FUNCTION SPACES VIII BANACH CENTER PUBLICATIONS, VOLUME 79 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2008

ON THE H-PROPERTY AND ROTUNDITY OF CESÀRO DIRECT SUMS OF BANACH SPACES

SAARD YOUYEN

Department of Mathematics, Faculty of Science, Naresuan University Pitsanuloke, 55000, Thailand E-mail: saard_youyen@hotmail.com

SUTHEP SUANTAI

Department of Mathematics, Faculty of Science, Chiang Mai University Chiang Mai, 50200, Thailand E-mail: scmti005@chiangmai.ac.th

Abstract. In this paper, we define the direct sum $(\bigoplus_{i=1}^{n} X_i)_{\operatorname{ces}_p}$ of Banach spaces X_1, \ldots, X_n and consider it equipped with the Cesàro *p*-norm when $1 \leq p < \infty$. We show that $(\bigoplus_{i=1}^{n} X_i)_{\operatorname{ces}_p}$ has the H-property if and only if each X_i has the H-property, and $(\bigoplus_{i=1}^{n} X_i)_{\operatorname{ces}_p}$ has the Schur property if and only if each X_i has the Schur property. Moreover, we also show that $(\bigoplus_{i=1}^{n} X_i)_{\operatorname{ces}_p}$ is rotund if and only if each X_i is rotund.

1. Introduction. The geometric properties of direct sums of Banach spaces has been studied by many mathematicians (see [5, 9]). It is well-known that the direct sum $(\bigoplus_{i=1}^{n} X_i)_2$ of normed spaces X_i (i = 1, 2, ..., n) equipped with the 2-norm $\|\cdot\|_2$ given by

$$\|(x_1, x_2, \dots, x_n)\|_2 = \sqrt{\sum_{i=1}^n \|x_i\|^2}$$

is rotund if and only if each X_i is rotund and $(\bigoplus_{i=1}^n X_i)_2$ is uniformly rotund if and only if each X_i is uniformly rotund (see [6]). Let X_1, X_2, \ldots, X_n be Banach spaces and $p \in [1, \infty]$. We use $(\bigoplus_{i=1}^n X_i)_p$ to denote the product space $\bigoplus_{i=1}^n X_i$ equipped with the norm $||(x_1, x_2, \ldots, x_n)||_p = (\sum_{i=1}^n ||x_i||^p)^{\frac{1}{p}}$ $(1 \le p < \infty)$ and $||(x_1, x_2, \ldots, x_n)||_{\infty} = \max_{1 \le i \le n} ||x_i||$.

²⁰⁰⁰ Mathematics Subject Classification: 47H10, 47H09.

Key words and phrases: direct sum of Banach spaces, H-property, rotundity, Schur property. Research of Suthep Suantai was supported by Thailand Research Fund.

The paper is in final form and no version of it will be published elsewhere.

In 1984, Landes [3, 4] showed that if X_1 and X_2 has weak normal structure (WNS), then $(X_1 \oplus X_2)_1$ need not have WNS.

In 2001 Marino, Pietramala and Xu [5] showed that if X_1 and X_2 has property (K) and the non-strict Opial property, then for each $p \in [1, \infty)$, $(X_1 \oplus X_2)_p$ has both property (K) and the non-strict Opial property.

The concept of Ψ -direct sum of Banach spaces X and Y equipped with the norm $||(x, y)||_{\Psi} = ||(||x||, ||y||)||_{\Psi}$ for $x \in X$ and $y \in Y$ was introduced by Saito and Kato. Note that the Ψ direct sum $X \oplus_{\Psi} Y$ is a generalization of the *p*-direct sum $(X \oplus Y)_p$, and they proved that $X \oplus_{\Psi} Y$ is strictly convex if and only if X and Y are strictly convex and Ψ is strictly convex. Building on this result, Saito and Kato [7] also proved that $X \oplus_{\Psi} Y$ is uniformly convex if X and Y are uniformly convex and Ψ is strictly convex.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called

a) an extreme point of the unit ball of X if for $y, z \in S(X)$ the equation $2x_0 = y + z$ implies y = z,

b) an *H*-point if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (write $x_n \xrightarrow{w} x_0$) implies that $||x_n - x_0|| \to 0$.

