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Abstract. A model which consists of a predator and two prey species is presented. The prey
compete for the same limited resource (food). The predator preys on both prey species but with
different severity. We show that the coexistence of all three species is possible in a mean-field
approach, whereas from Monte Carlo simulation it follows that the stochastic fluctuations drive
one of the prey populations into extinction.

1. Introduction. One of the most important problems in ecology is to investigate the

question of coexistence of species. Starting with the pioneering works of Lotka [1] and

Volterra [12] there are numerous papers by either biologists, mathematicians or physicists

studying the dynamics of predator-prey systems or systems with competition (see e.g.

[7,1,2,5,10,8]). There are also some studies on three species food chains (e.g. [4]). However,

to the best of our knowledge an exhaustive analysis of three species models with both

predation and competition interactions is still missing. Understanding the interplay be-

tween these two mechanisms is of great practical interest, since it could suggest methods

for manipulating populations in biological control.

In this paper we present a model of three populations living in the same ecosystem

– two of them are prey and one is a predator population. The prey populations differ in

one aspect only – one is preferred by the predators as food. Since it is known [3] that

sometimes in biological models results obtained via mean-field type approach are even

qualitatively different from those coming from agent-based simulations models, we use

here therefore two methods – mean-field leading to differential equations and simulations

based on treating each individual independently.
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2. Mean-field type model. The ecosystem that we model consists of a predator (PR)

and two prey species (P1 and P2 ). The prey species compete for the same limited resource

(living space) but have unlimited access to food. Both prey species are food for the

predators, but with different preference. The equations defining the dynamics of the

model we study are:

dN1

dt
= rN1

[

1 −
N1

K
− b

N2

K
− c1N3

]

,

dN2

dt
= rN2

[

1 −
N2

K
− b

N1

K
− c2N3

]

,(1)

dN3

dt
= r3N3[c1N1 + c2N2 − d],

where N1, N2 and N3 are the numbers of elements of the P1, P2 and PR populations,

respectively. The parameters r and r3 are the natural birth rates of the species, d is

the mortality rate of the predators and K the carrying capacity. The constant b repre-

sents effects of competition between P1 and P2. Predation rates are given by c1 and c2.

Substituting the rescalings x = N1/K, y = N2/K, z = N3/K, and τ = rt we get

dx

dτ
= x[1 − x − by − αz],

dy

dτ
= y[1 − y − bx − βz],(2)

dz

dτ
= γz[αx + βy − d],

where α = c1K, β = c2K and γ = r3/r. The nullclines analysis of Eq. (2) leads to seven

fixed points, the first of which is the trivial empty state P1 = (0, 0, 0). The next two points

are states with only one prey species present: P2 = (1, 0, 0) and P3 = (0, 1, 0). In addition,

there are three points with one species absent: P4 = ( 1

b+1
, 1

b+1
, 0), P5 = ( d

α
, 0,−d−α

α2 ) and

P6 = (0, d
β
,−d−β

β2 ). And finally, there is exactly one steady state P7, where all three

species exist:

(3)

(

−
(bβ − α)d + β(α − β)

β2 − 2αβb + α2
,
(β − αb)d + α(α − β)

β2 − 2αβb + α2
,
(b2 − 1)d + (1 − b)(α + β)

β2 − 2αβb + α2

)

.

The stability of all equilibria, as well as the dynamics of the system, is of course dependent

on the values of the model parameters. To focus our attention we will consider the special

case

(4) γ = 0.50, b = 0.20, d = 0.90, α = 25

and concentrate only on how the dynamics changes if the parameter β representing pre-

dation effects on the P2 species varies. The values (4) are chosen to roughly match the

oscillation period obtained from Monte Carlo simulation (discussed briefly in the next

section). In this case the points P1, P2, P3 and P4 are unstable, no matter what the value

of β is. From the local stability analysis [11] it follows that the point P5 is stable for

β > β1 = 25.7469. Similarly, we can show that the equilibrium P6 is stable if the condi-

tion β < β2 = 24.2523 is satisfied. Furthermore, note that x7(β1) = 0 and y7(β2) = 0.

