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Abstrat. We review several results on interpolation of Banah algebras and fatorization ofweakly ompat homomorphisms. We also establish a new result on interpolation of multilinearoperators.
1. Introdution. A elebrated result of Davis, Figiel, Johnson and Peªzy«ski[15℄ shows that any weakly ompat operator between Banah spaes an be fatorizedthrough a re�exive Banah spae. In 1992, Galé, Ransford and White [16℄ asked whetheror not the orresponding result holds in the setting of Banah algebras. The answer tothis question has been given reently by Blano, Kaijser and Ransford [5℄, by using aninterpolation method of the type of the lassial real method (·, ·)θ,q whih, on one hand,respets the Banah-algebra struture and, on the other hand, it produes re�exive spaes
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58 F. COBOS AND L. M. FERNÁNDEZ-CABRERAunder suitable onditions. Previous results on interpolation of Banah algebras are dueto Bishop [4℄, A. P. Calderón [7℄, Zafran [27℄ and Kaijser [19℄.In this paper we work mainly with the general real method (·, ·)Γ, whih is de�nedsimilarly to (·, ·)θ,q but replaing the weighted ℓq norm by a more general sequene lattienorm Γ (see [25℄, [24℄ and [6℄). We review a result of Astashkin [1℄ and Martínez and thepresent authors [12℄ whih shows a neessary and su�ient ondition on Γ for (·, ·)Γto preserve the Banah-algebra struture. That is to say, for (A0, A1)Γ to be a Banahalgebra provided that (A0, A1) is a ompatible ouple of Banah algebras suh that thetwo multipliations agree on A0 ∩A1. That ondition turns out to be that Γ is a Banahalgebra with multipliation de�ned as onvolution. As a onsequene of this result andinterpolation properties of weakly ompat operators (see [23℄ and [10℄), we shall reoverthe result of Blano, Kaijser and Ransford [5℄.We shall also review other results of Astashkin [1℄ and the authors [9℄ on the relation-ship between interpolation of Banah algebras and interpolation of bilinear operators.Finally, we shall establish a new result on multilinear interpolation.The organization of the paper is as follows. In Setion 2 we desribe the approahof [12℄ to fatorization of weakly ompat homomorphisms. In Setion 3 we review somebasi fats on the general real method (·, ·)Γ. Setion 4 is devoted to interpolation ofBanah algebras and, in the �nal Setion 5, we deal with interpolation of multilinearoperators.2. Fatoring weakly ompat homomorphisms. Let A be a Banah algebra, thatis, an algebra whih is also a Banah spae and suh that there is a onstant cA > 0 suhthat for all x, y ∈ A we have
‖xy‖A ≤ cA‖x‖A‖y‖A.Habitually it is required that cA = 1 but this de�nition is equivalent to the usual one(see [14℄, Exer. VII.1.1) and it is better for our aims.Galé, Ransford and White asked in [16℄ whether or not every weakly ompat ho-momorphism between Banah algebras Φ : A → B fators through a re�exive Banahalgebra W with Banah algebra homomorphisms Φ1, Φ2 as fators
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This problem is related to the well-known result of Davis, Figiel, Johnson and Peªzy«-ski [15℄ on fatorization of weakly ompat operators through re�exive Banah spaes. Itis just the orresponding result in the setting of Banah algebras.The answer was given only reently by Blano, Kaijser and Ransford [5℄. In order tosee the di�ulties to establish this result, let us follow the approah given by Martínezand the present authors [12℄ to the result of Blano, Kaijser and Ransford.



INTERPOLATION OF BANACH ALGEBRAS 59Given the homomorphism Φ : A → B, let Ker(Φ) be its kernel and let F = A/Ker(Φ)be the quotient Banah algebra. The quotient mapping Q(x) = [x] is a Banah algebrahomomorphism, as well as the map j : F → B de�ned by j([x]) = Φ(x). Moreover, themap j is one-to-one. Let W0 = j(Q(A)) = {Φ(x) : x ∈ A} endowed with the norm
‖Φ(x)‖W0