A Banach space X is said to be *rotund* if every point of S(X) is an extreme point of B(X). It is well-known that X is rotund if and only if $\|\frac{x+y}{2}\| < 1$ whenever $x, y \in S(X)$ with $x \neq y$. If every point in S(X) is an H-point of B(X), then X is said to have the *H*-property.

For $p \in [1, \infty)$, the Cesàro sequence space ces_p is defined as the space of all real sequences $x = (x(j))_{i=1}^{\infty}$ such that

$$\|x\|_{p} = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} |x(i)|\right)^{p}\right)^{1/p} < \infty \quad \text{and} \quad \|x\|_{\infty} = \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{i=1}^{n} |x(i)| < \infty.$$

For $n \in \mathbb{N}$, ces_p^n is the space \mathbb{R}^n equipped with the norm

$$||x||_p = \left(\sum_{k=1}^n \left(\frac{1}{k}\sum_{i=1}^k |x(i)|\right)^p\right)^{1/p}.$$

It is well-known that $\operatorname{ces}_p(1 is rotund, and so is the space <math>\operatorname{ces}_p^n$. For $p \in [1,\infty]$, we use $(\bigoplus_{i=1}^n X_i)_{\operatorname{ces}_p}$ to denote the product $\bigoplus_{i=1}^n X_i$ equipped with the Cesàro p-norm $\|(x_1, x_2, \ldots, x_n)\|_{\operatorname{ces}_p} = (\sum_{k=1}^n (\frac{1}{k} \sum_{i=1}^k \|x_i\|)^p)^{1/p}$ and $\|(x_1, x_2, \ldots, x_n)\|_{\operatorname{ces}_\infty} = \max_{1 \le k \le n} \frac{1}{k} \sum_{i=1}^k \|x_i\|$.

2. Main results. We first show that $(\bigoplus_{i=1}^{n} X_i)_{\cos_p}$ has the Schur property if and only if each X_i has the Schur property. To do this, we need the following lemmas.

LEMMA 2.1. Let X_1, X_2, \ldots, X_n be Banach spaces and $p \in [1, \infty)$, and let $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)})_{k=1}^{\infty}$ be a sequence in $(\bigoplus_{i=1}^n X_i)_{\text{ces}_p}$. Then $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}) \to (0, 0, \ldots, 0)$ as $k \to \infty$ if and only if $x_i^{(k)} \to 0$ as $k \to \infty$ for all $i = 1, 2, \ldots, n$.

Proof. Since

$$\|(x_1^{(k)},\ldots,x_n^{(k)})\|_{\operatorname{ces}_p} = \left(\|x_1^{(k)}\|^p + \cdots + \left(\frac{\|x_1^{(k)}\| + \|x_2^{(k)}\| + \cdots + \|x_n^{(k)}\|}{n}\right)^p\right)^{1/p},$$

it follows that $(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}) \to (0, 0, \dots, 0)$ as $k \to \infty$ if and only if $x_i^{(k)} \to 0$ as $k \to \infty$ for all $i = 1, 2, \dots, n$.

LEMMA 2.2. Let X_1, X_2, \ldots, X_n be Banach spaces and let $f_i \in X_i^*$ $(i = 1, 2, \ldots, n)$. For each $i \in \{1, 2, \ldots, n\}$ define $f'_i : \bigoplus_{i=1}^n X_i \to R$ by $f'_i(x_1, x_2, \ldots, x_n) = f_i(x_i)$. Then $f'_i \in (\bigoplus_{i=1}^n X_i)^*_{\text{ces}_p}$ for each $i = 1, 2, \ldots, n$.

