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Abstract. We consider nondiagonal elliptic and parabolic systems of equations with quadratic

nonlinearities in the gradient. We discuss a new description of regular points of solutions of

such systems. For a class of strongly nonlinear parabolic systems, we estimate locally the Hölder

norm of a solution. Instead of smallness of the oscillation, we assume local smallness of the

Campanato seminorm of the solution under consideration. Theorems about quasireverse Hölder

inequalities proved by the author are essentially used. We study systems under the Dirichlet

boundary condition and estimate the Hölder norm of a solution up to the boundary (up to the

parabolic boundary of the prescribed cylinder in the parabolic case).

1. Introduction. We consider the Cauchy-Dirichlet problem for nonlinear parabolic

systems.

Let Ω be a bounded domain in R
n, n ≥ 2, with sufficiently smooth boundary ∂Ω, let

Q = Ω × (0, T ) with any fixed T > 0, and u : Q 7→ R
N , u = (u1, . . . , uN ), N > 1, be a

solution of the problem

(1) uk
t − (Aαβ

kl (z, u)ul
xβ

)xα
+ bk(z, u, ux) = 0, k = 1, . . . , N, z ∈ Q,

(2) u|Γ = 0, u|t=0 = φ(x),

where ux = {uk
xα

}, Γ = ∂Ω × (0, T ).

It is assumed that the matrix A = {Aαβ
kl (·, ·)}α,β≤n

k,l≤N is defined on the set M = Q×R
N ,

the function b = {bk(·, ·, ·)}k≤N is a Carathéodory function on M× R
nN . Moreover, we
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suppose the following:

a) the strong parabolicity condition holds, i.e., there exist numbers ν and µ > 0 such

that for every (z, u) ∈ M, ξ ∈ R
nN ,

(A(z, u)ξ, ξ) ≥ ν|ξ|2, (3)

sup
M

‖A(z, u)‖ ≤ µ, (4)

b) Aαβ
kl are uniformly continuous functions, more exactly, there is a function ω(s, τ)

defined and continuous on [0,∞)× [0,∞) which is bounded, nondecreasing, concave in τ

for any fixed s, ω(0, 0) = 0, and such that

‖A(z, u) −A(ζ, v)‖ ≤ ω(|z − ζ|2, |u− v|2) z, ζ ∈ Q, u, v ∈ R
N , (5)

c) the function b satisfies the growth condition

|b(z, u, p)| ≤ b0|p|2 + µ, (z, u) ∈ M, p ∈ R
nN , b0 = const > 0, (6)

d) Ω is a strictly Lipschitz domain, φ ∈
0

W 1
2 (Ω).

Condition (6) defines strongly nonlinear term b(z, u, ux) in system (1).

It is known that in the case of smooth data and under compatibility conditions,

there exists a classical solution of (1), (2) on some time interval [0, T0) (see, for example,

Theorem 1, [15] or [1]). A singular set σ ⊂ Ω for t = T0 is estimated in [2]. It is proved

in [2] that the (n− 2)-Hausdorff measure of σ is finite (Hn−2(σ) < +∞).

Strong nonlinearity (6) does not allow to apply well-known abstract theorems to

state weak global solvability of the problem under consideration. Global solvability of

this problem was proved only for a particular case.

One class of systems was studied by the author in the case of two spatial variables

([15], [3]–[5]). It is assumed in these papers that the elliptic operator of the system is

of a variational structure, and conditions a)–c) are valid. Existence of a solution almost

everywhere smooth in Q was proved under the Dirichlet and the Neumann boundary

conditions. The solution may have at most finitely many singular points. It was a devel-

opment of the main idea by M. Struwe [28].

In the situation b0 = 0 in (6), weak solvability of (1), (2) is a consequence of the

Monotone Operators theory. In this case, it is interesting to study the regularity problem.

Counterexamples show that in the multidimensional case, one can expect only partial

regularity of solutions even under all smooth data of the problem ([23], [22]). As for

the two dimensional case, it is unknown up to now whether a solution of the simplest

parabolic system

uk
t − (Aαβ

kl (u)ul
xβ

)xα
= 0, k ≤ N, z ∈ Q,

is smooth in Q for any T > 0 (Aαβ
kl , u|∂′Q are smooth enough) or a singular set can

appear for t > 0.

On the other hand, when b0 6= 0 and the principal matrix A is of the diagonal

structure, i.e.,

Aαβ
kl (z, u) = aαβ(z, u)δk,l, (7)
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where δk,l is the Kronecker symbol, global solvability of (1), (2) was proved for some

special cases. Structural restrictions on function b(z, u, ux) were formulated in the mono-

graph [25] (Chapter 7, §7) to prove global classical solvability or existence in the class

L2((0, T );
0

W 1
2 (Ω)) ∩ Cα, 1

2 α(Q), α ∈ (0, 1) (see also [29], [30] for more sharp conditions

for b).

The systems of the type (1), (7), aαβ = aαβ(x), describe heat flows of harmonic maps.

Existence of global almost everywhere smooth in Q solution (it has finite energy and sat-

isfies the integral identity in the sense of distributions) was proved for the twodimensional

case [28], and for the multidimensional case [17]. It was stated that the solution may have

at most finitely many singular points in the case n = 2, and Hn(Σ; δ) < +∞ for n > 2.

We also mention the corresponding stationary case of the problem (1), (2). For a more

general class of the elliptic operators

L = {Lk}k≤N , Lk = −(ak
α(x, u, ux))xα

+ bk(x, u, ux),

(b satisfies condition (6), n = 2), the Dirichlet problem was studied by J. Frehse [18].

Under the so-called “one-side condition”

b(x, u, p) · u ≥ ν∗|p|2 − µ; ν∗ < ν,

existence of a solution u ∈
0

W 1
2 (Ω) ∩ Cα(Ω), α ∈ (0, 1), was proved in [18].

The regularity problem for elliptic and parabolic nondiagonal systems of equations

with strongly nonlinear terms in the gradient was studied in [20], [21], [26], [27]. Partial

regularity of bounded weak solutions was proved.

