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Abstract. It is a well-known fact that genetic sequences may contain sections with repeated

units, called repeats, that differ in length over a population, with a length distribution of geo-

metric type. A simple class of recombination models with single crossovers is analysed that result

in equilibrium distributions of this type. Due to the nonlinear and infinite-dimensional nature of

these models, their analysis requires some nontrivial tools from measure theory and functional

analysis, which makes them interesting also from a mathematical point of view. In particular,

they can be viewed as quadratic, hence nonlinear, analogues of Markov chains.

1. Introduction. Recombination is a by-product of (sexual) reproduction, which leads

to the mixing of parental genes by exchanging genes (or sequence parts) between ho-

mologous chromosomes (or DNA strands). This is achieved through an alignment of the

corresponding sequences, along with crossover events that lead to a reciprocal exchange

of the induced segments. In this process, an imperfect alignment may result in sequences

that differ in length from the parental ones; this is known as unequal crossover (UC). Im-

perfect alignment is facilitated by the presence of repeated elements (as is observed within

some rDNA sequences, compare [10]), and is believed to be an important driving mecha-

nism for the evolution of the corresponding copy number distribution. The perhaps best

studied case of repeated elements concerns microsatellites, see [9] and references given

there for a summary. An important observation is that, within a population, the copy

numbers vary, and often (at least approximately) follow a distribution of geometric type

(meaning a geometric distribution or a finite convolution product thereof), see [9, 13, 3]

and references therein for some experimental examples and findings.
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Fig. 1. Snapshot after an unequal crossover event as described in the text. Rectangles denote
the relevant blocks, while the dashed lines indicate possible extensions with other elements that
are disregarded here.

The microsatellites themselves may follow an evolutionary course independent of each

other and thus give rise to evolutionary innovation. For a detailed discussion of these

topics, see [9, 23] and references therein; for a brief introduction to molecular evolution,

see also [8], or [7, 25] for a thorough overview. In this paper, which is mainly based

on previous work by Redner [19, 18], we shall focus on the distribution of the copy

numbers only, and disregard further aspects of the possible evolution of the repeated

units themselves. We rather aim at analysing some simple models in order to understand

the observed copy number or repeat distributions. Moreover, we are primarily interested

in models that preserve the mean copy number, though our setting will be adequate to

accommodate also more general models. In view of possible applications to systems where

the copy number (slowly) changes with time, it seems natural to set up a frame that can

cope with such a situation as well.

In the entire model class to be described below, one considers individuals whose

genetic sequences contain a section with repeated units. These may vary in number,

i ∈ N0 = {0, 1, 2, 3, . . .}, where i = 0 is explicitly allowed and corresponds to no unit

being present (yet). The composition of these sections (with respect to mutations that

might have occurred) and the rest of the sequence are ignored here, as are details of the

actual alignment process (e.g., whether partial loops of longer pieces are formed in order

not to disturb the alignment outside the repeat region), see also [4] for a first discussion

of possible models in this direction.

In the course of time, recombination events take place in which a random pair of

individuals is formed and their respective sections are randomly aligned, possibly im-

perfectly with ‘overhangs’. Then, both sequences are cut at a common position between

two building blocks and their right (or left) fragments are interchanged. This so-called

unequal crossover is schematically depicted in Figure 1. Obviously, the total number of

relevant units is conserved in each event. While this is clearly a stochastic process, it

is nevertheless interesting to investigate its deterministic limit, at least as a first step

towards a better general understanding of this model class. To contribute to this first

step, and to summarise what has been done in this direction so far, is the main aim of

this contribution.

2. Description of the deterministic limit. As a first step for the analysis of crossover

dynamics, we assume the population size to be (effectively) infinite, i.e., large enough so

that random fluctuations may be neglected (finite populations will briefly be mentioned

later on). We write M(X) for the (finite) measures on a space X, denote the restriction

to positive measures by a superscript +, and indicate a restriction to measures of total
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variation r by a corresponding subscript (see [20] or [27] for a short summary of the mea-

sure theory needed here). Then, the distribution of the copy numbers over our population

is described by a probability measure (or vector) p ∈ M+
1 (N0), which we identify with

an element p = (pk)k∈N0
in the appropriate subset of ℓ1(N0). Since we do not consider

any genotype space other than N0 in this article, reference to it will be omitted in the

sequel, so we write ℓ1 instead of ℓ1(N0) from now on. These spaces are complete in the

metric derived from the usual ℓ1 norm, which is the same as the total variation norm

here. The metric is denoted by

d(p, q) = ‖p − q‖1 =
∑

k≥0

|pk − qk|. (1)

Let us consider the above process (as well as various more general ones) on the level

of the induced dynamics on the probability measures (i.e., in the infinite population limit

mentioned above). With the notation just introduced, the dynamics can be described by

means of the recombinator

R(p)i :=
1

‖p‖1

∑

j,k,ℓ≥0

Tij,kℓ pk pℓ. (2)

Here, Tij,kℓ ≥ 0 denotes the probability that a pair (k, ℓ) turns into (i, j), so, for normal-

isation, we require ∑

i,j≥0

Tij,kℓ = 1, for all k, ℓ ∈ N0. (3)

The factor pk pℓ in (2) describes the probability that a pair (k, ℓ) is formed, i.e., we assume

that two individuals are chosen independently from the population. We assume further

that, for all i, j, k, ℓ,

Tij,kℓ = Tji,kℓ = Tij,ℓk, (4)

i.e., that Tij,kℓ is symmetric with respect to both index pairs, which is reasonable and

follows from the corresponding symmetry of the underlying process, compare Figure 1.