Proof. It is easy to see that f'_i is linear. We will show that f'_i is continuous at zero. To do this, suppose that $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}) \in (\bigoplus_{i=1}^n X_i)_{\operatorname{ces}_p}$ such that $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}) \to (0, 0, \ldots, 0)$. By lemma 2.1, $x_i^{(k)} \to 0$ as $k \to \infty$, hence $f_i(x_i^{(k)}) \to 0$ as $k \to \infty$. It follows that $f'_i(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}) \to 0$ as $k \to \infty$. Hence f'_i is continuous at zero. Therefore $f'_i \in (\bigoplus_{i=1}^n X_i)_{\operatorname{ces}_p}^*$.

LEMMA 2.3. Let X_1, X_2, \ldots, X_n be Banach spaces and let $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)})_{k=1}^{\infty}$ be a sequence in $(\bigoplus_{i=1}^n X_i)_{\text{ces}_p}$ and let $(x_1, \ldots, x_n) \in (\bigoplus_{i=1}^n X_i)_{\text{ces}_p}$. If $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}) \xrightarrow{w} (x_1, x_2, \ldots, x_n)$ as $k \to \infty$, then $x_i^{(k)} \xrightarrow{w} x_i$ as $k \to \infty$ for each $i = 1, 2, \ldots, n$.

Proof. Let $f_i \in X_i^*$ (i = 1, 2, ..., n). Define $f'_i : \bigoplus_{i=1}^n X_i \to R$ by $f'_i(x_1, x_2, ..., x_n) = f_i(x_i)$. By Lemma 2.2, f'_i is a bounded linear functional on $\bigoplus_{i=1}^n X_i$, so $f'_i(x_1^{(k)}, ..., x_n^{(k)}) \longrightarrow f'_i(x_1, x_2, ..., x_n)$. Thus $f_i(x_i^{(k)}) \to f_i(x_i)$ as $k \to \infty$, hence $x_i^{(k)} \xrightarrow{w} x_i$ as $k \to \infty$ for all i = 1, 2, ..., n.

LEMMA 2.4. Let X_1, X_2, \ldots, X_n be Banach spaces and $p \in [1, \infty)$. Then X_i is isometrically isomorphic to a subspace of $(\bigoplus_{i=1}^n X_i)_{\operatorname{ces}_p}$.

Proof. For each i = 1, 2, ..., n, let $X'_i = \{(0, ..., 0, x_i, 0, ..., 0) \in (\bigoplus_{j=1}^n X_j) : x_i \in X_i\}$. It is clear that X'_i is a subspace of $\bigoplus_{i=1}^n X_i$. We define $T_i : X_i \to X'_i$ by

$$T_i(x_i) = (0, \dots, 0, \alpha_i x_i, 0, \dots, 0)$$
 where $\alpha_i = \left(\frac{1}{\sum_{j=i}^n (\frac{1}{j})^p}\right)^{\frac{1}{p}}$

Then T_i is linear and

$$\|T_i x\| = \|(0, \dots, 0, \alpha_i x, 0, \dots, 0)\| = \left(\left(\left\| \frac{\alpha_i x}{i} \right\| \right)^p + \left(\left\| \frac{\alpha_i x}{i+1} \right\| \right)^p + \dots + \left(\left\| \frac{\alpha_i x}{n} \right\| \right)^p \right)^{\frac{1}{p}} \\ = \left(\|\alpha_i x\|^p \left[\frac{1}{i^p} + \frac{1}{(i+1)^p} + \dots + \frac{1}{n^p} \right] \right)^{\frac{1}{p}} = \|x\|,$$

hence $T_i: X_i \to X'_i$ is isometrically isomorphic from X_i onto X'_i .

THEOREM 2.5. Let X_1, X_2, \ldots, X_n be Banach spaces and $p \in [1, \infty)$. Then $(\bigoplus_{i=1}^n X_i)_{\operatorname{ces}_p}$ has the Schur property if and only if each X_i has the Schur property.

Proof. Necessity is obvious, since each X_i is isometrically isomorphic to a subspace of $(\bigoplus_{i=1}^n X_i)_{\text{ces}_p}$ and every subspace of a normed space with the Schur property has also the Schur property.