Thus the interior point P7 joins the fixed point P6 or P5 exactly at the transition value β1
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or β2. It can be deduced from the above discussion that the coexistence is possible only

in a narrow range β ∈ (24.2523, 25.7469) around α = 25. Indeed, one can check that for

these values of β the interior point is a stable spiral. Outside that range the prey favored

by the predators as food will be eliminated. In Fig. 1, an example evolution of the system

in the coexistence case is shown.
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Fig. 1. Time evolution of the system in the coexistence case β = 25.25. The interior point P7 is
a stable spiral.

3. Agent-based model. Let us switch now to the Monte Carlo simulation of the inves-

tigated system. Our species live now on a square L×L lattice. They move at random and

interact with each other following some rules. A detailed description of these rules may

be found elsewhere [11], but we should mention some of them. (i) Double occupancy of

sites by prey is not allowed. In this way the competition for living space is realized. (ii)

Cross-breeding between two types of prey is prohibited. (iii) Predators reproduce if their

food reserves are large enough. (iv) Animals reproduce in a quasi-sexual way, i.e. there

is no sexual difference among the animals of the same type. However, two of them must

meet in the neighboring sites in order to breed. (v) Prey is killed either with probability 1,

or with probability 1− p, where the parameter p corresponds to the difference |α− β| in

the mean-field aproach.

The model has the following parameters: (i) linear size L of the system, (ii) ini-

tial concentrations of the animals, (iii) birth rate m for prey, (iv) maximum food re-

serves f or alternatively, number of MCS a predator may live without catching prey,

(v) minimum food reserves fm necessary for breeding, (vi) food reserves fb received by

a baby predator and (vii) preference p in killing by predators of prey 1 over prey 2.

It would be of course quite difficult, if not impossible, to investigate our model in the

space of all those parameters. We have therefore decided to fix most of them and vary

only L and p. The values taken for the remaining parameters are: initial concentrations

c(P1) = c(P2) = 0.2, c(PR) = 0.1, m = 6, f = 8, fm = 6, fb = 4.

Our previous results show the existence of a narrow range of values of the p param-

eter, for which the coexistence of the three species is possible. To see if this is also the

case in MC simulations, we let the system evolve for a given time and different values
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Fig. 2. Survival chance for the prey populations (at 6000 MCS)

of p and recorded the final densities of the species. The results (averaged over 2000 runs

for L = 50 and 1000 runs for L = 200) after 6000 MCS are shown in Fig. 2. They are

presented as a survival chance, i.e. the number of cases in which a given population was

still present at the end of simulations. The difference between dynamics on larger (L =

200) and small (L=50) lattices should be noticed. For a relatively large value of p, say,

p = 0.05, the chances of survival for P1 in large lattices are nearly null. However on

a small lattice they have a good chance to live on. The difference is due to stochastic

fluctuations which play much more important role in small systems. This susceptibility

of small populations to stochastic changes is well known in biology (see e.g. [9]). The

role of the preference factor is, to some extent, specially in small systems, masked by

stochastic effects in spatial arrangements of the population which may save or drive the

population to extinction. The chance of coexistence is larger for bigger systems. For

L = 50 we have never, regardless of the value of p, found a coexistence of the three

species at the end of a simulation. For a larger system we have found a rather curi-

ous dependence of the coexistence chance on the value of p, since it initially increases

with p.

Only when there are no predators, the two types of prey coexist forever and have the

same concentration. In other cases there is a narrow range of the values of the preference

parameter p, for which coexistence occurs, even for very long simulation times, however

not indefinitely [11]. This kind of behavior differs from the mean-field results, but is quite

similar to situations encountered in nature, where competition between two populations

generally drives one of them to extinction if the living conditions are hard, but has small

effect if the conditions are easy. This statement has never been proved in biology and is

known as the Gause principle [13]. In our model difficult conditions are realized via the

presence of predators.
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