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Abstract. We consider the problem div u = f in a bounded Lipschitz domain Ω, where f with
∫

Ω
f = 0 is given. It is shown that the solution u, constructed as in Bogovski’s approach in [1],

fulfills estimates in the weighted Sobolev spaces W k,q
w (Ω), where the weight function w is in the

class of Muckenhoupt weights Aq.

1. Introduction and main results. Let Ω be a bounded Lipschitz domain in Rn,

n ≥ 2. We consider a given function f with
∫

Ω
f = 0 and we are looking for solutions u

to the divergence equation

div u = f in Ω and u|∂Ω = 0.(1)

It is an immediate consequence of Green’s formula that the condition that f has mean

value 0 is necessary for the existence of a solution u to (1).

This problem has been studied by many authors, in particular by Bogovski [1], von

Wahl [12], Galdi [8] and Sohr [10]. They prove existence and estimates of a solution u to

(1) in the framework of classical Lp- and Sobolev spaces.

We investigate this problem in weighted function spaces. More precisely, we consider

weighted Lebesgue spaces Lqw(Ω) and Sobolev spaces W k,q
w (Ω) which means that we

integrate with respect to the measure w dx for an appropriate weight function w.

All weight functions that we use are contained in the Muckenhoupt class Aq. This is

the class of nonnegative and locally integrable weight functions for which the expression

Aq(w) := sup
Q

(

1

|Q|

∫

Q

w dx

) (

1

|Q|

∫

Q

w− 1

q−1 dx

)q−1

is finite, where the supremum is taken over all cubes Q in Rn.
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As shown by Farwig and Sohr in [4] examples of Muckenhoupt weights are w(x) =

(1 + |x|)α, with −n < α < n(q− 1) or dist(x,M)α, −(n− k) < α < (n− k)(q− 1), where

M is a compact k-dimensional Lipschitzian manifold. Thus such weight functions can be

used for a better description of the solution close to the boundary, in a neighborhood of

a point or for |x| → ∞.

The class of Muckenhoupt weights is appropriate for analysis, since the maximal

operator is continuous in weighted Lq-spaces if and only if the weight function is a

Muckenhoupt weight. Thus the powerful tools of harmonic analysis may be applied, cf.

Garćıa-Cuerva and Rubio de Francia [9] and Stein [11].

In this paper we follow Bogovski’s approach in [1] and [8] and start with star shaped

domains where we give an explicit construction of a solution to (1) in terms of a sin-

gular integral operator. Thereafter one uses a decomposition of Lipschitz domains into

starshaped domains. The solution is represented by a non-translation-invariant singular

integral operator. Before showing its continuity with the help of Proposition 3 below,

it is necessary to modify the kernel of this operator in a way which does not affect the

solution depending on the compactly supported right hand side f .

We denote by W k,q
w,0(Ω) the closure of all smooth and compactly supported functions

C∞
0 (Ω) in the norm of the weighted Sobolev spaceW k,q

w (Ω) that is introduced in Section 2,

below. Then our main result reads as follows.

Theorem 1. Let Ω ⊂ Rn, n ≥ 2, be a bounded and locally lipschitzian domain. Assume

f ∈W
k,q
w,0(Ω) such that

∫

f = 0. Then there exists a function u ∈W
k+1,q
w,0 (Ω) such that

div u = f and ‖u‖k+1,q,w ≤ c‖f‖k,q,w,

where c = c(Ω, q, w, k) > 0 depends Aq-consistently on w. Moreover, u can be chosen

such that it depends linearly on f and such that u ∈ C∞
0 (Ω) if f ∈ C∞

0 (Ω).

For the definition and the relevance of the Aq-consistence of constants see Definition 1

below and the discussion below it.

The proof of Theorem 1 is given in Section 3. The result is first proven for strictly

starshaped domains in Theorem 4 and then generalized to general Lipschitz domains with

the help of Lemma 5.

2. Weighted function spaces. In this section we collect the basic definitions of weight

functions and function spaces, which are needed in this text. Moreover, we quote the

main theorem about the boundedness of maximal operator.

As in [9,11] we use the following notation.