Sufficiency. Suppose that each X_i has the Schur property for i = 1, 2, ..., n.

Let $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}), (x_1, x_2, \ldots, x_n) \in (\bigoplus_{i=1}^n X_i)_{\text{ces}_p}$ such that $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)})$ $\xrightarrow{w} (x_1, x_2, \ldots, x_n)$. By Lemma 2.3, we have $x_i^{(k)} \xrightarrow{w} x_i$ as $k \to \infty$. Since X_i has the Schur property, $x_i^{(k)} \to x_i$ as $k \to \infty$. That is, $||x_i^{(k)} - x_i|| \to 0$ as $k \to \infty$ for each $i = 1, 2, \ldots, n$. Since

$$\begin{aligned} \|(x_1^{(k)}, \dots, x_n^{(k)}) - (x_1, \dots, x_n)\|_{\cos_p} \\ &= \|(x_1^{(k)} - x_1, x_2^{(k)} - x_2, \dots, x_n^{(k)} - x_n)\|_{\cos_p} \\ &= \left(\|x_1^{(k)} - x_1\|^p + \left(\frac{\|x_1^{(k)} - x_1\| + \|x_2^{(k)} - x_2\|}{2}\right)^p + \dots + \left(\frac{\|x_1^{(k)} - x_1\| + \|x_2^{(k)} - x_2\| + \dots + \|x_n^{(k)} - x_n\|}{n}\right)^p\right)^{\frac{1}{p}}, \end{aligned}$$

it follows that $\|(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}) - (x_1, x_2, \dots, x_n)\|_{\cos_p} \to 0.$

Thus $(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}) \to (x_1, x_2, \ldots, x_n)$ as $k \to \infty$. Hence $(\bigoplus_{i=1}^n X_i)_{\text{ces}_p}$ has the Schur property.

If X_1, X_2, \ldots, X_n are Banach spaces and $p \in [1, \infty)$, we will show that $(\bigoplus_{i=1}^n X_i)_{\operatorname{ces}_p}$ has the H-property if and only if each X_i has the H-property. To do this, it is enough to show only that $(X_1 \oplus X_2)_{\operatorname{ces}_p}$ has the H-property if and only if X_1 and X_2 has the H-property.

THEOREM 2.6. Let X_1 and X_2 be Banach spaces and $p \in [1, \infty)$. Then $(X_1 \oplus X_2)_{\text{ces}_p}$ has the H-property if and only if X_1 and X_2 have the H-property.

Proof. Necessity follows from the fact that each X_i is isometrically isomorphic with a subspace of $(X_1 \oplus X_2)_{\text{ces}_p}$ (Lemma 2.4) and every subspace of the space having the H-property has also the H-property.

Sufficiency. Let $(x_1^{(k)}, x_2^{(k)}), (x_1, x_2) \in S(X_1 \oplus X_2)_{\text{ces}_p}$ such that $(x_1^{(k)}, x_2^{(k)}) \xrightarrow{w} (x_1, x_2)$ as $k \to \infty$. By Lemma 2.3, we have $x_i^{(k)} \xrightarrow{w} x_i$ as $k \to \infty$ for each i = 1, 2. Next we shall show that $||x_i^{(k)}|| \to ||x_i||$ as $k \to \infty$ for i = 1, 2. We have $||x_i|| \leq \liminf_{k \to \infty} ||x_i^{(k)}||$. We will show that $\limsup_{k \to \infty} ||x_i^{(k)}|| \leq ||x_i||$ for i=1,2. If not, we get that $\limsup_{k \to \infty} ||x_1^{(k)}|| > ||x_1||$ or $\limsup_{k \to \infty} ||x_2^{(k)}|| > ||x_2||$.