= ‖[x]‖F = inf{‖y‖A : Φ(x) = Φ(y)}.Then W0 is a Banah algebra, ontinuously embedded in W1 = B. Multipliation in W0is the same as in W1. Moreover, the open unit ball of W0 is ontained in the image by Φ ofthe unit ball of A, so the embedding from W0 into W1 is weakly ompat. The followingpiture illustrates the situation:
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To establish the fatorization result we only need to �nd a re�exive Banah algebra
W suh that W0 →֒ W →֒ W1, where →֒ means ontinuous inlusion. This will yield thewanted fatorization by taking Φ1 = j ◦ Q = Φ and Φ2 = IB .To onstrut W one might try to use some interpolation method. In the next twosetions we study this point.3. Real interpolation. Let X̄ = (X0, X1) be a Banah ouple, that is, two Banahspaes Xj , j = 0, 1, whih are ontinuously embedded in some Hausdor� topologialvetor spae. Peetre's K- and J-funtionals are de�ned by
K(t, x) = K(t, x; X̄) = inf{‖x0‖X0

+ t‖x1‖X1
: x = x0 + x1, xj ∈ Xj}, x ∈ X0 + X1and

J(t, x) = J(t, x; X̄) = max{‖x‖X0
, t‖x‖X1

}, x ∈ X0 ∩ X1.Notie that the pair (W0, W1) arising in Setion 2 is a Banah ouple. Indeed, we antake W1 as the Hausdor� topologial vetor spae. This speial ase where W0 →֒ W1 isalled an ordered ouple. Note that W0 ∩ W1 = W0 and W0 + W1 = W1.Let Γ be a Banah lattie of real valued sequenes with Z as index set, that is to say,whenever µ = {µm} belongs to Γ and ξ = {ξm} satis�es |ξm| ≤ |µm| for eah m ∈ Z,then ξ ∈ Γ and ‖ξ‖Γ ≤ ‖µ‖Γ. We also assume that Γ ontains all sequenes with only�nitely many non-zero o-ordinates.We say that Γ is K-non-trivial if(1) {min(1, 2m)} ∈ Γ.The lattie Γ is said to be J-non-trivial if(2) sup
{

∞
∑

m=−∞

min(1, 2−m)|ξm| : ‖{ξm}‖Γ ≤ 1
}

< ∞.



60 F. COBOS AND L. M. FERNÁNDEZ-CABRERAThese onditions are equivalent to(3) ℓ∞(max(1, 2−m)) ⊆ Γand(4) Γ ⊆ ℓ1(min(1, 2−m)),respetively (see [24℄). Here, given any sequene {ωm} of positive numbers and 1 ≤ q ≤ ∞,we put ℓq(ωm) = {ξ = {ξm} : {ωmξm} ∈ ℓq}.The assoiated spae Γ′ of Γ onsists of all sequenes η = {ηm} for whih
‖η‖Γ′ = sup

{

∞
∑

m=−∞

|ξmηm| : ‖ξ‖Γ ≤ 1
}

< ∞.If ξ ∈ Γ and η ∈ Γ′, we put
< ξ, η >=

∞
∑

m=−∞

ξmηm.Observe that if Γ satis�es (4) then ℓ∞(max(1, 2m)) ⊆ Γ′ and so if for R ∈ N we de�nethe sequenes δ(R) = {µm}, ρ(R) = {ηm} by(5) µm = 1 if m ≤ R and 0 otherwise, ηm = 2−m if m ≥ R and 0 otherwisethen it turns out that δ(0) and ρ(0) belongs to Γ′.Let Γ be a K-non-trivial sequene spae and let X̄ = (X0, X1) be a Banah ouple.The abstrat K-spae X̄Γ;K = (X0, X1)Γ;K is de�ned as the olletion of all x ∈ X0 +X1suh that {K(2m, x)} ∈ Γ. The norm of X̄Γ;K is ‖x‖X̄Γ;K
= ‖{K(2m, x)}‖Γ.Let Γ be a J-non-trivial sequene spae. The abstrat J-spae X̄Γ;J = (X0, X1)Γ;J isformed by all those elements x ∈ X0 + X1 for whih there is a sequene {um} ⊆ X0 ∩X1suh that(6) x =

∞
∑

m=−∞

um (onvergene in X0 + X1) and {J(2m, um)} ∈ Γ.The norm in X̄Γ;J = (X0, X1)Γ;J is
‖x‖X̄Γ;J

= inf{‖{J(2m, um)}‖Γ}where the in�mum is taken over all representations of x satisfying (6). It turns out that
X0 ∩ X1 →֒ X̄Γ;J →֒ X0 + X1 and X0 ∩ X1 →֒ X̄Γ;K →֒ X0 + X1.The lassial real method (·, ·)θ,q (see [3℄ or [26℄) an be reovered by the hoie
Γ = ℓq(2