Definition 1. Let Aq, 1 < q < ∞, the set of Muckenhoupt weights, consist of all

0 ≤ w ∈ L1
loc(R

n) for which

Aq(w) := sup
Q

(

1

|Q|

∫

Q

w dx

) (

1

|Q|

∫

Q

w− 1

q−1 dx

)q−1

<∞.(2)

The supremum is taken over all cubes Q in Rn. To avoid trivial cases, we exclude the

case where w vanishes almost everywhere.
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A constant C = C(w) is called Aq-consistent if for every c0 > 0 it can be chosen

uniformly for all w ∈ Aq with Aq(w) < c0.

The Aq-consistence is of great importance since it is needed for the application of

the Extrapolation Theorem [9, IV Lemma 5.18]. In particular this is used when showing

the continuity of operator-valued Fourier multipliers and the maximal regularity of an

operator; see e.g. Fröhlich [7] for details and applications.

We introduce some function spaces. For 1 < q < ∞, w ∈ Aq and an open set Ω we

define the weighted Lebesgue and Sobolev spaces as follows.

• The weighted Lebesgue spaces Lqw(Ω) are given by

Lqw(Ω) :=

{

f ∈ L1
loc(Ω) | ‖f‖q,w :=

(
∫

Ω

|f |qw dx

)
1

q

<∞

}

.

• Assume in addition k ∈ N0, the set of nonnegative integers. The weighted Sobolev

spaces are defined by

W k,q
w (Ω) =

{

u ∈ Lqw(Ω)
∣

∣

∣
‖u‖k,q,w :=

∑

|α|≤k

‖Dαu‖q,w <∞
}

.

• Finally, we set

W
k,q
w,0(Ω) = C∞

0 (Ω)
‖·‖k,q,w

.

By [5], [7] and [3] the spaces Lqw(Ω), W k,q
w (Ω) and W

k,q
w,0(Ω) are reflexive Banach spaces

in which C∞
0 (Ω) or C∞

0 (Ω), respectively, are dense.

For a locally integrable function f we define the maximal operator M by

(Mf)(x) = sup
r>0

1

|Br(0)|

∫

|y|≤r

|f(x− y)|dy.

One has the following close connection between the Muckenhoupt class Aq and the max-

imal operator.

Proposition 2. Let 1 < q <∞ and w ∈ Aq. Then the maximal operator M is continuous

on Lqw(Rn). More precisely, there exists an Aq-consistent constant c such that

‖Mf‖q,w ≤ c‖f‖q,w for every f ∈ Lqw(Rn).

Vice versa if µ is a nonnegative Borel measure and M is bounded on Lq(Rn, µ), then µ

is absolutely continuous and dµ = w dx for some w ∈ Aq.

Proof. See [9], Theorems 2.1 and 2.9. For the Aq-consistence of the constants one has to

re-read the proof of [9], Theorem 2.9. The reverse inclusion can be found in [11, 2.2].

By [6] the following weighted analogue of the Poincaré inequality holds: there exists

an Aq-consistent constant c = c(q, w) > 0 such that

‖u‖q,w ≤ c‖∇u‖q,w for every u ∈W
1,q
w,0(Ω).(3)

3. Proof of Theorem 1. Throughout this section let 1 < q <∞ and w ∈ Aq.

The proof follows the same lines as the unweighted case [1], [8, Chapter III.3]. It

uses non-translation-invariant singular integral operators. Thus we apply the following
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theorem proved in [11, V.6.13] which ensures the continuity of a certain class of such

operators.

Proposition 3. Let T be a bounded operator from L2(Rn) into itself that is associated

to a kernel K in the sense that

(Tf)(x) =

∫

Rn

K(x, y)f(y)dy

for all compactly supported f ∈ L2(Rn) and all x outside the support of f . Suppose that

for some γ > 0 and some A > 0 the kernel K satisfies the inequalities

|K(x, y)| ≤ A|x− y|−n(4)

and

|K(x, y) −K(x′, y)| ≤ A
|x− x′|γ

|x− y|n+γ
if |x− x′| ≤

1

2
|x− y|(5)

as well as the symmetric version of the second inequality in which the roles of x and y

are interchanged. Writing

(Tεf)(x) =

∫

|x−y|>ε

K(x, y)f(y)dy and (T∗f)(x) = sup
ε>0

|(Tεf)(x)|,

we have that
∫

[(T∗f)(x)]qw(x)dx ≤ c

∫

[(Mf)(x)]qw(x)dx,(6)

where f is bounded and has compact support, w ∈ Aq, and 1 < q < ∞. The constant c

depends Aq-consistently on w.