CASE 1: $\limsup_{k\to\infty} \|x_1^{(k)}\| > \|x_1\|$. Then there exists a subsequence (m_k) of (k) such that $\|x_1^{(m_k)}\| > \|x_1\| + \epsilon_1$ for some $\epsilon_1 > 0$ for all $k \in \mathbb{N}$. Now we consider $\limsup_{k\to\infty} \|x_2^{(m_k)}\|$. CASE 1.1: $\limsup_{k\to\infty} \|x_2^{(m_k)}\| > \|x_2\|$. Then there exists a subsequence (m'_k) of (m_k)

such that $||x_2^{(m'_k)}|| > ||x_2|| + \epsilon_2$ for some $\epsilon_2 > 0$ for all $k \in \mathbb{N}$. Hence, we have

$$1 = \|(x_1^{(m'_k)}, x_2^{(m'_k)})\|_{\operatorname{ces}_p} = \left(\|x_1^{(m'_k)}\|^p + \left(\frac{\|x_1^{(m'_k)}\| + \|x_2^{(m'_k)}\|}{2}\right)^p\right)^{\frac{1}{p}} > \left((\|x_1\| + \epsilon_1)^p + \left(\frac{\|x_1\| + \epsilon_1 + \|x_2\| + \epsilon_2}{2}\right)^p\right)^{\frac{1}{p}} > \left(\|x_1\|^p + \left(\frac{\|x_1\| + \|x_2\|}{2}\right)^p\right)^{\frac{1}{p}} = 1,$$

which is a contradiction.

CASE 1.2: $\limsup_{k \to \infty} \|x_2^{(m_k)}\| \le \|x_2\|$. Since

$$||x_2|| \le \lim \inf_{k \to \infty} ||x_2^{(m_k)}|| \le \lim \sup_{k \to \infty} ||x_2^{(m_k)}|| \le ||x_2||,$$

we get that $\lim_{k\to\infty} ||x_2^{(m_k)}|| = ||x_2||$. Therefore, there exists $k_o \in \mathbb{N}$ for each $k \geq k_o$, $||x_2|| - \frac{\epsilon_1}{2} \leq ||x_2^{(m_k)}||$. Hence, for each $k \geq k_o$ we have

$$1 = \|(x_1^{(m_k)}, x_2^{(m_k)})\|_{\operatorname{ces}_p} = \left(\|x_1^{(m_k)}\|^p + \left(\frac{\|x_1^{(m_k)}\| + \|x_2^{(m_k)}\|}{2}\right)^p\right)^{\frac{1}{p}}$$

> $\left((\|x_1\| + \epsilon_1)^p + \left(\frac{\|x_1\| + \epsilon_1 + \|x_2\| - \frac{\epsilon_1}{2}}{2}\right)^p\right)^{\frac{1}{p}}$
= $\left((\|x_1\| + \epsilon_1)^p + \left(\frac{\|x_1\| + \|x_2\| + \frac{\epsilon_1}{2}}{2}\right)^p\right)^{\frac{1}{p}}$
> $\left(\|x_1\|^p + \left(\frac{\|x_1\| + \|x_2\|}{2}\right)^p\right)^{\frac{1}{p}} = 1,$

which is a contradiction.

CASE 2: $\limsup_{k\to\infty} \|x_2^{(k)}\| > \|x_2\|$. The proof of this case is analogous to that of case 1 which leads to a contradiction.

Hence we obtain that $\limsup_{k\to\infty} \|x_i^{(k)}\| \le \|x_i\|$ for all i = 1, 2. This implies $\|x_i^{(k)}\| \to \|x_i\|$ for each i = 1, 2. Since X_i has the H property, we have $x_i^{(k)} \to x_i$ as $k \to \infty$. By lemma 2.1, we get that $\|(x_1^{(k)}, x_2^{(k)}) - (x_1, x_2)\|_{\operatorname{ces}_p} \to 0$.

THEOREM 2.7. Let X_1, X_2, \ldots, X_n be Banach spaces and $p \in (1, \infty)$. Then $(\bigoplus_{i=1}^n X_i)_{\operatorname{ces}_p}$ is rotund if and only if each X_i is rotund.