−θm). Namely,
(X0, X1)θ,q = (X0, X1)ℓq(2−θm);K = (X0, X1)ℓq(2−θm);Jwith equivalene of norms. We write ‖ · ‖θ,q for any of the norms in (X0, X1)θ,q.In general K- and J-spaes do not oinide. We only have that X̄Γ;K →֒ X̄Γ;J for anyBanah ouple X̄. The onverse inlusion holds if the Calderón transform

Ω{ξm} =
{

∞
∑

k=−∞

min(1, 2m−k)ξk

}

m∈Z



INTERPOLATION OF BANACH ALGEBRAS 61is a bounded operator in Γ (see [24℄, Lemma 2.5). If we have equality, we denote any ofthese two spaes by X̄Γ = (X0, X1)Γ and we write ‖ · ‖X̄Γ
to mean any of the equivalentnorms ‖ · ‖X̄Γ;K

or ‖ · ‖X̄Γ;J
. This however will not ause any onfusion.In our later onsiderations, it will be important to know when one an ompute the

J-norm of the elements in X0 ∩X1 by using only �nite representations. This property isrelated with the behaviour of shift operators {τk}k∈Z on Γ. Reall that τk is de�ned by
τk{ξm} = {ξm+k}m∈Z. A natural assumption on shift operators is(7) lim

n→∞
2−n‖τn‖Γ,Γ = 0 and lim

n→∞
‖τ−n‖Γ,Γ = 0(see [11℄, [12℄ or [13℄). Sometimes one even has(8) sup{‖τ−R‖Γ,Γ‖τR‖Γ,Γ : R ∈ N} < ∞.This is, for example, the ase of the lassial real method where Γ = ℓq(2

−θm) beause
‖τR‖ℓq(2−θm),ℓq(2−θm) ≤ 2θR.We an ompare the norms of shift operators in Γ and Γ′ as the following lemmashows.Lemma 3.1. Let Γ be a lattie satisfying (2). Then, for eah k ∈ Z, we have ‖τk‖Γ′,Γ′ ≤

‖τ−k‖Γ,Γ.Proof. Aording to the de�nition of the norm in Γ′ we obtain
‖τk‖Γ′,Γ′ = sup{‖τkη‖ : ‖η‖Γ′ ≤ 1} = sup{| < ξ, τkη > | : ‖η‖Γ′ ≤ 1, ‖ξ‖Γ ≤ 1}

= sup{| < τ−kξ, η > | : ‖η‖Γ′ ≤ 1, ‖ξ‖Γ ≤ 1}

≤ sup{‖τ−kξ‖Γ‖η‖Γ′ : ‖η‖Γ′ ≤ 1, ‖ξ‖Γ ≤ 1} = ‖τ−k‖Γ,Γ.Let em be the sequene whih is zero at all o-ordinates but the mth o-ordinatewhere it is 1. Next we show a �rst result on the equivalene between the norms ‖x‖X̄Γ;Jand
‖x‖∗X̄Γ;J

= inf
{

‖{J(2m, um)}‖Γ : x =
∞
∑

m=−∞

um and only a �nite number of um 6= 0
}

in X0 ∩ X1. In the ase of the lassial real method, this result was proved by Janson in[18℄, Lemma 1.Lemma 3.2. Let Γ be a lattie satisfying (2). Assume also that shift operators on Γ satisfy(7) and (8). Then, for any Banah ouple X̄ = (X0, X1), the norms ‖ ·‖X̄Γ;J
and ‖ ·‖∗

X̄Γ;Jare equivalent on X0 ∩ X1.Proof. Clearly ‖x‖X̄Γ;J
≤ ‖x‖∗

X̄Γ;J
for any x ∈ X0 ∩ X1. Let us hek that the onverseinequality holds with a onstant independent of x. Take any x ∈ X0 ∩ X1 and any

J-representation x =
∑∞

m=−∞ um of x with ‖{J(2m, um)}‖Γ ≤ 2‖x‖X̄Γ;J
. Using (7) wean �nd R ∈ N suh that(9) max(2−R‖τR‖Γ,Γ‖e0‖Γ‖x‖X1

, ‖τ−R‖Γ,Γ‖e0‖Γ‖x‖X0
) ≤ ‖x‖X̄Γ;J

.Put xR =
∑

m≥R um and x−R =
∑

m≤−R um. We laim that xR and x−R belong to
X0 ∩ X1. In order to hek it, we shall use the sequenes δ(R), ρ(R) de�ned in (5). We