In the parabolic situation, under the assumption

2b0‖u‖∞,Q < ν, (8)

it was proved that the solution u of system (1) is a Hölder continuous function in the

vicinity of a point z0 ∈ Q provided that

lim inf
R→0

1

Rn

∫

QR(z0)

|ux|2 dz < ε20, (9)

where the number ε0 > 0 depends on the data only. It means that condition (9) de-

scribes regular points of bounded weak solutions of (1) under restrictions (8) inside Q.

Regularity of bounded weak solutions near the lateral surface Γ, Γ = ∂Ω× (0, T ), under

the Dirichlet and Neumann boundary conditions and restriction (8) was studied in [6].

Partial regularity of the solutions up to Γ was proved, and the Hausdorff measure of the

corresponding singular sets was estimated.

Note that to prove smoothness of a bounded solution u in a neighborhood of z0, it is

sufficient to assume that

osc
QR0

(z0)∩Q
u < θ (10)

for some θ > 0 and R0 = R0(z
0) > 0 (instead of conditions (8), (9)).
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Indeed, from the integral identity for problem (1), (2), and assumption (10), it follows

that
1

Rn

∫

QR(z0)

|ux|2 dz ≤ c0
(θ2 +R2)

(ν − b0θ)
, (11)

where the constant c0 does not depend on z0, R ≤ R0

2 .

Evidently, the inequalities

θ <
ν

b0
, c0

(θ2 +R2
0)

(ν − b0θ)
< ε20,

guarantee condition (9) and local variant of (8) (b0oscQR0
u < ν). Therefore, all mentioned

results on the regularity are valid under condition (10). Moreover, this condition allows us

to estimate the stronger norms of u in the vicinity of z0. Unfortunately, description (10) of

regular points does not allow to obtain a reasonable estimate of the set of singular points

of the solution under consideration. At the same time, an appropriate information on the

singular set can be helpful to study solvability of the problem (see, for example, [17]).

There arises a question how to relax condition (10) in description of regular points.

The author studied this problem for the stationary case. We considered the Dirichlet

problem for quasilinear elliptic systems with quadratic nonlinearities in the gradient. We

proved in [7] and [8] that the assumption

osc
ΩR(x0)

u < θ, ΩR(x0) = Ω ∩BR(x0), (12)

in a point x0 ∈ Ω , supplying an estimate of the Hölder norm of u , can be relaxed to

condition

[u]L2,n(ΩR(x0)) + supy0∈∂Ω∩BR(x0), ̺≤R|u̺,y0 | < θ. (13)

We denote by [·]L2,n(ΩR) the seminorm in the Campanato space L2,n(ΩR). The second

term in (13) is absent for points x0 inside Ω.

Instead of (13), we can assume the condition

‖ux‖L2,n−2(ΩR(x0)) < θ1. (14)

θ and θ1 in (13) and (14) depend on the data of the problem, θ1 = c(n)θ.

(The same relaxations for q-nonlinear systems, 1 < q < 2 , can be found in [13].)

In the situations when (14) can be relaxed to the condition:

1

Rn−2

∫

Ω(x0)

|ux|2 dx < θ1 (15)

at the fixed point x0 ∈ Ω for sufficiently small R, we are able to estimate the Hausdorff

measure of the singular set. In the case of the simplest quasilinear elliptic systems (b0 = 0),

condition (15) describes regular points of solutions. That is why we can say that (15)

introduces an optimal description of regular points in the case b0 6= 0.

There arises a question of the possibility to relax condition (14) to condition (15). It

is not difficult to see that the monotonicity of the function

Φ(̺, y) =
1

̺n−2

∫

Ω̺(y)

|ux|2 dx (16)

in ̺ for any fixed y ∈ Ω provides such transformation.
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For one class of strongly nonlinear elliptic systems, the author proved monotonicity

type inequality for the function Φ introduced by (16) [9]. This inequality permitted to

relax condition (14) to the optimal regularity condition (15).

It is evident that in the stationary situation, condition (14) allowed us to transform

the problem of the optimal description of the regular set to derivation of the monotonicity

type inequality for the function Φ(̺, ·).
The same considerations have been undertaken by the author for the parabolic prob-

lem (1), (2). The question was how to relax condition (10) in description of regular points

of solutions.

For a solution u of (1), (2), a local Lp-estimate, p > 2, of the gradient was obtained

under condition

[u]L2,n+2(QR(z0)) + supζ∈Γ∩QR, ̺≤R|u̺,ζ | < θ, (17)

or
‖ux‖L2,n(QR(z0)) < θ1, z0 ∈ Q ∪ Γ, (18)

θ1 = c(n)θ (see [10], Theorem 2.1 and Remark 2.3).

We note that the Lp - estimate of ux is useful to estimate the Hölder norm of u locally

by the so-called direct method.

We explain in this paper how to estimate u in Cα, α
2 -norm, α ∈ (0, 1), in a neighborhood

of a fixed point z0 ∈ Q∪∂′Q provided that condition (17) (or (18)) holds. It will be done

for one special class of nondiagonal strongly nonlinear parabolic systems.

Finally, we would like to remark that some smoothness of a solution is assumed in

this work. We intend to apply all a priori information about the solution to investigate

in the future a regularization of the problem.

We adopt the following notation:

Λ = (0, T ), Q = Ω × (0, T ), BR(x0) = {x ∈ R
n : |x− x0| < R},

ΩR(x0) = Ω ∩BR(x0), ΛR(t0) = (t0 −R2, t0 +R2),

PR(z0) = BR(x0) × ΛR(t0), QR(z0) = PR(z0) ∩Q,
ΓR(z0) = PR(z0) ∩ Γ, Ω(0)(x0) = PR(z0) ∩ {t = 0},

∂′QR(z0) is the parabolic boundary of QR(z0), |D| = measn+1D for a Lebesgue mea-

surable set in R
n+1, d0 = diamΩ,

gr,z0 =

∫

–
Qr(z0)

g dz =
1

|Qr|

∫

Qr(z0)

g dz, |Qr| = 2ωnr
n+2, ωn = measnB1(0),

∫

=
Qr(z0)

g dz =
1

rn

∫

Qr(z0)

g dz,

∫

=
Ωr(x0)

ψ dx =
1

rn−2

∫

Ωr(x0)

ψ dx,

‖u‖m,D is the norm of a function u in the space Lm(D), m ∈ [1,∞],

δ(z1, z2) = max {|x1 − x2|, |t1 − t2| 12 }, zi = (xi, ti) ∈ R
n+1, i = 1, 2,

< u >
(α, α

2 )

Q = sup
z,z′∈Q, z 6=z′

|u(z) − u(z′)|
δ(z, z′)α

.