Then, the summation over j in (2) represents the breaking-up of the pairs after the recom-

bination event. These two ingredients (symmetry and summation) lead to the quadratic

nature of the iteration process, see below for more and [14, 15] for the appearance of

similar types of equations in a different class of biological models.

Condition (3) and the presence of the prefactor 1/‖p‖1 in the defining Eq. (2) make

R norm non-increasing, i.e., ‖R(x)‖1 ≤ ‖x‖1, and positive homogeneous of degree 1,

i.e., R(ax) = |a|R(x), for x ∈ ℓ1 and a ∈ R. Furthermore, R is a positive operator

with ‖R(x)‖1 = ‖x‖1 for all positive elements x ∈ ℓ1. Thus, it is guaranteed that R
maps M+

r , the space of positive measures of total variation r, into itself. This subspace

is complete in the topology induced by the norm ‖.‖1, i.e., by the metric d from (1). (For

r = 1, the prefactor on the right hand side of (2) is redundant, but improves numerical

stability of an iteration with the nonlinear mapping R.)

Given an initial configuration p0 = p(0), the dynamics may be taken in discrete time

steps, with subsequent generations,

p(t+ 1) = R(p(t)), t ∈ N0. (5)
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This iteration reflects the following: due to random mating, it is sufficient to consider

the dynamics at the level of the single strands, which will be combined into pairs again

randomly in the next generation, according to the Hardy-Weinberg equilibrium [7].

Our treatment of this case will be set up in a way that also allows for a generalisation of

the results to the analogous process in continuous time, where generations are overlapping,

d
dt

p(t) = ̺ (R− 1)(p(t)), t ≥ 0. (6)

This reflects what is called instant mixing, i.e., the instantaneous formation of pairs,

their recombination and separation. In other words, the actual duration of the diplophase

(or “paired phase”) is neglected, which is an approximation that is justified as long as

recombination is rare on the time scale of an individual life span.

Obviously, the (positive) parameter ̺ in (6) only leads to a rescaling of the time t.

We therefore choose ̺ = 1 without loss of generality. Furthermore, it is easily verified

that the fixed points of (5) are in one-to-one correspondence with the equilibria of (6).

(In the sequel, we use the term fixed point for both discrete and continuous dynamics.)

As mentioned above, our main interest at present is in processes that conserve the

total copy number in each event, i.e., Tij,kℓ > 0 for i + j = k + ℓ only. More general

scenarios are possible, and also interesting, but already the concept of an equilibrium

gets rather involved, whence we do not go into further details here. Together with the

normalisation (3) and the symmetry condition from above, this yields

∑

i,j≥0

i Tij,kℓ =
∑

i,j≥0

i+ j

2
Tij,kℓ =

∑

i,j≥0

Tij,kℓ

k + ℓ

2
=
k + ℓ

2
, (7)

the second equality of which is an alternative condition that can replace the strict preser-

vation of the copy number as follows.

Lemma 1. Let R be defined by (2), with Tij,kℓ ≥ 0 subject to the normalisation (3) and

the symmetry conditions (4). If also the second equality in (7) is satisfied, for all k, ℓ ∈ N0,

the mean copy number in the population is preserved.

Proof. This is a simple calculation,
∑

i≥0

iR(p)i =
∑

i,j,k,ℓ≥0

i Tij,kℓ pk pℓ =
∑

k,ℓ≥0

k + ℓ

2
pk pℓ =

∑

k≥0

k pk,

which shows the claim, provided that the mean m :=
∑

i ipi is well-defined.

From now on, we use the symbol m for the mean, in order not to confuse it with

summation indices and the like.

3. Markov chains for comparison. Let us take a brief detour to look at the linear

counterpart, a countable state Markov chain, in the deterministic limit of the forward

equation for the time evolution of its probability distribution. To this end, consider again

probability vectors p on N0 and define

M(p)k :=
∞∑

ℓ=0

Mkℓ pℓ,
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for k ∈ N0, where allMkℓ ≥ 0 together with
∑∞

k=0Mkℓ = 1 for all ℓ ∈ N0. This also makes

the above sums well-defined on all elements of ℓ1. Note that the matrix M = (Mkℓ)k,ℓ∈N0

is transposed in comparison with the standard convention for Markov chains [21], because

we are using it here in a dynamical systems context, with action of the matrix to the

column vector on the right. The time evolution now either reads

p(t+ 1) = M(p(t)) (in discrete time) (8)

or
d
dt

p = (M − 1)(p) (in continuous time), (9)

where the rate constant is again assumed to be 1, compare the remark after Eq. (6).

The iteration of the discrete version (8) on ℓ1 is well-defined, while uniqueness of the

solution of the initial value problem for the continuous time counterpart (9) on the same

space follows from its global Lipschitz property,

‖M(p) − M(q)‖1 = ‖M(p − q)‖1 ≤
∑

k,ℓ≥0

Mkℓ |pℓ − qℓ| =
∑

ℓ≥0

|pℓ − qℓ| = ‖p − q‖1,

which holds for all p, q ∈ ℓ1. The properties of the matrix M guarantee that the pos-

itive cone as well as the simplex of probability vectors are preserved in forward time.

Consequently, one can consider (8) and (9) as dynamical systems on ℓ1. As the latter

is a Banach space of infinite dimension, the unit ball is no longer compact in the norm

topology, whence some extra care is needed for the results.

As before, fixed points of (8) line up with equilibria of (9), so that we speak of

fixed points in both cases. Their existence is provided by Perron-Frobenius theory for

countable state Markov matrices, see [12, Ch. 7.1] or [21, Ch. 5] for a detailed account.

Irreducibility, aperiodicity and primitivity are defined as in the finite-dimensional case

without difficulty. However, for meaningful results on eigenvalues and eigenvectors, one

additionally needs the concept of recurrence, see [12, p. 197 f.] for a nice summary.