62 F. COBOS AND L. M. FERNÁNDEZ-CABRERAhave
‖xR‖X0

≤ ‖x‖X0
+

∑

m≤R−1

‖um‖X0
≤ ‖x‖X0

+
∑

m≤R−1

J(2m, um)

≤ ‖x‖X0
+ ‖{J(2m, um)}‖Γ‖δ

(R−1)‖Γ′

= ‖x‖X0
+ 2‖x‖X̄Γ;J

‖τ−(R−1)‖Γ′,Γ′‖δ(0)‖Γ′ ≤ ‖x‖X0
+ 2c1‖τR−1‖Γ,Γ‖x‖X̄Γ;Jwhere we have used Lemma 3.1 in the last inequality. As for the norm in X1 we get

‖xR‖X1
≤

∑

m≥R

‖um‖X1
≤

∑

m≥R

2−mJ(2m, um) ≤ ‖{J(2m, um)}‖Γ‖ρ
(R)‖Γ′

≤ 2‖x‖X̄Γ;J
2−N‖τ−Rρ(0)‖Γ′ ≤ 2c22

−R‖τR‖Γ,Γ‖x‖X̄Γ;J
.Therefore, for some onstant c3 we obtain

J(2R, xR) ≤ ‖x‖X0
+ c3‖τR‖Γ,Γ‖x‖X̄Γ;J

.Similarly,
J(2−R, x−R) ≤ 2−R‖x‖X1

+ c3‖τ−R‖Γ,Γ‖x‖X̄Γ;J
.Consequently, we have for x the �nite representation x = x−R +

∑R−1
m=−R+1 xm + xR andso

‖x‖∗X̄Γ;J
≤ ‖J(2−R, x−R)e−R‖Γ + ‖{J(2m, xm)}‖Γ + ‖J(2R, xR)eR‖Γ

≤ J(2−R, x−R)‖τR‖Γ,Γ‖e0‖Γ + 2‖x‖X̄Γ;J
+ J(2R, xR)‖τ−R‖Γ,Γ‖e0‖Γ

≤ ‖e0‖Γ(2−R‖τR‖Γ,Γ‖x‖X1
+ ‖τ−R‖Γ,Γ‖x‖X0

+ c4‖x‖X̄Γ;J
) + 2‖x‖X̄Γ;J

≤ c5‖x‖X̄Γ;Jwhere the last inequality follows from (9). This yields that the norms ‖·‖X̄Γ;J
and ‖·‖∗

X̄Γ;Jare equivalent on X0 ∩ X1 and ompletes the proof.Assumption (8) is not suitable for our latter onsiderations, but equivalene between
‖ · ‖X̄Γ;J

and ‖ · ‖∗
X̄Γ;J

on X0 ∩ X1 still holds if we replae (8) by boundedness of theCalderón transform Ω in Γ as was shown in [12℄, Lemma 2.2Lemma 3.3. Let Γ be a K- and J-non-trivial lattie satisfying (7) and with Ω boundedin Γ. Then for any Banah ouple X̄ = (X0, X1) and for any x ∈ X0 ∩ X1 we have
‖x‖∗

X̄Γ;J
≤ 8‖x‖X̄Γ;K

.Note that under the assumptions of Lemma 3.3 we have X̄Γ;K = X̄Γ;J .It will be important latter that X0 ∩ X1 is dense in X̄Γ. It is not hard to hek thatthis happens if(10) ξ = lim
n→∞

n
∑

j=−n

ξjej (onvergene in Γ) for any ξ = {ξm} ∈ Γ.For example, this is the ase of (X0, X1)θ,q if q < ∞.4. Interpolation of Banah algebras. By a ouple of Banah algebras Ā = (A0, A1)we understand a Banah ouple formed by Banah algebras Aj , j = 0, 1, suh thatmultipliations in A0 and A1 oinide in A0 ∩ A1.