Proof. This result is stated in [11, V.6.13]. The Aq-consistence of the constants is not

explicitly mentioned there, however, it is established with the same arguments if one

rereads the proof of Proposition 6 in [11, V.4.4].

Since the maximal operator M : Lqw(Rn) → Lqw(Rn) is bounded, the inequality (6)

guarantees that the sublinear operator T∗ can be extended to a continuous sublinear

operator T∗ : Lqw(Ω) → Lqw(Ω).

However, to make use of the above proposition we have to modify the singular integral

operator which appears in the proof of Theorem 4 below outside the bounded set Ω such

that it possesses the properties assumed in Proposition 3.

In the proof of the following Theorem the occurring integral operators have to be

understood in the Cauchy principle value sense limε→0 Tεf .

Theorem 4. Let Ω ⊂ Rn, n ≥ 2, be bounded and star-shaped with respect to every point

of some closed ball B with B ⊂ Ω. Then for every f ∈W
k,q
w,0(Ω) with

∫

Ω
f = 0 there exists

a v ∈W
k+1,q
w,0 (Ω) with

div v = f and ‖v‖k+1,q,w ≤ c‖f‖k,q,w,

where c = c(Ω, q, w, k) > 0 depends Aq-consistently on w. The function v depends linearly

on f and f ∈ C∞
0 (Ω) implies v ∈ C∞

0 (Ω).

Proof. Without loss of generality we may assume, using a coordinate transformation,

that B = B1(0). First we assume that f ∈ C∞
0 (Ω). We choose a ∈ C∞

0 (B1(0)) such that
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∫

a = 1 and define

v(x) :=

∫

Ω

f(y)(x− y)

(
∫ ∞

1

a (y + ξ(x− y)) ξn−1dξ

)

dy.(7)

In the proof of [8, Lemma III.3.1] it is shown that v ∈ C∞
0 (Ω) and div v = f .

It thus remains to prove the weighted estimates. To do this we use the following

representation of ∂jv also shown in the proof of [Lemma III.3.1]:

∂jvi(x) =

∫

Ω

Ki,j(x, x− y)f(y)dy + f(x)

∫

Ω

(xj − yj)(xi − yi)

|x− y|2
a(y)dy(8)

=: F1(x) + F2(x),

where

Ki,j(x, x− y) =
δi,j

|x− y|n

∫ ∞

0

a

(

x+ r
x− y

|x− y|

)

(|x− y| + r)n−1dr(9)

+
xi − yi

|x− y|n+1

∫ ∞

0

∂ja

(

x+ r
x− y

|x− y|

)

(|x− y| + r)ndr,

for every x, y ∈ Rn. To show the continuity of the integral operator f 7→ F1 its kernel

must be modified. Set

E := {z ∈ Ω | z = λz1 + (1 − λ)z2, z1 ∈ supp f, z2 ∈ B1(0), λ ∈ [0, 1]}.

Since Ω is star-shaped with respect to B1(0), E is a compact subset of Ω. For x 6∈ E and

y ∈ supp f we have

x+ r
x− y

|x− y|
6∈ B1(0) for all r > 0,

which means Ki,j(x, x− y) = 0. Thus, if we choose a cut-off function ψ ∈ C∞
0 (Rn) with

ψ(x) = 1 on Ω and suppψ ⊂ BR(0) for some R > 0, and set ϕ(x, y) = ψ(x)ψ(y) we

obtain

f(y)Ki,j(x, x− y) = f(y)ϕ(x, y)Ki,j(x, x− y) =: f(y)K̃i,j(x, x− y),

for x, y ∈ Rn, if f is assumed to be extended by 0 to Rn. Moreover, for x ∈ BR(0) we

have

r > R+ 1 ⇒

∣

∣

∣

∣

x+ r
x− y

|x− y|

∣

∣

∣

∣

≥ r − |x| > 1 ⇒ a

(

x+ r
x− y

|x− y|

)

= 0.