Let the Lipschitz characteristics of ∂Ω be estimated by the constant lΓ.
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2. Lp-estimate of the gradient of a solution. Let conditions a), c), and d) of the

Introduction hold. By Theorem 2.1 and Remark 2.3 [10], there exists a number θ0 > 0

depending on the data only such that condition (17) (or (18)) with θ ≤ θ0 for a fixed

point z0 ∈ Q ∪ Γ ensures the estimate

(
∫

–
Q̺(ξ)

|ux|p dz
)

2
p

≤ c1

∫

–
Qa̺(ξ)

(1 + |ux|)2 dz (19)

for all ξ ∈ QR
2
(z0), ̺ ≤ R

2a , a ≥ 2 is an absolute constant. Here p = p(ν, µ, n) > 2,

c1 = c1(ν, µ, n, b0, lΓ).

Remark 1. To derive (19), it was assumed in [10] that u ∈ L∞(Λ;L2(Ω))∩L2(Λ;
0

W 1
2 (Ω)),

and there existsm > 2 such that ux ∈ Lm(QR(z0)). Moreover, it follows from (17) or (18)

that the corresponding characteristics of u should be finite. We note that condition (17)

(or (18)) does not guarantee the higher integrability of |ux|, but only estimate (19).

Certainly, p ≤ m in (19).

Further, we say that “u is a suitable solution in QR(z0)” provided that all mentioned

in Remark 1 characteristics of u are finite in QR(z0).

Remark 2. In (19) and below we denote by ci different constants that may depend on

the parameters of the data. Dependence on other parameters is marked explicitly. For

example, ci = ci(ε), ε > 0.

We did not discuss in [10] the situation PR(z0) ∩ {t = 0} 6= ∅. The corresponding

analysis was done earlier in [11]. We studied in [11] bounded weak solutions u of (1), (2),

u ∈ V = {v : ess supΛ ‖v(·, t)‖2,Ω + ‖vx‖2,Q < +∞} and assumed condition (8). The

reverse Hölder inequalities for |ux(z)| with additional terms depending on the initial

function φ were derived in [11].

Let now Ω
(0)
R (z0) 6= ∅ and condition (17) or (18) hold with θ ≤ θ0. Using the same

ideas as in [10] and [11], we are able to deduce in our situation the quasireverse Hölder

inequalities for g(z) = (1 + |ux|)
2
q , q = n+2

n , l > 1:
∫

–
Q̺(ξ)

gq dz ≤ ε1

∫

–
Qa̺(ξ)

gq dz + c2(ε1)

(
∫

–
Qa̺(ξ)

g dz

)q

+ c3(l)θb0

(
∫

–
Qa̺(ξ)

gql dz

)
1
l

+ c4

(
∫

–
Ω

(0)
a̺ (x∗)

|φx|
2
q dx

)q

,

ξ = (x∗, t∗), ξ ∈ ΩR
2
(x0) ×

[

0, t0 +

(

R

2

)2]

, ̺ ≤ R

2a
, a = const ≥ 2. (20)

We follow [11], [14], and [10] to assert that the inequality

(
∫

–
Q̺(ξ)

|ux|p dz
)

2
p

≤ c5

∫

–
Qa̺(ξ)

((1 + |ux|)2 dzg + c6

(
∫

–
Ω

(0)
a̺ (x∗)

|φx|
2
q
+(p−2) dx

)
2

2
q
+(p−2)

holds with some p = p(ν, µ, n) > 2 and the same ξ and ̺ as in (20) provided that θ and

l are fixed appropriately. We may suppose that p < 2(n+4)
n+2 , apply the Hölder inequality
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to the last term in the last inequality, and derive the following estimate:
(

∫

–
Q̺(ξ)

|ux|p dz
)

2
p

≤ c5

∫

–
Qa̺(ξ)

(1 + |ux|)2 dz + c6

∫

–
Ω

(0)
a̺ (x∗)

|φx|2 dx, ̺ ≤ R

2a
. (21)

In (21) ξ = (x∗, t∗) ∈ ΩR
2
(x0)× [0, t0 +(R

2 )2] for the case t0 ≤ R2, and ξ ∈ QR
2
(z0) in the

other case. We recall that (21) is derived under assumption (17) (or (18)) with θ ≤ θ0,

where θ0 is fixed by the data.

3. Energy estimates and the main statement. First, we remark that the global

energy estimate for a bounded solution u ∈ L∞(Λ;L2(Ω))∩L2(Λ;
0

W 1
2 (Ω)) can be deduced

provided that condition (8) holds. Instead of (8), we can assume “one-side condition”

mentioned earlier, and derive both global and local variant of the energy estimate:

sup
ΛR(t0)

‖u(·, t)‖2
2,Ω(x0) + (ν − ν∗)‖ux‖2

2,QR(z0)

≤ µ|Q2R| +
c

R2

∫

Q2R(z0)

|u|2 dz + ‖φ‖2

2,Ω
(0)
2R

(x0)
, z0 ∈ Q.