The Perron value λ emerges from the radius of convergence, ρ, of the power series

T (z) =
∑

n≥0(zM)n via ρ = 1/λ. Clearly, we have ρ ≥ 1 for a Markov matrix. If one

diagonal entry (and then any) of T (z) diverges at 1 (so that ρ = 1 in this case, compare

[21, Thm. 6.6]), the countable state Markov matrix M is called recurrent, where the

behaviour of the diagonal element T (z)ii, as z → 1, reflects the expected number of

recurrences to i, which is infinite in this case. Moreover, a unique normalised and strictly

positive (right) eigenvector p ∈ M+
1 exists with M(p) = p, see [21, Thm. 5.4]. This

probability vector has the meaning of the unique equilibrium distribution and is the

desired fixed point of the dynamics.

Assume for a moment, in addition to the above conditions on M, that
∑

i≥0

iMij = j, for all j. (10)

As before, this is a sufficient condition for the mean to be preserved under the dynamics,

because one has
∑

i≥0

iM(p)i =
∑

i≥0

∑

j≥0

iMijpj =
∑

j≥0

∑

i≥0

iMijpj =
∑

j≥0

jpj ,



58 M. BAAKE

with the interchange of summation being permissible due to absolute convergence of the

sums involved, provided that m =
∑

j jpj exists. However, a condition of type (10) is

usually too restrictive for a linear system, wherefore we do not impose it here. As we

shall see, the mean copy number can be preserved without it.

A probability vector p is called reversible for M when the detailed balance equation

Mkℓ pℓ = Mℓk pk (11)

holds for all k, ℓ ∈ N0. An important consequence is that any reversible p is automatically

a fixed point of M:

M(p)k =
∑

ℓ≥0

Mkℓ pℓ =
∑

ℓ≥0

Mℓk pk = pk.

Reversibility often provides a simpler way to actually calculate a specific fixed point than

the defining matrix eigenvalue equation.

Since the Perron-Frobenius eigenvalue λ need not be isolated in the spectrum of M ,

the convergence properties are more subtle than in the finite-dimensional situation. Under

certain extra conditions (e.g., if λ is isolated), the time evolution of an arbitrary initial

condition converges exponentially fast towards the fixed point. However, when the matrix

M is not only recurrent, but also positive recurrent, one has at least convergence of the

discrete iteration, see [21] for details. Here, positive recurrence means that the expected

time for a return to the state i is finite, which is clearly stronger than mere recurrence.

The standard geometric distribution with parameter α ∈ (0, 1) is a discrete probability

distribution on N0, defined by the probability vector p with

pn := α(1 − α)n, for n ∈ N0. (12)

Clearly, pn > 0 and
∑

n≥0 pn = 1, while m =
∑

n≥0 npn = (1 − α)/α, so that α =

1/(m + 1). If we define the matrix M = (Mij)i,j≥0 by Mij = pi, one has

(Mp)i =
∑

j

Mijpj = pi

∑

j

pj = pi,

so that Mp = p. One clearly has Mn = M for all n ∈ N. Consequently, each entry of

T (z) is a geometric series of the form Mij(1+ z+ z2 + . . .), which thus diverges at z = 1.

In particular, M is (positive) recurrent.

The matrix M does not satisfy Eq. (10). Nevertheless, the mean copy number is

preserved in the following sense. Let a be an arbitrary probability vector with mean

m, and p the geometric distribution according to (12) with the same mean. With the

corresponding matrix M , one then finds
∑

i,j

iMijaj =
∑

i,j

ipiaj =
∑

i

ipi

∑

j

aj = m,

which results in the mean preservation, provided one starts with an initial condition a of

mean m. Otherwise, the iteration maps a to an image of mean m in the first step, and

preserves m in all subsequent iterations.

Further eigenvectors of M are given by q(ℓ) := e0 − eℓ for ℓ ∈ N, where ei is the

standard basis vector with 1 in coordinate i and 0 otherwise. All these extra vectors belong

to the eigenvalue 0, which is the only other eigenvalue of M . In fact, M is diagonalisable,
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and it is not difficult to see that an arbitrary vector a = (a0, a1, a2, . . .) ∈ ℓ1 can be

written as a convergent expansion, a = βp +
∑

ℓ≥1(βpℓ − aℓ)q
(ℓ), where β =

∑
i≥0 ai.

Consequently, the chosen eigenvectors of M form a basis of ℓ1. If U = (p, q(1), q(2), . . .)

denotes the matrix that columnwise consists of the eigenvectors of M , one has

M = Udiag(1, 0, 0, . . .)U−1,

which makes the relation Mn = M for n ∈ N particularly transparent. Moreover, one

sees that M commutes with all matrices N of the form N = UAU−1 where A has the

block form

A =

(
a 0

t

0 A′

)

with an arbitrary matrix A′. Restricting N so that M +N is still Markov, one can find

multi-parameter families of Markov matrices that share the given stationary geometric

distribution p. The same stationary probability vector p can thus arise from many other

Markov chains as well.

Let us now return to the bilinear counterpart to see which of these structural prop-

erties possess an analogue, and to describe the setting of our later analysis.

4. General structure of the bilinear system. Consider the crossover dynamics as

defined by (2). Let us begin by stating the following general fact.

Proposition 1. If the recombinator R of (2) satisfies the normalisation conditions (3),

one has the global Lipschitz condition

‖R(x) −R(y)‖1 ≤ C‖x − y‖1,

with constant C = 3 on ℓ1, respectively C = 2 if x, y ∈ Mr.