INTERPOLATION OF BANACH ALGEBRAS 63Note that the ordered ouple (W0, W1) whih arose in Setion 2 is a ouple of Banahalgebras.Definition 4.1. Let Γ be a K- and J-non-trivial sequene spae satisfying (7) and (10),and with Ω bounded in Γ. We say that the method (·, ·)Γ preserves the Banah-algebrastruture if given any ouple of Banah algebras Ā = (A0, A1) there is a onstant cĀΓ
> 0suh that for all x, y ∈ A0 ∩ A1

‖xy‖ĀΓ
≤ cĀΓ

‖x‖ĀΓ
‖y‖ĀΓ

.Notie that multipliation of x, y is well de�ned beause these vetors belong to A0∩A1and multipliations in A0 and A1 agree on A0 ∩ A1.Observe also that, sine A0∩A1 is dense in (A0, A1)Γ, multipliation an be extendedby ontinuity to the whole of (A0, A1)Γ, turning (A0, A1)Γ into a Banah algebra.The following result was essentially established by Bishop [4℄. So far as we are aware,this is the �rst result known on an interpolation method that preserves Banah algebras.Theorem 4.2. Let 0 < θ < 1. The lassial real method (·, ·)θ,1 with parameters (θ, 1)preserves the Banah-algebra struture.Proof. We start by showing that for any Banah ouple X̄ = (X0, X1) the norm ‖ · ‖∗θ,1is equivalent to
‖x‖⋄θ,1 = inf

{

R
∑

m=−R

‖xm‖1−θ
X0

‖xm‖θ
X1

: x =
R

∑

m=−R

xm, {xm} ⊆ X0 ∩ X1, R ∈ N

}

on X0 ∩ X1.Indeed, as ‖x‖θ,1 ≤ c‖x‖1−θ
X0

‖x‖θ
X1

for any x ∈ X0 ∩X1 (see, for example, [3℄ or [26℄),given any �nite representation x =
∑R

m=−R xm we have
‖x‖θ,1 ≤

R
∑

m=−R

‖xm‖θ,1 ≤ c

R
∑

m=−R

‖xm‖1−θ
X0

‖xm‖θ
X1

.This yields that ‖x‖∗θ,1 ≤ c1‖x‖
⋄
θ,1 for all x ∈ X0∩X1. Conversely, given any ε > 0, we an�nd a �nite representation x =
∑R

m=−R xm with ∑R
m=−R 2θmJ(2m, xm) ≤ (1 + ε)‖x‖∗θ,1.Whene,

‖x‖⋄θ,1 ≤
R

∑

m=−R

‖xm‖1−θ
X0

‖xm‖θ
X1

≤
R

∑

m=−R

J(2m, xm)1−θ(2−mJ(2m, xm))θ

=
R

∑

m=−R

2−θmJ(2m, xm) ≤ (1 + ε)‖x‖∗θ,1.This gives the equivalene of norms on X0 ∩ X1.Next take any ouple of Banah algebras (A0, A1) and any x, y ∈ A0 ∩A1. Given any
ε > 0, there are �nite representations x =

∑R
m=−R um, y =

∑R
k=−R vk suh that

R
∑

m=−R

‖um‖1−θ
A0

‖um‖θ
A1

≤ (1 + ε)‖x‖⋄θ,1



64 F. COBOS AND L. M. FERNÁNDEZ-CABRERAand
R

∑

k=−R

‖vk‖
1−θ
A0

‖vk‖
θ
A1

≤ (1 + ε)‖y‖⋄θ,1.Then xy =
∑R

m,k=−R umvk and so
‖xy‖⋄θ,1 ≤

R
∑

m,k=−R

‖umvk‖
1−θ
A0

‖umvk‖
θ
A1

≤ max(cA0
, cA1

)
R

∑

m,k=−R

‖um‖1−θ
A0

‖um‖θ
A1

‖vk‖
1−θ
A0

‖vk‖
θ
A1

≤ max(cA0
, cA1

)
(

R
∑

m=−R

‖um‖1−θ
A0

‖um‖θ
A1

)(

R
∑

k=−R

‖vk‖
1−θ
A0

‖vk‖
θ
A1

)

≤ max(cA0
, cA1

)(1 + ε)2‖x‖⋄θ,1‖y‖
⋄
θ,1.Letting ε → 0, we see that (A0, A1)θ,1 is a Banah algebra.If in the de�nition of (·, ·)θ,1 we replae the funtion tθ by a more general funtionparameter f(t) then we get the more general method (·, ·)f,1 = (·, ·)ℓ1(1/f(2m)) whih alsopreserves Banah algebras as was established by Zafran [27℄ and Kaijser [19℄.As for the omplex interpolation method (·, ·)[θ], it was proved by A.P. Calderón inhis famous seminal paper [7℄ that it preserves the Banah-algebra struture.In priniple we might try to apply to the ordered ouple of Banah algebras (W0, W1)any of these interpolation methods to omplete the proof of the fatorization theoremfollowing the approah desribed in Setion 2. The outome is going to be a Banahalgebra E suh that W0 →֒ E →֒ W1. But we want E to be re�exive and to obtainit we an use that the embedding W0 →֒ W1 is weakly ompat. So we want to use aninterpolation method F that in addition to the property of interpolating Banah algebras,it ful�ls that whenever an ordered Banah ouple (X0, X1) satis�es that the embedding