Nevertheless, we are forced to assume validity of the stronger energy estimate for our

future considerations. In [6], a local estimate of the Hölder norm of solution u was derived

under condition (8) and assumption that ut ∈ L2(Q). In general, the last condition is

very strong but for parabolic systems with elliptic operators of the variational structure,

the following estimate holds:

‖ut‖2
2,Q + sup

Λ
‖ux(·, t)‖2

2,Ω ≤ c7(1 + ‖φx‖2
2,Ω). (22)

More exactly, let L be the Euler operator for the quadratic functional

E[u] =

∫

Ω

[

1

2
Aαβ

kl (x, u)ul
xβ
uk

xα
+ fk(x)uk

]

dx. (23)

Then

bk(x, u, ux) =
1

2
(Aαβ

ml(x, u))
′
uku

l
xβ
um

xα
+ fk(x)

in system (1), and in (6)

b0 =
1

2
sup

x∈Ω, u∈RN

∑

α,β≤n; m,k,l≤N

|(Aαβ
ml(x, u))

′
uk | <∞,

µ = ‖f‖∞,Ω for f ∈ L∞(Ω).

For the system ut + Lu = 0 with the described operator L (under conditions (2)),

inequality (22) can be obtained immediately. Moreover, the local energy estimate

sup
Λr(t̂)

(
∫

Ωr(x̂)

|ux(x, t)|2 dx
)

+

∫

Qr(ẑ)

|ut|2 dz

≤ c8

{

1

r2

∫

Q2r(ẑ)

(1+ |ux|)2 dz+

∫

Ω
(0)
2r (x̂)

|φx|2 dx
}

, ẑ = (x̂, t̂) ∈ Q, r ≤ d0, (24)

also holds.
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In particular, it follows from (24) that
∫

–
Qr(ẑ)

|u− ur,ẑ|2 dz ≤ c9

(
∫

=
Q2r(ẑ)

(1 + |ux|)2 dz +

∫

=
Ω

(0)
2r (x̂)

|φx|2 dx
)

. (25)

Further we assume that inequality (24) holds for the solution under investigation.

Now we are ready to formulate the main result of the paper.

Theorem. Let conditions a)–d) hold, let u be a suitable solution of (1), (2) in

QR0
(z0) ⊂ Q (see Remark 1), and satisfy inequality (24) in all cylinders of QR0

(z0).

Let γR0
(x0) = BR0

(x0) ∩ ∂Ω ∈ C1 and φx ∈ L2,n−2+2α(Ω
(0)
R0

(x0)) for a fixed α ∈ (0, 1).

There exist positive numbers θ and R ≤ R0 such that the assumption

‖ux‖L2,n(QR(z0);δ) < θ (26)

guarantees the estimate

〈u〉(β, β
2 )

Q R
2

(z0) ≤ c10(1 + ‖ux‖2,QR(z0)). (27)

Parameters θ and R in (26) depend only on the data of the problem. The exponent β

is an arbitrary number in (0, 1) provided that Ω
(0)
R (x0) = ∅, and β ≤ α in the case

Ω
(0)
R (x0) 6= ∅. The constant c10 depends on R−1, ν, µ, b0, θ, β, n. Moreover, c10 may also

depend on ‖φx‖L2,n−2+2α(Ω
(0)
R

(x0))
and C1-characteristics of γR(x0).

4. Model setting of the problem. The most interesting cases as regards the location

of z0 ∈Q∪∂′Q are the following: ΓR(z0) = PR(z0)∩Γ 6= ∅, and Ω
(0)
R (x0) = PR(z0)∩{t = 0}

6= ∅ (z0 is close to the parabolic boundary of Q). We consider this case below.

Let y0 be the nearest point to x0 at ∂Ω. We introduce C1-diffeomorphism y = y(x) of

some neighborhood V (y0) so that V (y0)∩ ∂Ω ⊂ γR0
(x0), x0 ∈ V (y0)∩Ω and y(V (y0)∩

Ω) = B+
1 (0), y(V (y0) ∩ ∂Ω) = γ1(0). Here and below γr(0) = Br(0) ∩ {yn = 0}. The

function ũ(y, t) = u(x(y), t) is a solution of the problem

ũk
t − (Aαβ

kl (ξ, ũ)ũl
yβ

)yα
+Dk(ξ, ũ, ũy) = 0,

ũ|Γ1
= 0, Γ1 = γ1(0) × (0, T ), ξ = (y, t) ∈ B+

1 (0) × (0, T ), (28)

ũ|t=0 = φ(x(y)),

where the functions Aαβ
kl and Dk satisfy conditions of the form a), b), and c) for

y ∈ B+
1 (0) but with the other parameters depending on the C1-norm of the diffeomor-

phism y(x); ψ(y) = φ(x(y)) ∈ L2,n−2+2α(B+
1 ). The solution ũ of (28) satisfies the

inequality (24) with the other constants.

Later on, we use the initial notation of the variables and functions, and prove our

Theorem in the following local setting:

uk
t − (Aαβ

kl (z, u)ul
xβ

)xα
+ bk(z, u, ux) = 0, z ∈ Q+ = B+

1 (0) × (0, T ),

u|Γ1
= 0, u|B+

1 (0)×{0} = φ(x), (29)

and condition (26) holds in a cylinder QR(z0) ⊂ Q+. We suppose that ΓR(z0) = PR(z0)∩
Γ1 6= ∅ and PR(z0) ∩ {t = 0} 6= ∅.
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There is no loss of generality in assuming that

Rα ≤ θ. (30)

Here θ is the parameter in condition (26), and θ ≤ θ0, where θ0 was fixed by the data to

guarantee the validity of (21). We will sharp the choice of R and θ later.

5. Proof of the main Theorem. To prove Theorem in the local setting (29), we fix

a point ẑ ∈ Q̃ 3R
4

(z0) = Ω 3R
4

(x0) × [0, t0 + ( 3R
4 )2] ⊇ Q 3R

4
(z0) and r ≤ R

4a (the constant

a ≥ 2 is fixed by (21)). We denote

Qr(ẑ) = QR(z0) ∩ Pr(ẑ), ur,ẑ =

∫

–
Qr(ẑ)

u(z) dz, Âαβ
kl = Aαβ

kl (ẑ, ur,ẑ)

and consider the following problem:

vk
t − Âαβ

kl v
l
xβxα

= 0, z ∈ Qr(ẑ),

v|∂′Qr(ẑ) = u(z).
(31)

The problem has a unique solution, it is smooth up to Γ′
r(ẑ)∪Ω

(0)
r (x̂), where Γ′

r(ẑ) =

∂′Qr(ẑ) ∩ ΓR(z0) and Ω
(0)
r (x̂) = ∂′Qr(ẑ) ∩ {t = 0}. (The sets Γ′

r(ẑ) or Ω
(0)
r (x̂) may be

empty.)