Proof. Let x, y ∈ ℓ1 be non-zero (otherwise the statement is trivial). Then, one has

‖R(x) −R(y)‖1 =
∑

i≥0

∣∣∣∣
∑

j,k,ℓ≥0

Tij,kℓ

(
xk xℓ

‖x‖1

− yk yℓ

‖y‖1

)∣∣∣∣

≤
∑

k,ℓ≥0

∣∣∣∣
xk xℓ

‖x‖1

− yk yℓ

‖y‖1

∣∣∣∣
∑

i,j≥0

Tij,kℓ =
∑

k,ℓ≥0

∣∣∣∣
xk xℓ

‖x‖1

− xk yℓ

‖x‖1

+
xk yℓ

‖x‖1

− yk yℓ

‖y‖1

∣∣∣∣

≤
∑

k,ℓ≥0

( |xk|
‖x‖1

|xℓ − yℓ| + |yℓ|
∣∣∣∣
xk

‖x‖1

− yk

‖y‖1

∣∣∣∣
)

= ‖x − y‖1 +

∥∥‖y‖1x − ‖x‖1y
∥∥

1

‖x‖1

.

The last term becomes

1

‖x‖1

∥∥‖y‖1x − ‖x‖1y
∥∥

1
=

1

‖x‖1

∥∥(‖y‖1 − ‖x‖1)x + ‖x‖1(x − y)
∥∥

1
≤ 2‖x − y‖1,

from which ‖R(x) − R(y)‖1 ≤ 3‖x − y‖1 follows for x, y ∈ ℓ1. If x, y ∈ Mr, one has

‖x‖1 = ‖y‖1 and the above calculation simplifies to ‖R(x) −R(y)‖1 ≤ 2‖x − y‖1.

In continuous time, this is a sufficient condition for the existence of a unique solution

of the initial value problem (6), compare [1, Thms. 7.6 and 10.3].
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It is instructive to generalise the notion of reversibility. We call a probability vector

p ∈ M+
1 reversible for a recombinator R of the form (2) if, for all i, j, k, ℓ ≥ 0,

Tij,kℓ pk pℓ = Tkℓ,ij pi pj . (13)

Though this set of equations for detailed balance is much more restrictive than its lin-

ear counterpart in Eq. (11), the relevance of this concept is evident from the following

property.

Lemma 2. If p ∈ M+
1 is reversible for R, it is also a fixed point of R.

Proof. Assume p to be reversible for R. Then, by (3),

R(p)i =
∑

j,k,ℓ≥0

Tij,kℓ pk pℓ =
∑

j,k,ℓ≥0

Tkℓ,ij pi pj = pi

∑

j≥0

pj = pi,

for all i ∈ N0, which shows the claim.

Returning to the original question of the existence of fixed points, we now recall the

following facts, compare [6, 22] for details and proofs, which are needed for some general

statements in the fixed point discussion.

Proposition 2 ([27, Cor. to Thm. V.1.5]). Assume the sequence
(
p(n)

)
in M+

1 to con-

verge in the weak-∗ topology (i.e., pointwise, or vaguely) to some p ∈ M+
1 , i.e.,

lim
n→∞

p
(n)
k = pk for all k ∈ N0, with pk ≥ 0 and

∑
k≥0 pk = 1.

Then, it also converges weakly (in the probabilistic sense) and in total variation, i.e.,

limn→∞ ‖p(n) − p‖1 = 0.

Recall from [6] that a set of measures M ⊂ M+
1 is called tight when, for every ε > 0,

there is an m ∈ N0 such that
∑

k≥m pk < ε, simultaneously for all p ∈ M. This is a

uniformity condition which serves as a condition for the compactness needed later on.

Proposition 3. Assume that the recombinator R from (2) satisfies the normalisation

(3) and possesses a convex, weak-∗ closed invariant set M ⊂ M+
1 , i.e., R(M) ⊂ M,

that is tight. Then, R has a fixed point in M.

Proof. Prohorov’s theorem [22, Thm. III.2.1] states that tightness and relative compact-

ness in the weak-∗ topology are equivalent (see also [6, Chs. 1.1 and 1.5]). In our case, M
is tight and weak-∗ closed, therefore, due to Proposition 2, norm compact. Further, M
is convex by assumption, and R is (norm) continuous by Proposition 1. Thus, the claim

follows from the Leray–Schauder–Tychonov fixed point theorem [20, Thm. V.19].

For several explicit models, we shall see that such compact invariant subsets indeed

exist. On the other hand, once again due to the infinite-dimensional nature of the dy-

namical system, their identification and use for the various proofs is essential.

5. Takahata’s model. An early and now classic example was given by Takahata [24].

In our terminology, he used a recombinator based upon the transition probabilities

Tij,kℓ :=
1

k + ℓ+ 1
δi+j,k+ℓ, (14)
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for i, j, k, ℓ ∈ N0. Observing card{(i, j) | i, j ∈ N0, i + j = k + ℓ} = k + ℓ + 1, it is clear

that T just describes a recombination with uniform distribution of the copy number pairs

(k, ℓ) on each (finite) block of possibilities with k+ℓ fixed. One can also check, via Eq. (7)

and Lemma 1, that the mean m is preserved. On the basis of Eq. (14), the action of the

recombinator from Eq. (2) on probability vectors p simplifies to

R(p)i =
∑

k,ℓ≥0
k+ℓ≥i

1

k + ℓ+ 1
pkpℓ. (15)

Though this model is mathematically rather transparent, it lacks a good intuitive justi-

fication on the level of the biological processes. Nevertheless, its properties seem to be

in acceptable agreement with at least some of the observations, compare [13, 3], though

other results, as those shown in [9], indicate that also other types of equilibria appear in

experiment.

