$. By lemma 2.1, we get that $\left\|\left(x_{1}^{(k)}, x_{2}^{(k)}\right)-\left(x_{1}, x_{2}\right)\right\|_{\operatorname{ces}_{p}} \rightarrow 0$.

Theorem 2.7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $p \in(1, \infty)$. Then $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ is rotund if and only if each X_{i} is rotund.

Proof. If $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$ is rotund, then each X_{i} is also rotund since X_{i} is isometrically isomorphic to a subspace of $\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$. Conversely, assume that each X_{i} is rotund. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be different elements in $S\left(\oplus_{i=1}^{n} X_{i}\right)_{\operatorname{ces}_{p}}$. The proof will be finished if we show that $\left\|\frac{1}{2}\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)\right\|<1$. Notice that $\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots,\left\|x_{n}\right\|\right)$ and $\left(\left\|y_{1}\right\|,\left\|y_{2}\right\|, \ldots,\left\|y_{n}\right\|\right) \in S\left(\operatorname{ces}_{p}^{n}\right)$. If $\left\|x_{i}\right\| \neq\left\|y_{i}\right\|$ for some $i=$ $1,2, \ldots, n$, then it follows from the rotundity of $\operatorname{ces}_{p}^{n}$ that

$$
\left\|\frac{1}{2}\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)\right\| .
$$

Thus, it may be assumed that $\left\|x_{i}\right\|=\left\|y_{i}\right\|$ for all $i=1,2, \ldots, n$. It may be assumed that $x_{i} \neq y_{i}$ for some i. Then $\left\|\frac{1}{2}\left(x_{i}+y_{i}\right)\right\|<\left\|x_{i}\right\|=\left\|y_{i}\right\|=\frac{1}{2}\left(\left\|x_{i}\right\|+\left\|y_{i}\right\|\right)$ by the rotundity of X_{i}. Therefore

$$
\begin{aligned}
\| \frac{1}{2}\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots,\right. & \left.x_{n}+y_{n}\right) \| \\
= & \frac{1}{2}\left(\left\|x_{1}+y_{1}\right\|^{p}+\left(\frac{\left\|x_{1}+y_{1}\right\|+\left\|x_{2}+y_{2}\right\|}{2}\right)^{p}+\ldots\right. \\
& \left.+\left(\frac{\left\|x_{1}+y_{1}\right\|+\left\|x_{2}+y_{2}\right\|+\cdots+\left\|x_{n}+y_{n}\right\|}{n}\right)^{p}\right)^{\frac{1}{p}} \\
= & \frac{1}{2}\left\|\left(\left\|x_{1}+y_{1}\right\|,\left\|x_{2}+y_{2}\right\|, \ldots,\left\|x_{n}+y_{n}\right\|\right)\right\|_{\operatorname{ces}_{p}^{n}} \\
& <\frac{1}{2}\left\|\left(\left\|x_{1}\right\|+\left\|y_{1}\right\|,\left\|x_{2}\right\|+\left\|y_{2}\right\|, \ldots,\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)\right\|_{\operatorname{ces}_{p}^{n}} \\
= & \frac{1}{2}\left\|\left(2\left\|x_{1}\right\|, 2\left\|x_{2}\right\|, \ldots, 2\left\|x_{n}\right\|\right)\right\|_{\operatorname{ces}_{p}^{n}}=1 .
\end{aligned}
$$

Acknowledgements. The authors would like to thank the Uttaradit Rajabhat University Research Fund for their financial support.

References

[1] K. W. Anderson, Midpoint local uniform convexity and other geometric properties of Banach spaces, 1960.
[2] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[3] T. Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), 125143.
[4] T. Landes, Normal structure and the sum-property, Pacific J. Math. 123 (1986), 127-147.
[5] G. Marino, P. Pietramala and H.-K. Xu, Geometrical conditions in product spaces, Nonlinear Analysis 46 (2001), 1063-1071.
[6] R. E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.
[7] K.-S. Saito and M. Kato, Uniform convexity of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 277 (2003), 1-11.
[8] M. A. Smith, Rotundity and extremity in $l^{p}\left(X_{i}\right)$ and $L^{p}(\mu, X)$, Amer. Math. Soc. 52 (1986), 143-162.
[9] T. Zhang, The coordinatewise uniformly Kadec-Klee property in some Banach spaces, Siberian Math. J. 44 (2003), 363-365.

[^0]: 2000 Mathematics Subject Classification: 47H10, 47H09.
 Key words and phrases: direct sum of Banach spaces, H-property, rotundity, Schur property. Research of Suthep Suantai was supported by Thailand Researrch Fund.
 The paper is in final form and no version of it will be published elsewhere.