First, we consider the case Ω
(0)
r (ẑ) 6= ∅. In this case, we introduce the function ṽ(z) =

v(z) − φ(x), it solves the problem

ṽk
t − Âαβ

kl ṽ
l
xβxα

= (Âαβ
kl φ

l
xβ

(x))xα
, z ∈ Qr(ẑ), ṽ|Γ′

r(ẑ)∪Ω
(0)
r (x̂)

= 0. (32)

The following Campanato estimates are valid for ṽ [16]:
∫

Q̺(ξ)

|ṽ − ṽ̺,ξ|2 dz ≤ c11

[(

̺

r̂

)n+4 ∫

Qr̂(ξ)

|ṽ − ṽr̂,ξ|2 dz + cφr̂
n+2+2α

]

, (33)

and
∫

Q̺(ξ)

|ṽx|2 dz ≤ c12

[(

̺

r̂

)n+2 ∫

Qr̂(ξ)

|ṽx|2 dz + cφr̂
n+2α

]

, ̺ ≤ r̂ ≤ r

2
, (34)

where ξ ∈ Ω r
2
(x̂) × [0, t̂+ ( r

2 )2] and cφ = ‖φx‖L2,n−2+2α(Ω
(0)
R

(x0))
.

It is easy to see that estimates (33) and (34) imply the corresponding inequalities

for v. Putting

Φ(̺, ξ) =

∫

Q̺(ξ)

|v − v̺,ξ|2 dz,

we rewrite estimate (33) in the form

Φ(̺, ξ) ≤ c13

[(

̺

r̂

)n+4

Φ(r̂, ξ) + cφr
2αr̂n+2

]

, ̺ ≤ r̂ ≤ r

2
. (35)

Due to the well-known Lemma by S. Campanato [19], the inequality

Φ(̺, ξ) ≤ c14̺
n+2

(

Φ(r̂, ξ)

r̂n+2
+ cφr

2α

)

, (36)

̺ ≤ r̂ ≤ r
2 , c14 = c14(c13, n), follows from (35).
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Now we put r̂ = r
2 in (36) and obtain that

Φ(̺, ξ)

̺n+2
≤ c14

{

Φ( r
2 , ξ)

( r
2 )n+2

+ cφr
2α

}

≤ c15

{

Φ(r, ẑ)

rn+2
+ cφr

2α

}

. (37)

We take the supremum over all admissible ξ and ̺ ≤ r
2 to conclude that

[v]2
L2,n+2(Q̃ r

2
(ẑ);δ)

≤ c15

{
∫

–
Qr(ẑ)

|v − vr,ẑ|2 dz + cφr
2α

}

(38)

in the case Ω
(0)
r (x̂) 6= ∅.

We repeat the above considerations to deduce for vx from (34) the estimate

‖vx‖2
L2,n(Q̃ r

2
(ẑ))

≤ c16

{
∫

=
Qr(ẑ)

|vx|2 dz + cφr
2α

}

, (39)

when Ω
(0)
r (x̂) 6= ∅.

If Ω
(0)
r (x̂) = ∅, we do not transform problem (31) to (32), and obtain estimates of

[v]2L2,n+2(Q r
2
(ẑ; δ)) and ‖vx‖2

L2,n(Q r
2
(ẑ;δ)) similar to (38) and (39) where the terms with

cφ are absent.

Further, we consider function w = u− v, w|∂′Qr(ẑ) = 0. It satisfies the identity
∫

Qr(ẑ)

(wk
t h

k + Âαβ
kl w

l
xβ
hk

xα
) dz =

∫

Qr(ẑ)

(F k
α(z)hk

xα
+ fk(z)hk) dz,

h ∈ L2(Λr(t̂);
0

W
1

2(Ωr(x̂)). (40)

Here F k
α(z) = Âαβ

kl u
l
xβ

(z), fk(z) = uk
t (z). From (40) with h = w, it follows that

sup
Λr(t̂)

‖w(·, t)‖2
2,Ω(x̂) + ‖wx‖2

2,Qr(ẑ) ≤ c17(‖ux‖2
2,Qr(ẑ) + r2‖ut‖2

2,Qr(ẑ)). (41)

From (41) and (24), the estimate

sup
Λr(t̂)

‖w(·, t)‖2
2,Ωr(x̂) + ‖wx‖2

2,Qr(ẑ) ≤ c18(‖(1 + |ux|)‖2
2,Q2r(ẑ) + r2‖φx‖2

2,Ω2r(x̂)) (42)

follows.

As a consequence of (38), (25), (42), and (26), we obtain the estimate

[w]2
L2,n+2(Q̃ r

2
(ẑ))

≤ c19(θ
2 + r2α) ≤(30) 2c19θ

2, (43)

for the case Ω(0)(x̂) 6= ∅. (The estimate of [w]2L2,n+2(Q r
2
(ẑ)) we derive in the other case.)

The inequality

‖wx‖2
L2,n(Q̃ r

2
(ẑ))

≤ c20θ
2 (44)

follows from (39), (42), and (26), provided that Ω
(0)
R (x̂) 6= ∅. If Ω

(0)
r (x̂) = ∅, then the

same estimate can be derived for ‖wx‖2
L2,n(Q r

2
(ẑ)).

Besides (42), we need a global Lm-estimate of |wx| in Qr(ẑ) for an exponent m > 2.