Proposition 4. The probability vector p defined by

pn =
1

m + 1

(
m

m + 1

)n

, n ∈ N0,

is a reversible equilibrium with mean m for the dynamics based on T of (14).

Proof. Using standard identities with geometric series and their derivatives, it is easy to

check that p indeed defines a probability vector on N0 with mean m. Detailed balance

follows from a simple calculation,

Tij,kℓ pkpℓ =
δi+j,k+ℓ

k + ℓ+ 1

(
1

m + 1

)2(
m

m + 1

)k+ℓ

=
δk+ℓ,i+j

i+ j + 1

(
1

m + 1

)2(
m

m + 1

)i+j

= Tkℓ,ij pipj ,

thus completing the claim by means of Lemma 2.

These equilibria are geometric distributions as also discussed above in the Markov

context. However, in view of some experimental findings reported in [9] and further

arguments put forward in [23], one would like to see an initial rise, and perhaps also

a maximum in the vicinity of n ≈ m. One should note that measurements often skip the

entries for small copy numbers (which seem to be rather unreliable), so that a graph with

a power law decay need not indicate the absence of some (weak) form of a maximum.

As the methods for the further analysis of Takahata’s model are similar to what we need

later on for alternative models, we first continue to investigate Takahata’s model.

Theorem 1. If the initial condition, with mean m, satisfies a certain tightness condi-

tion (lim supk→∞
k

√
pk(0) < 1), the dynamics, both in discrete and in continuous time,

converges to the equilibrium vector p from Proposition 4, with limt→∞ ‖p(t) − p‖1 = 0.

The proof of this theorem, quite appropriately for the present context, uses an ap-

proach via generating functions and then relies on Banach’s contraction principle. It

requires several preparatory steps.
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Let α and δ be fixed, with 0 < α ≤ δ <∞, and consider the space

Xα,δ := {a = (ak)k∈N0
| a0 = 1, a1 = α, and 0 ≤ ak ≤ δk for all k ≥ 2}. (16)

If equipped with the metric

d(a, b) =
∑

k≥0

dk |ak − bk|, (17)

where dk = (γ/δ)k for some 0 < γ < 1
3 , the space Xα.δ is compact [19, Prop. 5].

Let us define a new vector, b(p), for suitable p, by

b(p)k :=
∑

ℓ≥k

(
ℓ

k

)
pℓ, (18)

which is certainly well-defined for all p with lim supk→∞
k
√
pk < 1, by an application

of [19, Prop. 6]. This proposition also clarifies the connection with the space Xα,δ for

suitable parameters α and δ. As we shall see, Xα,δ is an example of a compact, convex

space that is invariant under the recombinator dynamics. It is easy to check that one has

b(p)0 = 1 and b(p)1 = m, so that we need Xα,δ with α = m and δ ≥ m.

Lemma 3. For any p with lim supk→∞
k
√
pk < 1, one has the convolution identity

b
(
R(p)

)
k

=
1

k + 1

k∑

m=0

b(p)mb(p)k−m.

Proof. Let p be an arbitrary probability vector with lim supk→∞
k
√
pk < 1, so that the

mapping b is well-defined. The left hand side leads to

b
(
R(p)

)
k

=
∑

ℓ≥k

(
ℓ

k

)
R(p)ℓ =

∑

ℓ≥k

(
ℓ

k

) ∑

r,s≥0
r+s≥ℓ

prps

r + s+ 1

=
∑

r,s≥0
r+s≥k

prps

r + s+ 1

r+s∑

ℓ=k

(
ℓ

k

)
=

1

k + 1

∑

r,s≥0
r+s≥k

(
r + s

k

)
prps,

where a standard identity on binomial coefficients was used in the last step.

On the other hand, one finds

k∑

m=0

b(p)mb(p)k−m =
∑

m,n≥0
m+n=k

(∑

r≥m

(
r

m

)
pr

)(∑

s≥n

(
s

n

)
ps

)

=
∑

m,n≥0
m+n=k

∑

r,s≥0
r+s≥k

(
r

m

)(
s

n

)
prps =

∑

r,s≥0
r+s≥k

prps

∑

m,n≥0
m+n=k

(
r

m

)(
s

n

)

=
∑

r,s≥0
r+s≥k

(
r + s

k

)
prps,

again using a standard identity, together with the fact that
(

n
m

)
= 0 for m > n when n

is an integer. A comparison of the two calculations establishes the claim.
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The further relevance of Lemma 3 stems from the following property of the generating

function of p, defined by ψ(z) =
∑

ℓ≥0 pℓz
ℓ. When rewritten as a Taylor series around 1

rather than around 0, one obtains

ψ(z) =
∑

ℓ≥0

pℓz
ℓ =

∑

k≥0

(∑

ℓ≥k

(
ℓ

k

)
pℓ

)
(z − 1)k =

∑

k≥0

b(p)k (z − 1)k. (19)

Under the assumptions on p, the radius of convergence of ψ(z) is larger than 1, so

that this calculation is on firm grounds. Lemma 3 now tells us that we may study the

recombination action on the level of the expansion coefficients.

Let us therefore define the induced recombination operator R̃ on any space of type

Xα,δ, with δ ≥ α, by R̃(b(a)) = b(R(a)), which establishes a commuting diagram of the

mappings R and R̃ in the obvious way. More precisely, one first restricts the action of

R to a suitable subspace of M+
1 , so that the mapping b is well-defined. If p satisfies the

condition of Lemma 3, so that the radius of convergence of ψ exceeds 1, the probability

vector p is also completely determined by its moments, compare [22, Thm. II.12.7] to-

gether with the observation that ψ(eit) is the (convergent) moment generating function

of p. As all moments, in turn, are specified by the entries of b(p), the latter uniquely

determines p in this situation.