X0 →֒ X1 is weakly ompat then F(X0, X1) is re�exive. Unfortunately, no one of themethods (·, ·)θ,1, (·, ·)f,1, (·, ·)[θ] has this last property. The following example was givenby Maligranda in [21℄. It shows the failure of the property for the omplex method.Example 4.3. Let us work on [0, 1] with the Lebesgue measure and for 1 < p < ∞ put
Lp,∞ =

{

f : ‖f‖p,∞ = sup

{

t
1
p
−1

∫ t

0

f∗(s)ds

}

< ∞

}

.Here f∗ is the non-inreasing rearrangement of f ,
f∗(s) = inf{t > 0 : mes{w : |f(w)| > t} ≤ s}.Let L0

p,∞ be the losure of L∞ in Lp,∞. The spae L0
p,∞ is not re�exive beause (L0

p,∞)∗∗ =

Lp,∞.Take 1 < p < r < q < ∞ and let 0 < θ < 1 suh that 1/r = (1 − θ)/q + θ/p. Then
L0

q,∞ →֒ Lr →֒ L0
p,∞, so the embedding L0

q,∞ →֒ L0
p,∞ is weakly ompat beause Lris re�exive. However, applying the omplex method we obtain (L0

q,∞, L0
p,∞)[θ] = L0

r,∞whih is not re�exive.



INTERPOLATION OF BANACH ALGEBRAS 65Interpolation methods (·, ·)θ,1 and (·, ·)f,1 have a worse behaviour. They do not gen-erate re�exive spaes in general. In fat, Levy [20℄ proved that if X0 ∩ X1 is not losedin X0 + X1, whih is usually the ase, then (X0, X1)θ,1 ontains a subspae isomorphito ℓ1, so (X0, X1)θ,1 annot by re�exive. The same happens for (·, ·)f,1 (see [8℄).If 1 < q < ∞ the lassial real method behaves well onerning weak ompatness.Indeed, Beauzamy [2℄ proved that (A0, A1)θ,q is re�exive if the embedding A0 ∩ A1 →֒

A0 + A1 is weakly ompat. This results has been extended in several diretions (see, forexample, the paper by Heinrih [17℄ and by Maligranda and Quevedo [22℄). But (·, ·)θ,qdoes not preserve the Banah-algebra struture.In the paper by Blano, Kaijser and Ransford [5℄ it is shown a lass of real interpolationmethods whih interpolate Banah algebras and give re�exive spaes.Next we review the behaviour of these properties for the general real method (·, ·)Γ.Results on weak ompatness and the K-method (·, ·)Γ;K are due to Aizenstein andBrudny�� (see [6℄, Thm. 4.6.8) and Mastyªo [23℄. The ase of the J-method (·, ·)Γ;J hasbeen studied by Manzano, Martínez and the present authors in [10℄. We an summarizeall these results in the following theorem.Theorem 4.4. Let Γ be a re�exive lattie satisfying (7). Let X̄ = (X0, X1) and Ȳ =

(Y0, Y1) be Banah ouples, and let T ∈ L(X0 + X1, Y0 + Y1) be a linear operator whoserestritions T : Xj → Yj are bounded, j = 0, 1, and T : X0 ∩ X1 → Y0 + Y1 is weaklyompat.(i) If Γ is K-non-trivial, then T : X̄Γ;K → ȲΓ;K is weakly ompat.(ii) If Γ is J-non-trivial, then T : X̄Γ;J → ȲΓ;J is weakly ompat.As for interpolation of Banah algebras, the result by Astashkin [1℄ and by Martínezand the authors [12℄ reads as follows.Theorem 4.5. Let Γ be a K- and J-non-trivial lattie, with the Calderón transformbounded in Γ. Suppose that (10) is satis�ed and that shift operators on Γ ful�ll (7). Thena neessary and su�ient ondition for the method (·, ·)Γ to preserve the Banah-algebrastruture is that Γ be a Banah algebra with multipliation de�ned as onvolution
ξ ∗ η =