Using identity (40) and the condition w|∂′Qr(ẑ) = 0, it is easy to deduce the reverse
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Hölder inequalities in all cylinders Q̺ ⊂ Qr(ẑ) (we admit ∂Q̺ ∩ ∂′Qr(ẑ) 6= ∅). By the

parabolic version of the Gehring Lemma, there exists a number m = m(ν, µ, n) > 2 such

that

(
∫

–
Qr(ẑ)

|wx|m dz

)
2
m

≤ c21

{
∫

–
Qr(ẑ)

|wx|2 dz +

(
∫

–
Qr(ẑ)

|F |m dz

)
2
m

+r2
(

∫

–
Qr(ẑ)

|f | lm
2 dz

)
4

lm
}

, l =
2(n+ 2)

n+ 4
. (45)

We may consider (45) with m ≤ min{p, 2(n+4)
n+2 }, where p > 2 is the exponent

from (21).

Such an estimate for |wx| but with the last term in the form

(
∫

–
Qr(ẑ)

|f |l+m−2 dz

)
2

l+m−2

was obtained in [12]. Here we need the inequality (45). One can deduce it, following the

idea of proving Theorem 2.2 of Chapter 4 [19] for the standard euclidian metric. Now we

estimate all terms in the right-hand side of (45) as follows:
∫

–
Qr(ẑ)

|wx|2 dz ≤(42) c22

(
∫

–
Qr(ẑ)

(1 + |ux|)2 dz +

∫

–
Ω

(0)
r (ẑ)

|φx|2 dx
)

,

(
∫

–
Qr(ẑ)

|F |m dz

)
2
m

≤ c23

(
∫

–
Qr(ẑ)

|ux|m dz

)
2
m

dz

≤(21) c24

∫

–
Qar(ẑ)

(1 + |ux|)2 dz +

∫

–
Ω

(0)
ar (x̂)

|φx|2 dx,

r2
(

∫

–
Qr(ẑ)

|f | lm
2 dz

)
4

lm

≤ r2
∫

–
Qr(ẑ)

|ut|2 dz.

Now from (45) and (24), it follows that

(
∫

–
Qr(ẑ)

|wx|m dz

)
2
m

≤ c25

[
∫

–
Qar(ẑ)

(1 + |ux|)2 dz +

∫

–
Ω

(0)
ar (x̂)

|φx|2 dx
]

. (46)

Moreover, the function w satisfies the identity
∫

Qr(ẑ)

[wk
t η

k + Âαβ
kl w

l
xβ
ηk

xα
+ bk(z, u, ux)ηk + ∆Aαβ

kl u
l
xβ
ηk

xα
] dz = 0,

η|Γr(ẑ) = 0, (47)

∆Aαβ
kl = Aαβ

kl (z, u) −Aαβ
kl (ẑ, ur,ẑ).

Further, we consider in detail the case Ω
(0)
r (x̂) 6= ∅ and put in (47) η(z) = w(z)((2T )s−

|w(z)|s)+, the parameters T > 1 and s ∈ (0, 1) will be chosen later. The function η is

bounded in Qr(ẑ) = Ωr × (0, t̂+ r2), (|η| ≤ (2T )s+1), and η|∂′Qr(ẑ) = 0.
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We obtain the inequality
∫

Qr

[wtw((2T )s − |w|s)+ + Âαβ
kl w

l
xβ
wk

xα
((2T )s − |w|s)+

+ Âαβ
kl w

l
xβ
wk(−s|w|s−2(w · wxα

)χ+)] dz

≤
∫

Qr

|∆A||ux|(|wx|((2T )s − |w|s)+ + s|w|s|wx|χ+) dz

+ b0

∫

Qr

|ux|2|w|((2T )s − |w|s)+ dz + µ

∫

Qr

|w|((2T )s − |w|s)+ dz, Qr = Qr(ẑ),

where χ+(z) is the characteristic function of the set {z ∈ Qr(ẑ) : |w| < 2T}.
From this inequality it follows that

∫

Qr

( |w|2
2

)′

t

((2T )s − |w|s)+ dz +
ν

2

∫

Qr

|wx|2((2T )s − |w|s)+ dz

≤ c26T
s

{

s

∫

Qr

|wx|2 dz +

∫

Qr

ω2(r2; |u− ur,ẑ|2)|ux|2 dz

+b0

∫

Qr

|ux|2|w|χ+ dz +

∫

Qr

|w|χ+ dz

}

. (48)

The first integral in the left-hand side of (48) is nonnegative. Indeed,

J =

∫

Qr

( |w|2
2

)′

t

((2T )s−|w|s)+ dz =

∫

Ωr(x̂)

(
∫ |w(x,t)|

0

ξ((2T )s−ξs)+ dξ

)

dx

∣

∣

∣

∣

t=t̂+r2

t=0

=

∫

Ωr(x̂)

(
∫ |w(x,t̂+r2)|

0

ξ((2T )s−ξs)+ dξ

)

dx≥ 0. (49)

Now we’ll estimate from below the second integral in the left-hand side of (48). First,

we fix the number

k∗ =
T

2
1
s

, (50)

and put

q =
1

2
√
n
, Q̺̃(ẑ) = Ω̺(x̂) × (0, t̂+ ̺2) ⊇ Q̺(ẑ) = P̺(ẑ) ∩Q+,

Q̃+
qr(ẑ) = {z ∈ Q̃qr(ẑ) : |w(z) − wqr,ẑ| > k∗}

Q̃−
qr(ẑ) = {z ∈ Q̃qr(ẑ) : |w(z) − wqr,ẑ| ≤ k∗}.

Note that

|wqr,ẑ| ≤
|Qr|
|Qqr|

∫

–
Qr(ẑ)

|w| dz = c27

∫

–
Qr(ẑ)

|w| dz ≤ c28

(
∫

=
Qr(ẑ)

|wx|2 dz
)

1
2

≤(42) c29

(
∫

=
Q2r(ẑ)

(1 + |ux|)2 dz +

∫

=
Ω

(0)
2r (x̂)

|φx|2 dx
)

1
2

≤(26) c30(θ + rα) ≤(30) c31θ.