It is easy to check that the vector (1, α, α2, . . .) is a fixed point of R̃ in Xα,δ, for

any δ ≥ α. Choosing α = m, this vector is the image of the probability vector p from

Proposition 4 under the mapping b.

Proposition 5. On Xα,δ, the map defined by R̃ is a contraction. In particular, it is a

globally Lipschitz continuous mapping of Xα,δ into itself.

Proof. Let δ ≥ α > 0 be given, as well as arbitrary a, b ∈ Xα,δ. Clearly, we have

R̃(a)0 = 1 and R̃(a)1 = α. For k ≥ 2, one finds R̃(a)k = 1
k+1

∑k
ℓ=0 aℓak−ℓ ≤ δk. This

proves that R̃ maps Xα,δ into itself.

The space Xα,δ is equipped with the metric d from (17). Since, due to b ∈ Xα,δ, also

R̃(b)0 = 1 and R̃(b)1 = α, the contraction estimate reads as follows.

d(R̃(a), R̃(b)) =
∑

k≥2

dk

k+1

∣∣∣
k∑

ℓ=0

(aℓak−ℓ− bℓbk−ℓ)
∣∣∣ =

∑

k≥2

dk

k+1

∣∣∣
k∑

ℓ=0

(aℓ− bℓ)(ak−ℓ+ bk−ℓ)
∣∣∣

≤
∑

k≥2

2 dk

k + 1

k∑

ℓ=2

δk−ℓ |aℓ − bℓ| =
∑

ℓ≥2

dℓ |aℓ − bℓ|
∑

k≥ℓ

2

k + 1
δk−ℓ dk

dℓ

.

With the choice dk = (γ/δ)k, where we had γ < 1
3 , we can now find, for ℓ ≥ 2, an upper

bound for the inner sum,

∑

k≥ℓ

2

k + 1
δk−ℓ dk

dℓ

≤ 2

3

∑

k≥ℓ

γk−ℓ =
2

3 − 3γ
=: C < 1,

which, together with the previous calculation, proves the contraction property,

d(R̃(a), R̃(b)) ≤ C d(a, b),
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with contraction constant C < 1. Clearly, this also means that R̃ is globally Lipschitz

continuous.

This shows that, in discrete time, we have exponentially fast convergence of the se-

quence (R̃n(a))n≥1, with a ∈ Xα,δ, to a unique fixed point in Xα,δ. It is specified by the

mean copy number m of the probability vector p that underlies a = b(p), via α = m,

see above. Clearly, this fixed point (in Xα,δ) is the image (under b) of the equilibrium

vector p ∈ M+
1 calculated earlier in Proposition 4, as the mapping b is invertible in this

situation. The claim of Theorem 1 for discrete time is now clear, with exponentially fast

convergence to the equilibrium, from any initial condition as specified there.

For the slightly more involved treatment of the continuous time case, we refer to [19].

It is based on the construction of a Lyapunov function, similar to that of [19, Prop. 13].

6. Internal crossover. Another rather obvious model is based on the assumption that

the shorter of the two sequences (or stretches) can align with any connected block of the

longer sequence, but without any overhang. This situation has been coined internal un-

equal crossover, or internal crossover for short. Here, restricting to probability measures

on N0, the recombinator (2) simplifies to

R0(p)i =
∑

k,ℓ≥0
k∧ℓ≤i≤k∨ℓ

pkpℓ

1 + |k − ℓ| , (20)

where k ∧ ℓ (k ∨ ℓ) stands for the minimum (the maximum) of k and ℓ, see [23, 19, 18]

for details on this model. We choose the notation R0 for reasons that will become clear

later on.

In our search for fixed points, it is again useful to look for probability vectors that are

reversible for R0. Since both forward and backward transition probabilities are simulta-

neously non-zero only when {i, j} = {k, ℓ} ⊂ {n, n + 1} for some n, the components pk

may only be positive on this small set as well. By the following proposition, this indeed

characterises all fixed points of this case.

Proposition 6. A probability measure p ∈ M+
1 is a fixed point of R0 if and only if

its mean copy number m =
∑

k≥0 k pk is finite, together with p⌊m⌋ = ⌊m⌋ + 1 − m,

p⌈m⌉ = m + 1 − ⌈m⌉, and pk = 0 for all other k. This includes the case that m is a

non-negative integer, where p⌊m⌋ = p⌈m⌉ = p
m

= 1.

Proof. The ‘if’ follows easily by insertion into (13) and Lemma 2. For the ‘only if’ part,

let i denote the smallest integer such that pi > 0. Then,

R(p)i = p2
i + 2pi

∑

ℓ≥1

pi+ℓ

1 + ℓ
= pi

(
pi + pi+1 +

∑

ℓ≥2

2

ℓ+ 1
pi+ℓ

)
≤ pi,

where the last step follows since 2
ℓ+1 < 1 in the last sum. One has equality precisely when

pk = 0 for all k ≥ i+ 2. This implies m <∞ and the uniqueness of p (given m) with the

non-zero frequencies as claimed.

In this case, one may select a compact subset within the probability vectors by de-

manding the existence of the centred r-th moment, for some fixed r > 1. More precisely,



REPEAT DISTRIBUTIONS 65

with

µs(p) :=
∑

ℓ≥0

|ℓ− m|spℓ,

one considers the set

M+
1,m,C := {p ∈ M+

1 |
∑

k kpk = m and µr(p) ≤ C} (21)

for an arbitrary, but fixed C < ∞, equipped with our usual metric as introduced before

in (1). This gives a compact and convex space [19, Lemma 2]. Moreover, one has

Lemma 4. Let r > 1 be fixed and consider the space M+
1,m,C of (21). Then, both µ1 and

µr satisfy

µs(R0(p)) ≤ µs(p),

with equality if and only if p is a fixed point of R0.