Proof. If $(\bigoplus_{i=1}^{n} X_i)_{\operatorname{ces}_p}$ is rotund, then each X_i is also rotund since X_i is isometrically isomorphic to a subspace of $(\bigoplus_{i=1}^{n} X_i)_{\operatorname{ces}_p}$. Conversely, assume that each X_i is rotund. Let (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) be different elements in $S(\bigoplus_{i=1}^{n} X_i)_{\operatorname{ces}_p}$. The proof will be finished if we show that $\|\frac{1}{2}(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)\| < 1$. Notice that $(\|x_1\|, \|x_2\|, \ldots, \|x_n\|)$ and $(\|y_1\|, \|y_2\|, \ldots, \|y_n\|) \in S(\operatorname{ces}_p^n)$. If $\|x_i\| \neq \|y_i\|$ for some $i = 1, 2, \ldots, n$, then it follows from the rotundity of ces_p^n that

$$\begin{split} \left\| \frac{1}{2} (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \right\| \\ &= \frac{1}{2} \left(\|x_1 + y_1\|^p + \left(\frac{\|x_1 + y_1\| + \|x_2 + y_2\|}{2} \right)^p + \dots \right. \\ &+ \left(\frac{\|x_1 + y_1\| + \|x_2 + y_2\| + \dots + \|x_n + y_n\|}{n} \right)^p \right)^{\frac{1}{p}} \\ &= \frac{1}{2} \| (\|x_1 + y_1\|, \|x_2 + y_2\|, \dots, \|x_n + y_n\|) \|_{\operatorname{ces}_p^n} \\ &\leq \frac{1}{2} \| (\|x_1\| + \|y_1\|, \|x_2\| + \|y_2\|, \dots, \|x_n\| + \|y_n\|) \|_{\operatorname{ces}_p^n} < 1. \end{split}$$

Thus, it may be assumed that $||x_i|| = ||y_i||$ for all i = 1, 2, ..., n. It may be assumed that $x_i \neq y_i$ for some i. Then $||\frac{1}{2}(x_i + y_i)|| < ||x_i|| = ||y_i|| = \frac{1}{2}(||x_i|| + ||y_i||)$ by the rotundity of X_i . Therefore

$$\begin{aligned} \left\| \frac{1}{2} (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \right\| \\ &= \frac{1}{2} \left(\|x_1 + y_1\|^p + \left(\frac{\|x_1 + y_1\| + \|x_2 + y_2\|}{2} \right)^p + \dots + \left(\frac{\|x_1 + y_1\| + \|x_2 + y_2\| + \dots + \|x_n + y_n\|}{n} \right)^p \right)^{\frac{1}{p}} \\ &= \frac{1}{2} \| (\|x_1 + y_1\|, \|x_2 + y_2\|, \dots, \|x_n + y_n\|) \|_{\cos^n_p} \\ &< \frac{1}{2} \| (\|x_1\| + \|y_1\|, \|x_2\| + \|y_2\|, \dots, \|x_n\| + \|y_n\|) \|_{\cos^n_p} \\ &= \frac{1}{2} \| (2\|x_1\|, 2\|x_2\|, \dots, 2\|x_n\|) \|_{\cos^n_p} = 1. \end{aligned}$$

Acknowledgements. The authors would like to thank the Uttaradit Rajabhat University Research Fund for their financial support.

References

- [1] K. W. Anderson, Midpoint local uniform convexity and other geometric properties of Banach spaces, 1960.
- [2] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.
- [3] T. Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), 125– 143.
- [4] T. Landes, Normal structure and the sum-property, Pacific J. Math. 123 (1986), 127–147.
- [5] G. Marino, P. Pietramala and H.-K. Xu, Geometrical conditions in product spaces, Nonlinear Analysis 46 (2001), 1063–1071.
- [6] R. E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.
- [7] K.-S. Saito and M. Kato, Uniform convexity of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 277 (2003), 1–11.
- [8] M. A. Smith, Rotundity and extremity in $l^p(X_i)$ and $L^p(\mu, X)$, Amer. Math. Soc. 52 (1986), 143–162.
- T. Zhang, The coordinatewise uniformly Kadec-Klee property in some Banach spaces, Siberian Math. J. 44 (2003), 363–365.