We assume that the parameters θ ≤ 1, and get the inequality

|wqr,ẑ| ≤ c31. (51)
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Let the numbers T and s be fixed to satisfy the condition

k∗ =
T

2
1
s

> c31. (52)

It yields the estimate

|w(z)| ≤ |w(z) − wqr,ẑ| + |wqr,ẑ| ≤ 2k∗, z ∈ Q̃−
qr(ẑ).

Consequently,

(2T )s − |w(z)|s ≥ (2T )s − (2k∗)
s =

(2T )s

2
(53)

on the set Q̃−
qr(ẑ).

From the above it follows that

L =

∫

Qr

|wx|2((2T )s − |w|s)+ dz ≥
∫

Q̃−

qr(ẑ)

|wx|2((2T )s − |w|s)+ dz

≥ (2T )s

2

∫

Q̃−

qr(ẑ)

|wx|2 dz. (54)

Taking into account the estimates for J and L and dividing inequality (48) by (2T )s,

we derive the relation
∫

Q̃−

qr(ẑ)

|wx|2 dz ≤ c32

{

s

∫

Qr(ẑ)

|wx|2 dz +

∫

Qr(ẑ)

ω2|ux|2 dz

+

∫

Qr(ẑ)

|ux|2|w|χ+ dz +

∫

Qr(ẑ)

|w| dz
}

. (55)

Now we explain the estimating of every integral in the right-hand side of (55).

The first term will be estimated by (42). The second integral is estimated in the

standard way with the help of (21):

∫

Qr(ẑ)

ω2(r2; |u− ur,ẑ|2)|ux|2 dz ≤
(

∫

–
Qr(ẑ)

|ux|p dz
)

2
p
(

∫

–
Qr(ẑ)

ω
2p

p−2 dz

)

p−2
p

|Qr|

≤(21) c33

(
∫

Qar(ẑ)

(1+ |ux|)2 dz + r2
∫

Ω
(0)
ar (x̂)

|φx|2 dx
)

ω
p−2

p

(

r2;

∫

–
Qr

|u−ur,ẑ |2 dz
)

≤(25) c33

(
∫

Qar(ẑ)

(1 + |ux|)2 dz + r2
∫

Ω
(0)
ar (x̂)

|φx|2 dx
)

×ω p−2
p

(

r2; c9

(
∫

=
Q2r

(1 + |ux|)2 dz +

∫

=
Ω

(0)
2r (x̂)

|φx|2 dx
))

. (56)

Further,
∫

Qr(ẑ)

|ux|2|w|χ+ dz ≤
(

∫

–
Qr(ẑ)

|ux|p dz
)

2
p
(

∫

–
Qr(ẑ)

|w| p
p−2χ+ dz

)1− 2
p

|Qr|

≤(21) c34

(
∫

Qar(ẑ)

(1 + |ux|)2 dz + r2
∫

Ω
(0)
ar (x̂)

|φx|2 dx
)

T
4−p

p

(
∫

–
Qr(ẑ)

|w|2 dz
)

p−2
p

≤(42),(26) c35T
4−p

p (θ2 + r2)
p−2

p

(
∫

Qar(ẑ)

(1 + |ux|)2 dz + cφr
n+2α

)

. (57)
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At last,
∫

Qr(ẑ)

|w| dz ≤ c(n)(r2
∫

Qr(ẑ)

|wx|2 dz + rn+2)

≤(42) c36r
2

∫

Q2r(ẑ)

(1 + |ux|)2 dz + c37r
n+2. (58)

Using (56)–(58), we derive from (55) the inequality
∫

Q̃qr(ẑ)

|wx|2 dz ≤
∫

Q̃+
qr(ẑ)

|wx|2 dz + c38{s+ ω
p−2

p (r2; c39θ
2)

+T
4−p

p θ
2(p−2)

p + r2}
(

∫

Qar(ẑ)

(1 + |ux|)2 dz + cφr
n+2α

)

. (59)

Now we estimate the integral M =
∫

Q̃+
qr(ẑ)

|wx|2 dz in (59):

M ≤
(

∫

–
Q̃qr(ẑ)

|wx|m dz

)
2
m

|Q̃+
qr|1−

2
m |Q̃qr|

2
m

≤(46),(42) c39

(
∫

Qar(ẑ)

(1 + |ux|)2 dz + cφr
n+2α

)( |Q̃+
qr|

|Q̃qr|

)1− 2
m

. (60)

The next step is to explain that the ratio
|Q̃+

qr|

|Q̃qr|
is a decreasing function with respect

to the parameter k∗ (see (50)).

We consider the parabolic cube Dr(ẑ) = {(x, t) : |xi − x̂i| < r, i ≤ n, |t − t̂| < r2}
and put

w0(z) =

{

w(z), z ∈ Qr(ẑ);

0, z ∈ Dr(ẑ) \Qr(ẑ).

We assert that

Q̃+
qr(ẑ) ⊂ {z ∈ Dqr(ẑ) : |w0(z) − w0

qr,ẑ| > k∗/2} ≡ D(k∗)
qr (ẑ),

w0
qr,ẑ =

1

|Dqr|

∫

Dqr(ẑ)

w0 dz. (61)

Indeed, let z ∈ Q̃qr(ẑ) and |w(z) − wqr,ẑ| > k∗ then

|w0(z) − w0
qr,ẑ| = |w(z) − w0

qr,ẑ| ≥
∣

∣|w(z) − wqr,ẑ| − |wqr,ẑ − w0
qr,ẑ|

∣

∣ ≡ l.

Looking at the derivation of (50), one can see that

|w0
qr,ẑ| ≤

|Qr|
|Dqr|

∫

–
Qr(ẑ)

|w| dz ≤ c27

∫

–
Qr(ẑ)

|w| dz ≤ · · · ≤ c31θ ≤(52) k∗.