Moreover, µ1 : M+
1,m,C −→ R≥0 is continuous and defines a Lyapunov function for

the dynamics in continuous time.

Proof. To show the first claim, consider

µs(R0(p)) =
∑

i≥0

∑

k,ℓ≥0
k∧ℓ≤i≤k∨ℓ

|i− m|s
1 + |k − ℓ| pk pℓ

=
∑

k,ℓ≥0

pk pℓ

1 + |k − ℓ|
1

2

k∨ℓ∑

i=k∧ℓ

(|i− m|s + |k + ℓ− i− m|s). (22)

For notational convenience, let j = k + ℓ− i. We now show

|i− m|s + |k + ℓ− i− m|s ≤ |k − m|s + |ℓ− m|s. (23)

If {k, ℓ} = {i, j}, then (23) holds with equality. Otherwise, assume without loss of gen-

erality that k < i ≤ j < ℓ. If m ≤ k or m ≥ ℓ, we have equality for s = 1, but a strict

inequality for s = r due to the convexity of x 7→ xr. (For s = 1, this describes the fact

that a recombination event between two sequences that are both longer or both shorter

than the mean does not change their averaged distance to the mean copy number.) In the

remaining cases, the inequality is strict as well. Hence, µs(R0(p)) ≤ µs(p) with equality

if and only if p is a fixed point of R0, since otherwise the sum in (22) contains at least

one term for which (23) holds as a strict inequality.

To see that µ1 is continuous, consider a convergent sequence (p(n)) in M+
1,m,C and the

random variables H(n) = |K(n) −m|, where the K(n) are independent N0-valued random

variables with laws p(n). Due to the structure of M+
1,m,C , the random variables H(n)

are uniformly integrable, which implies the convergence of the corresponding expectation

values by [5, Thm. 25.12]. This, in turn, is nothing but the continuity of µ1. Since µ1(p)

is linear in p and thus infinitely differentiable, so is the solution p(t) for every initial

condition p0 ∈ M+
1,m,C , compare [1, Thm. 9.5 and Remark 9.6(b)]. Therefore, we have

µ̇1(p0) = lim inf
t→0+

µ1(p(t)) − µ1(p0)

t
= µ1(R0(p0)) − µ1(p0) ≤ 0,
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again with equality if and only if p0 is a fixed point. Thus, µ1 is a Lyapunov function as

claimed.

Finally, this gives the following convergence result, the proof of which is given in [19]

and not repeated here.

Theorem 2. Assume that, for the initial condition p(0) and fixed r > 1, the r-th moment

exists, µr(p) < ∞. Then, m =
∑

ℓ ℓpℓ is finite and, both in discrete and in continuous

time, limt→∞ ‖p(t) − p‖1 = 0 with the appropriate fixed point p from Proposition 6.

Let us mention that, for q = 0, the recombinator can be expressed in terms of explicit

frequencies πk,ℓ of fragment pairs before concatenation (with copy numbers k and ℓ) as

R0(p)i =
∑i

j=0 πj,i−j . It is as yet an open question whether this can be used to simplify

the above treatment.

7. Random crossover. This model deviates from the previous one in that it admits

arbitrary overhangs, up to the case where, after the crossover, one sequence got it all

while the other lost everything. The possible alignments for any pair are supposed to be

equally likely, so that the recombinator (2), again restricted to the probability measures,

now reads

R1(p)i =
∑

k,ℓ≥0
k+ℓ≥i

1 + min{k, ℓ, i, k + ℓ− i}
(k + 1)(ℓ+ 1)

pk pℓ. (24)

As for our previous two examples, using Lemma 2 once again, the reversibility condition,
pk

k + 1

pℓ

ℓ+ 1
=

pi

i+ 1

pj

j + 1
, for all k + ℓ = i+ j,

leads to an expression for fixed points. In fact, these relations have pk = C(k + 1)xk as

a solution, with appropriate parameter x and normalisation constant C. Again, it turns

out that all fixed points are given this way, as was originally noticed (in a different way)

in [23, Thm. A.2].

Proposition 7. Every fixed point p ∈ M+
1 of R1 has finite mean m =

∑
k kpk, and is

uniquely specified by the value of m. Explicitly, one has

pk =

(
2

m + 2

)2

(k + 1)

(
m

m + 2

)k

with k ∈ N0.

One can verify this in several ways, one being a direct calculation via induction.

Interestingly, this equilibrium is the convolution of two geometric distributions (of equal

mean m/2), and hence also of geometric type according to our terminology (which follows

that of [23]). It might be interesting to explore this observation a little further in the

future.

At this point, one can define, very much in analogy to the situation in Takahata’s

model above, an induced recombinator, R̃1, acting once more on spaces of the form Xα,δ.

It is given as

R̃1(p) = a
(
R1(p)

)
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where the mapping a is defined by

a(p)k =
1

k + 1

∑

ℓ≥k

(
ℓ

k

)
pℓ =

1

k + 1
b(p)k.

It is thus closely related to our above mapping b.

The main result on this model, proved in detail in [19, 18], reads as follows.

Theorem 3. Assume that lim supk→∞
k

√
pk(0) < 1. Then, both in discrete and in con-

tinuous time, limt→∞ ‖p(t)−p‖1 = 0, where p is the corresponding fixed point according

to Proposition 7.

Proof. The proof is very similar to the one used above for the Takahata model, and

employs once again Banach’s contraction principle for the induced action of R̃1 on Xα,δ.