Thus for x ∈ Ω one has
∫

Rn

f(y)Ki,j(x, x− y)dy =

∫

Rn

f(y)K̃i,j(x, x− y)dy

=

∫

Rn

f(y)ϕ(x, y)

[

δi,j

|x− y|n

∫ R+1

0

a

(

x+ r
x− y

|x− y|

)

(|x− y| + r)n−1dr

+
xi − yi

|x− y|n+1

∫ R+1

0

∂ja

(

x+ r
x− y

|x− y|

)

(|x− y| + r)ndr

]

dy.

Now we have to prove that K̃i,j satisfies the assumptions of Proposition 3. By the

Calderón-Zygmund Theorem [2] we find that

f 7→

∫

Rn

ψ(x)Ki,j(x, x− y)f(y)dy : L2(Rn) → L2(Rn)
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is continuous. Since the multiplication Mψ with the C∞
0 -function ψ is a continuous op-

erator on L2(Rn) we obtain the continuity of

f 7→

∫

Rn

K̃i,j(x, x− y)f(y)dy

=

∫

Rn

ψ(x)Ki,j(x, x− y)Mψf(y)dy : L2(Rn) → L2(Rn).

It remains to prove the estimates (4) and (5). For (4) we may assume |x|, |y| < R.

One has

|x− y|n|K̃i,j(x, x− y)|

=

∣

∣

∣

∣

ϕ(x, y)δi,j

∫ R+1

0

a

(

x+ r
x− y

|x− y|

)

(|x− y| + r)n−1dr

+ϕ(x, y)
xi − yi

|x− y|

∫ R+1

0

∂ja

(

x+ r
x− y

|x− y|

)

(|x− y| + r)ndr

∣

∣

∣

∣

≤ c

(
∫ R+1

0

(2R+ r)n−1dr +

∫ R+1

0

(2R+ r)ndr

)

= c′.

To prove (5) we take x, x′, y ∈ Rn with |x − x′| ≤ 1
2 |x − y|. If (x, y), (x′, y) 6∈ suppϕ

nothing is to prove. Thus, without loss of generality we may assume that |y| ≤ R and

|x| ≤ 3R, since if |y| ≤ R and |x| ≥ 3R then

|x′| ≥ |x| − |x− x′| ≥ |x| −
1

2
(|x| + |y|) ≥

3

2
R −

1

2
R = R.

Then using the triangle inequality together with the fact that a, ϕ and (|x− y|+ r)n are

Lipschitz continuous on compact sets we can estimate
∣

∣

∣

∣

xi − yi

|x− y|n+1
ϕ(x, y)

∫ R+1

0

∂ja

(

x+ r
x− y

|x− y|

)

(|x− y| + r)ndr

−
x′i − yi

|x′ − y|n+1
ϕ(x′, y)

∫ R+1

0

∂ja

(

x′ + r
x′ − y

|x′ − y|

)

(|x′ − y| + r)ndr

∣

∣

∣

∣

≤

∣

∣

∣

∣

(

xi − yi

|x− y|n+1
−

x′i − yi

|x′ − y|n+1

)

ϕ(x, y)

∫ R+1

0

∂ja

(

x+ r
x− y

|x− y|

)

(|x− y| + r)ndr

∣

∣

∣

∣

+

∣

∣

∣

∣

x′i − yi

|x′ − y|n+1
(ϕ(x, y) − ϕ(x′, y))

∫ R+1

0

∂ja

(

x+ r
x− y

|x− y|

)

(|x− y| + r)ndr

∣

∣

∣

∣

+
|x′i − yi|

|x′ − y|n+1
ϕ(x′, y)

∫ R+1

0

∣

∣

∣

∣

∂ja

(

x+ r
x− y

|x− y|

)

− ∂ja

(

x′ + r
x′ − y

|x′ − y|

)∣

∣

∣

∣

(|x− y| + r)ndr

+
|x′i − yi|

|x′ − y|n+1
ϕ(x′, y)

∫ R+1

0

∣

∣

∣

∣

∂ja

(

x′ + r
x′ − y

|x′ − y|

)∣

∣

∣

∣

|(|x− y| + r)n − (|x′ − y| + r)n|dr

= I1 + I2 + I3 + I4.