We make stronger condition (52) and assume that

k∗ > 4c31. (62)

Then |wqr,ẑ − w0
qr,ẑ| ≤ 2c31 ≤ k∗

2 and l > k∗ − k∗

2 = k∗

2 . Imbedding (61) follows.
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Moreover, it is easy to check that

[w0]L2,n+2(Dqr(ẑ);δ) ≤ c40([w]L2,n+2(Q̃ r
2
(ẑ;δ))

+‖wx‖L2,n(Q̃ r
2
;δ)) ≤(43),(44) c41θ ≤ c41. (63)

Due to the parabolic version of the John-Nirenberg theorem, we can assert that there

exist positive numbers H and β such that

|{z ∈ DR(ẑ) : |g(z) − gR,ẑ| > λ}|
|DR|

≤ H exp

( −βλ
[g]L2,n+2(DR;δ)

)

, (64)

for a function g ∈ L2,n+2(DR; δ), λ > 0. The numbers H and β in (64) depend on the

dimension n only.

This fact was proved for the standard euclidian metric (see, for example, [24]) and

can be generalized for the parabolic metric in the same way.

We put g(z) = w0(z), R = qr, λ = k∗

2 , and obtain the estimate

|Q̃+
qr(ẑ)|
|Q̃qr|

≤(61) c(n)
|D(k∗)

qr (ẑ)|
|Dqr|

≤(64) c(n)H exp

( −βk∗
2[w0]L2,n+2(Dqr;δ)

)

. (65)

Using (63) and (65), we derive from (60) the inequality

M ≤ c42 exp(−c43k∗)
(

∫

Qar(ẑ)

(1 + |ux|)2 dz + cφr
n+2α

)

. (66)

Now it follows from (59) and (66) that
∫

Q̃qr(ẑ)

|wx|2 dz ≤ c44{exp(−c43k∗) + s+ ω
p−2

p (r2; c39θ
2)

+T
4−p

p θ
2(p−2)

p + r2}
(

∫

Qar(ẑ)

(1 + |ux|)2 dz + cφr
n+2α

)

. (67)

We put ψ(̺, ẑ) =
∫

Q̺(ẑ)
(1 + |ux|)2 dz and consider (34) for v (with ξ = ẑ, r̂ = qr)

and (67) to obtain the estimate

ψ(̺, ẑ) ≤ c45

{(

̺

r

)n+2

+

[

s+ exp

(

− c43
T

21/s

)

+ ω
p−2

p (r2; c39θ
2)

+T
4−p

p θ
2(p−2)

p + r2
]}

ψ(ar, ẑ) + c46(1 + T
4−p

p θ
2(p−2)

p )rn+2α,

̺ ≤ qr. (68)

Obviously, inequality (68) is valid also for ̺ ∈ (qr, ar]. Further we change the notation

ar by r, and consider r ≤ R
4 . It gives the inequality

ψ(̺, ẑ) ≤ c47

{(

̺

r

)n+2

+ [· · · ]
}

ψ(r, ẑ) + c48(1 + T
4−p

p θ
2(p−2)

p )rn+2α, ̺ ≤ r. (69)

In (69) the expression [· · · ] coincides with the square brackets of (68).
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By the well-known Campanato Lemma (see, for example, [19], Chapter 2, Lemma 2.1)

there exists a number δ0 = δ0(c47, n, α) > 0 such that if

[· · · ] < δ0 (70)

in inequality (69), then

ψ(̺, ẑ) ≤ c49

(

̺

r

)n+2α

{ψ(r, ẑ) + (1 + T
4−p

p θ
2(p−2)

p )rn+2α}, ̺ ≤ r. (71)

Here c49 depends on c47, n, and α.

At last, we fix the parameters s, T, θ and R. First, let s be fixed in (0, 1) to satisfy

s <
δ0
4
. (72)

Then, we fix T > 1 to obtain (62) and the inequality

exp

(

− c43
T

21/s

)

<
δ0
4
. (73)

At last, we choose numbers θ1 and R1 to obtain the inequality

T
4−p

p θ
2(p−2)

p

1 + ω
p−2

p (R1; c39θ
2
1) +R2

1 <
δ0
2

(74)

Now we may fix R ≤ 4R1 and θ ≤ min{θ0, θ1} in assumption (26). (Parameter θ0 was

fixed by the data to ensure inequality (21).)

Conditions (72)–(74) guarantee the validity of (70). Under restrictions r ≤ R
4 ≤ R1

and θ ≤ min{θ0, θ1}, inequality (71) follows. We obtain the relation

1

̺n+2α

∫

Q̺̃(ẑ)

|ux|2 dz ≤ c50

{

R−(n+2α)

∫

QR(z0)

|ux|2 dz + 1

}

, (75)

for all ẑ ∈ Q̃ 3R
4

(z0), ̺ ≤ R
4 .

We have considered the case Ω
(0)
r (x̂) 6= ∅. Now we address the situation Ω

(0)
r (x̂) = ∅.

It should be noted only that we do not transform problem (31) to (32) in this case, and

apply estimates (33) and (34) with the function v. Moreover, now estimates (35) – (36)

and others do not include the terms with cφ. One can repeat all considerations and assert

that estimate (75) is valid for all ẑ ∈ Q 3R
4

(z0), ̺ ≤ R
4 , provided that Ω(0)(x̂) = ∅.

Inequalities (25) and (75) ensure the estimate

[u]2L,n+2+2α(Q 3R
4

(z0);δ) ≤ c51{R−(n+2α)‖ux‖2
2,QR(z0) + 1}. (76)

Due to the isomorphism of L2,n+2+2α(Q; δ) and the corresponding Hölder space, esti-

mate (76) yields the estimate of the seminorm in the Hölder space

〈u〉(α,α/2)
Q 3R

4
(z0) ≤ c52{R−(n+2α)‖ux‖2

2,QR(z0) + 1}. (77)

We have proved the Theorem for the situation Ω
(0)
R (x0) 6= ∅ and ΓR(z0) 6= ∅. In the

other cases, all steps of the proof are only simplified.

Remark 3. It was assumed in the Theorem that a solution u of (1), (2) has the derivative

ut ∈ L2(QR0
(z0)). It will be desirable to remove this restrictive assumption (more exactly,

do not apply inequalities (24)).
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