{

∞
∑

k=−∞

ξkηm−k

}

m∈Z

, ξ = {ξm}, η = {ηm}.For 0 < θ < 1, 1 < q < ∞ and γ > (q − 1)/q, one an hek that the lattie
Γ = ℓq(2

−θm(1 + |m|)γ) is a Banah algebra with onvolution and it is also re�exive.Hene, interpolating the ordered ouple of Banah algebras (W0, W1) of Setion 2 bythe general real method de�ned by Γ, we obtain the desired re�exive Banah algebras
W = (W0, W1)Γ that ompletes the proof of the fatorization theorem for weakly ompathomomorphisms.The above onsiderations also show that the real method is not enough to ompletethe proof. Namely, as an immediate onsequene of Theorem 4.5 we have the followingharaterization.Corollary 4.6. The lassial real method (·, ·)θ,q preserves the Banah-algebra strutureonly if q = 1.



66 F. COBOS AND L. M. FERNÁNDEZ-CABRERA5. Multilinear interpolation. By means of a diret argument, we have proved inTheorem 4.2 that (·, ·)θ,1 interpolates Banah algebras. For (·, ·)f,1 (see [27℄, [19℄), forthe general real method (·, ·)Γ (see [12℄) and for the methods studied in [5℄ the argumentsare also diret. However, for the ase of the omplex method, the approah followedby Calderón in [7℄ was to prove �rst a multilinear interpolation theorem and then, asan immediate onsequene of the bilinear result, to derive that the omplex methodpreserves the Banah-algebra struture. It is then natural to investigate the relationshipbetween real interpolation of Banah algebras and interpolation of bilinear operators.This problem has been onsidered in [1℄ and [9℄. Next we reall their main result. Weneed the following de�nition.Definition 5.1. Let Γ be a K- and J-non-trivial lattie satisfying (10). If for any Banahouples X̄ = (X0, X1), Ȳ = (Y0, Y1), V̄ = (V0, V1) and for any bilinear operator T de�nedin (X0 ∩ X1) × (Y0 ∩ Y1) with values in V0 ∩ V1 and suh that
‖T (x, y)‖Vj

≤ Mj‖x‖Xj
‖y‖Yj

, j = 0, 1, for all x ∈ X0 ∩ X1, y ∈ Y0 ∩ Y1,there exists a onstant M = M(T ) suh that
‖T (x, y)‖V̄Γ;K

≤ M‖x‖X̄Γ;J
‖y‖ȲΓ;J

for all x ∈ X0 ∩ X1, y ∈ Y0 ∩ Y1then we say that the bilinear interpolation theorem JΓ × JΓ → KΓ holds.We say that the bilinear interpolation theorem JΓ × JΓ → JΓ is ful�lled if a similarondition is satis�ed but replaing V̄Γ;K by V̄Γ;J .By density of X0∩X1 in X̄Γ;J and Y0∩Y1 in ȲΓ;J , if the theorem JΓ×JΓ → KΓ holdsthen T an be uniquely extended to a ontinuous bilinear mapping from X̄Γ;J × ȲΓ;J to
V̄Γ;K . For the ase of the theorem JΓ × JΓ → JΓ, the extension is from X̄Γ;J × ȲΓ;J to
V̄Γ;J .Sine V̄Γ;K →֒ V̄Γ;J , it is lear that if the theorem JΓ × JΓ → KΓ holds, then thetheorem JΓ × JΓ → JΓ is also ful�lled.The following result is proved in [9℄.Theorem 5.2. Let Γ be a K- and J-non-trivial lattie satisfying (10). Assume also thatshift operators in Γ ful�l (7). Then the following onditions are equivalent.(i) The bilinear interpolation theorem JΓ × JΓ → KΓ holds.(ii) Γ is a Banah algebra with multipliation de�ned as onvolution.(iii) The Calderón transform Ω is bounded in Γ and the theorem JΓ × JΓ → JΓ issatis�ed.(iv) Ω is bounded in Γ and (·, ·)Γ preserves the Banah-algebra struture.We �nish the paper with a new multilinear result.Theorem 5.3. Let Γ0, Γ1, . . . , Γn be K- and J-non-trivial latties satisfying (7), (10)and with Ω bounded in Γk for k = 0, . . . , n. Assume also that the operator R de�ned by