Using the Lipschitz continuity of ∂ia and |x− y| ≤ 4R we obtain

I3 ≤
c

|x− y|n

∫ R+1

0

L

(

|x− x′| +
|x− x′|

|x− y|

)

(|x− y| + r)ndr ≤ c
|x− x′|

|x− y|n+1
.
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I2 and I4 can be estimated analogously. For I1 we estimate
∣

∣

∣

∣

xi − yi

|x− y|n+1
−

x′i − yi

|x′ − y|n+1

∣

∣

∣

∣

≤
|xi − x′i|

|x− y|n+1
+

∣

∣

∣

∣

1

|x− y|n+1
−

1

|x′ − y|n+1

∣

∣

∣

∣

|x′i − yi|

≤
|x− x′|

|x− y|n+1
+

∣

∣

∣

∣

|x′ − y|n+1 − |x− y|n+1

|x− y|n+1|x′ − y|n+1

∣

∣

∣

∣

|x′i − yi|

≤
|x− x′|

|x− y|n+1
+ c

||x′ − y| − |x− y|| · |x− y|n

|x− y|2n+2
|x′i − yi|

≤ c
|x− x′|

|x− y|n+1
,

where we used that |x′ − y| ≥ 1
2 |x− y|. The estimate

∣

∣ |x′ − y|n+1 − |x− y|n+1
∣

∣ ≤ c
∣

∣ |x′ − y| − |x− y|
∣

∣ · |x− y|n

follows from an elementary induction with respect to n.

The first summand in (9) can treated in the same way. Moreover, interchanging the

roles of x and y the same kind of estimates can be done.

Combining the above and using Proposition 3 we obtain

‖F1‖q,w ≤ ‖T ∗f‖q,w ≤ c‖Mf‖q,w ≤ c‖f‖q,w,

where T ∗ is the operator given by Proposition 3 and associated to the kernel K̃i,j . The

function F2 that appears in (8) is easily estimated since
∫

Ω

(xj − yj)(xi − yi)

|x− y|2
a(y)dy

is bounded. Thus using the Poincaré inequality (3) we obtain ‖v‖1,q,w ≤ c‖f‖q,w.

Now the general case with f ∈ Lqw(Ω) follows easily, since we can approximate f by

C∞
0 -functions (fn) with

∫

fn = 0.

It remains to prove the estimate in the spaces W k,q
w (Ω). Using Leibniz’ formula one

can show (see [8, Remark III.3.2])

∂αv(x) =
∑

β≤α

(

α

β

)
∫

Ω

Nβ(x, y)∂
α−βf(y)dy,

where

Nβ(x, y) = (x− y)

∫ ∞

1

∂βa(y + r(x− y))rn−1dr.

Clearly ∂βa ∈ C∞
0 (B1(0)). Hence the same proof as above yields

‖∂αv‖1,q,w ≤ c‖f‖k,q,w

for f ∈ C∞
0 (Ω) and every α with |α| ≤ k. As before one can approximate an arbitrary

f ∈ W
k,q
w,0(Ω) with

∫

f = 0 by C∞
0 -functions (fn) with

∫

fn = 0. This argument finishes

the proof.

The following Lemma is the weighted analogue to [8, Lemma III.3.4.]. Its proof works

in exactly the same way as in the case of unweighted function spaces.
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Lemma 5. Let Ω be a bounded and locally lipschitzian domain.

1. There exist open sets Ω1, . . . ,Ωm with Ω =
⋃m
i=1 Ωi such that each Ωi is star-shaped

with respect to an open ball Bi with Bi ⊂ Ωi.

2. For every f ∈ C∞
0 (Ω) with

∫

Ω
f = 0 there exist fi ∈ C∞

0 (Ωi), i = 1, . . . ,m, with

f =
∑m
i=1 fi,

∫

fi = 0 and ‖fi‖k,q,w ≤ c‖f‖k,q,w for every k ∈ N0 and q ≥ 1 and

an Aq-consistent constant c = c(k, q, w,Ω).

Now we finish the proof of Theorem 1.

Proof. Let f ∈ C∞
0 (Ω) with

∫

f = 0 and take Ωi, fi, i = 1, . . . ,m, as in Lemma 5. We

denote by vi the solution to div vi = fi given by Theorem 4. Then we have

‖vi‖k+1,q,w ≤ c‖fi‖k,q,w ≤ c‖f‖k,q,w.

Then v =
∑m
i=1 vi solves div v = f with ‖v‖k+1,q,w ≤ c‖f‖k,q,w. For arbitrary f ∈

W
k,q
w,0(Ω) with

∫

f = 0 use again approximations with C∞
0 -functions.
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