Since all details have been given in [19], we omit them here.

The fixed points of Proposition 7 are of the expected geometric type, and are perhaps

more realistic than those of the Takahata model, at least for cases where a maximum

is present in the repeat distribution. However, one should note that the experimental

situation is not completely convincing at present, so that it seems advantageous to have

a versatile model class at hand.

8. An interpolation. When considering the recombinators R0 and R1 in comparison,

one would like to find further models that share properties of both of them, or interpolate

between them in a suitable way. In particular, R0 is unrealistic due to the complete

confinement of the shorter bit within the range of the longer one, while R1 poses no

restriction at all for any kind of overhang. One such interpolation was initially investigated

in discrete time by Atteson and Shpak in [23], based on preceding work by Ohta [17] and

Walsh [26], see also [19, 18] for more. The interpolation employs a penalty function idea

for overhangs of the shorter sequence, and leads (in the above language) to a recombinator

Rq with 0 ≤ q ≤ 1. The latter is based upon the transition probabilities

T
(q)
ij,kℓ = C

(q)
kℓ δi+j,k+ℓ (1 + min{k, ℓ, i, j}) q0∨(k∧ℓ−i∧j), (25)

where k ∨ ℓ := max{k, ℓ}, k ∧ ℓ := min{k, ℓ}, and 00 = 1. The normalisation constants

C
(q)
kℓ are chosen such that (3) holds, i.e.,

∑
i,j≥0 T

(q)
ij,kℓ = 1. These constants are symmetric

in k and ℓ and read explicitly

C
(q)
kℓ =

(1 − q)2

(k ∧ ℓ+ 1)(|k − ℓ| + 1)(1 − q)2 + 2q(k ∧ ℓ− (k ∧ ℓ+ 1)q + qk∧ℓ+1)
.

Note further that the total number of units is indeed conserved in each event and that

the process is symmetric within both pairs. Hence (7) is satisfied.

Unfortunately, the situation with the fixed points is a lot more complicated due to

the following result.

Proposition 8. For parameter values q ∈ (0, 1), any fixed point p ∈ M+
1 of the recom-

binator Rq, given by (2) and (25), satisfies pk > 0 for all k ≥ 0 (unless it is the trivial

fixed point p = (1, 0, 0, . . .) we excluded). None of these extra fixed points is reversible.
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Proof. Let a non-trivial fixed point p be given and choose any n > 0 with pn > 0. Observe

that T
(q)
n+1 n−1,nn > 0 for 0 < q < 1 and hence

pn±1 = Rq(p)n±1 =
∑

j,k,ℓ≥0

T
(q)
n±1 j,kℓpk pℓ ≥ T

(q)
n+1 n−1,nn pn pn > 0.

The first statement now follows by induction. For the second statement, evaluate the

reversibility condition (13) for all combinations of i, j, k, ℓ with i+ j = k + ℓ ≤ 4. This

leads to four independent equations. Three of them can be transformed to the recursion

pk =
(k + 1)q

2(k − 1) + 2q

p1

p0

pk−1, k ∈ {2, 3, 4},

from which one derives explicit equations for all pk with k ∈ {2, 3, 4} in terms of p0 and

p1. Inserting the one for p2 into the remaining equation yields another equation for p4

in terms of p0 and p1, which contradicts the first equation for all q ∈ (0, 1), as is easily

verified.

Nevertheless, the dynamics is well defined, and respects the compact subsets defined

above in forward time, compare [19, Thm. 4]. Based upon the analysis in [18, 19], and

further numerical work on the fixed points, it is plausible that, given the mean copy

number m, never more than one fixed point for Rq exists. Due to the global convergence

results at q = 0 and q = 1, any non-uniqueness in the vicinity of these parameter

values could only come from a bifurcation, not from an independent source. Numerical

investigations indicate that no bifurcation is present, but this needs to be analysed further.

Moreover, the Lipschitz constant for the corresponding induced recombinator R̃q can

be expected to be continuous in the parameter q, hence to remain strictly less than 1

on the sets Xα,δ in the neighbourhood of q = 1. So, at least locally, the contraction

property should be preserved. For further progress, it seems advantageous [11] to use a

rather different approach based on the analysis of similar problems in evolutionary game

theory. Here, one would aim to establish a slightly weaker type of convergence result for

all 0 < q < 1, and probably even on the larger compact set M+
1,m,C from Eq. (21).

9. Open problems and outlook. The results for the various models presented here

show that initial configurations, subject to some specific conditions that are no restric-

tion in practice, converge to one of the known fixed points. These results apply to the

deterministic dynamics of the infinite population limit.

In view of the biological applications, one is also interested in possible deviations from

this picture on the level of large, but finite, populations, i.e., for the underlying stochastic

process, e.g., a variant of the Moran model with unequal crossover. In this model class,

however, important deviations seem unlikely, due to the known convergence results for

the infinite population limit, see [2] for more.

Since the above equilibrium distributions have finite support or are exponentially

small for large copy numbers, one can also expect these systems to behave very much

like ones with only finitely many types. In this sense, the results are typical, and the

more general setting with probability vectors on N0 is adequate. This is also supported

by several simulations [18].
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Still, an open question is a more complete understanding of the regime q ∈ (0, 1)

in Section 8. Due to the loss of reversibility of the fixed points, the analysis becomes

rather involved. Preliminary investigations [18] have not given any hint on values of q

where convergence fails or where alternative stable fixed points show up, though this is

presently only based on numerical experiments and perturbative arguments. It might be

advantageous (and perhaps also more realistic) to search for other ways to interpolate

between the cases q = 0 and q = 1, preferably ones that maintain the reversibility of the

equilibria. This question certainly deserves further attention.
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