R(ξ(1), . . . , ξ(n)) =
{

∑

∑

n
ν=1 kν=m

(

n
∏

ν=1

ξ
(ν)
kν

)}

m∈Z

, ξ(ν) = {ξ(ν)
m } ∈ Γν



INTERPOLATION OF BANACH ALGEBRAS 67is bounded from ∏n
ν=1 Γν to Γ0, that is, for some onstant M

‖R(ξ(1), . . . , ξ(n))‖Γ0
≤ M

n
∏

ν=1

‖ξ(ν)‖Γν
, ξ(ν) ∈ Γν .Let X̄(ν) = (X

(ν)
0 , X

(ν)
1 ), ν = 1, . . . , n, and Ȳ = (Y0, Y1) be Banah ouples and let T :

∏n
ν=1(X

(ν)
0 ∩X

(ν)
1 ) → Y0∩Y1 be a multilinear operator suh that for any xν ∈ X

(ν)
0 ∩X

(ν)
1 ,

‖T (x1, . . . , xn)‖Yj
≤ Mj

n
∏

ν=1

‖xν‖X
(ν)
j

, j = 0, 1.Then there is a onstant D suh that
‖T (x1, . . . , xn)‖ȲΓ0

≤ D
n

∏

ν=1

‖xν‖X̄
(ν)
Γνand thus T may be uniquely extended to a bounded multilinear mapping from ∏n

ν=1 X̄
(ν)
Γνto ȲΓ0

.Proof. Take any xν ∈ X
(ν)
0 ∩ X

(ν)
1 , ν = 1, . . . , n, and let xν =

∑∞
m=−∞ u

(ν)
m be any

J-representation with only a �nite number of terms u
(ν)
m distint from zero. For m ∈ Z,put

wm =
∑

∑

n
ν=1 kν=m

T (u
(1)
k1

, . . . , u
(n)
kn

).Then wm ∈ Y0 ∩ Y1 and
T (x1, . . . , xn) =

∑

m

(

∑

∑

n
ν=1 kν=m

T (u
(1)
k1

, . . . , u
(n)
kn

)
)

=
∑

m

wm.Moreover
J(2m, wm) ≤

∑

∑

n
ν=1 kν=m

max
(

M0

n
∏

ν=1

‖u
(ν)
kν

‖
X

(ν)
0

, 2mM1

n
∏

ν=1

‖u
(ν)
kν

‖
X

(ν)
1

)

≤ max(M0, M1)
∑

∑

n
ν=1 kν=m

(

n
∏

ν=1

J(2kν , u
(ν)
kν

; X
(ν)
0 , X

(ν)
1 )

)

.Consequently,
‖T (x1, . . . , xn)‖ȲΓ0

≤ ‖{J(2m, wm)}‖Γ0

≤ max(M0, M1)
∥

∥

∥

{

∑

∑

n
ν=1 kν=m

(

n
∏

ν=1

J(2kν , u
(ν)
kν

; X
(ν)
0 , X

(ν)
1 )

)}
∥

∥

∥

Γ0

= max(M0, M1)‖R({J(2m, u(1)
m ; X

(1)
0 , X

(1)
1 )}m, . . . , {J(2m, u(n)

m ; X
(n)
0 , X

(n)
1 )}m)‖Γ0

≤ M max(M0, M1)
n

∏

ν=1

‖{J(2m, u(ν)
m ; X

(ν)
0 , X

(ν)
1 )}‖Γν

.By Lemma 3.3, this yields that for some onstant D we have that
‖T (x1, . . . , xn)‖ȲΓ0

≤ D
n

∏

ν=1

‖xν‖X̄
(ν)
Γν

for all xν ∈ X
(ν)
0 ∩ X

(ν)
1 , ν = 1, . . . , n.Sine X

(ν)
0 ∩ X

(ν)
1 is dense in X̄

(ν)
Γν

, 1 ≤ ν ≤ n, the desired onlusion follows.



68 F. COBOS AND L. M. FERNÁNDEZ-CABRERAIn Theorem 5.3 it is assumed a ertain property on the latties Γj , namely that
R is bounded, and the idea of the proof is to transfer this property to the interpolatedoperator by using Lemma 3.3 and the information about T ating on the n-tuples. Similartehniques have been used to establish other multilinear theorems (see, for example, [18℄and [1℄).Aknowledgements. It is a pleasure to thank Sten Kaijser for drawing our attentionto Theorem 5.3.
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