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Abstract. We consider the multidimensional two-phase Stefan problem with a small parameter

κ in the Stefan condition, due to which the problem becomes singularly perturbed. We prove

unique solvability and a coercive uniform (with respect to κ) estimate of the solution of the

Stefan problem for t ≤ T0, T0 independent of κ, and the existence and estimate of the solution

of the Florin problem (Stefan problem with κ = 0) in Hölder spaces.

1. Introduction. Statement of the problem. Classical solution of the multidimen-

sional Stefan problem was studied by A. Friedman and D. Kinderlehrer [15], L. A. Caf-

farelli [11], [12], D. Kinderlehrer and L. Nirenberg [17], A. M. Meirmanov [19], E. I. Han-

zawa [16], B. V. Bazaliy [1], E. V. Radkevich [20], B. V. Bazaliy and S. P. Degtyarev [2],

M. A. Borodin [10], G. I. Bizhanova [5], [6], G. I. Bizhanova and V. A. Solonnikov [9].

J. F. Rodrigues, V. A. Solonnikov and F. Yi have investigated multidimensional one-

phase Stefan problem with a small parameter [21]. There was obtained the existence of the

solution of the corresponding Florin problem in the Hölder space C2+β,1+β/2, 0 < β < α

with the help of the imbedding theorem applied to the solution of Stefan problem from

the space C2+α,1+α/2, α ∈ (0, 1).

A. Fasano, M. Primicerio and E. V. Radkevich [13] proved existence of the solu-

tion of the multidimensional one-phase Florin problem [14] in Hölder spaces. In [5], [6]

G. I. Bizhanova established existence, uniqueness and estimates of the solution of the

two-phase Florin problem in weighted Hölder spaces with time power weights [3] in the

cases when the free boundary is the graph of a function on the plane xn = 0 and on the

unit sphere.

We consider the multidimensional two-phase Stefan problem in bounded domains of

arbitrary configuration with a small parameter κ in the Stefan condition at the principal
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term, velocity of a free boundary. Letting κ tend to zero we obtain the Florin prob-

lem [14] (degenerate Stefan problem with κ = 0). We note that the classes of the free

boundaries in the Stefan and Florin problems are different, that is, the Stefan problem

with a small parameter is singularly perturbed one. In Ch. 2 we prove existence, unique-

ness and a uniform with respect to κ estimate of the solution of the Stefan problem for

t ≤ T0, T0 independent of κ (Theorems 2.2′, 2.3), then we prove the existence and esti-

mate of the solution of the two-phase Florin problem without loss of smoothness of the

solution (Theorems 2.1), in Appendix A the existence of the inverse Jacobian matrix is

proved, in Appendix B the linear model problem is considered with a small parameter κ

corresponding to the Stefan problem.

Let Ω ⊂ R
n, n ≥ 2, be a bounded domain with a boundary Σ, κ a small parameter.

Assume there is a closed surface γκ(t) ⊂ Ω, t ∈ [0, T ], dividing Ω into two sub-domains

Ω
(κ)
1 (t) and Ω

(κ)
2 (t) with the boundaries ∂Ω

(κ)
1 (t) = Σ ∪ γκ(t), ∂Ω

(κ)
2 (t) = γκ(t). At the

initial moment t = 0, γκ(0) := Γ and Ω
(κ)
j (0) := Ωj , j = 1, 2. Let dist (Γ, Σ) ≥ d0 =

const > 0, diamΩ2 ≥ d0. These conditions guarantee that the boundary γκ(t) will not

touch Σ and the domain Ω
(κ)
2 (t) will not degenerate at least for small t.

Let Γ ∈ C2+α, α ∈ (0, 1). Then γκ(t) may be represented by the equation [19], [16],

[9]

(1.1) x = ξ + ρκ(ξ, t)N(ξ), ξ = ξ(x) ∈ Γ, t ∈ [0, t0],

where ρκ|t=0 = 0, N(ξ) = (N1, . . . , Nn) ∈ C2+α(Γ; Rn) is a unit vector field determined

on Γ and such that ν0(ξ)N
T (ξ) ≥ d1 = const > 0, ν0(ξ) is a unit normal to Γ directed

into Ω2, N
T a column-vector.

Let

Q
(κ)
jT = {(x, t) : x ∈ Ω

(κ)
j (t), t ∈ (0, T )}, ΩjT = Ωj × (0, T ), j = 1, 2,

ΩT = Ω × (0, T ), ΣT = Σ × [0, T ], ΓT = Γ × [0, T ].

We study two-phase Stefan problem with a small parameter κ. It is required to find

the functions ujκ(x, t), j = 1, 2, and ρκ(ξ, t) satisfying the parabolic equations, initial

and boundary conditions

(1.2) ∂tujκ − aj ∆ujκ = 0 in Q
(κ)
jT , j = 1, 2,

(1.3) γκ(t)|t=0 = Γ, ujκ|t=0 = u0j(x) in Ωj , j = 1, 2,

(1.4) u1κ|Σ = p(x, t), t ∈ (0, T ),

and conditions on the free boundary γκ(t), t ∈ (0, T ),

(1.5) u1κ = u2κ = 0,

(1.6) λ1 ∂νκ
u1κ − λ2 ∂νκ

u2κ = −κVνκ
,

where aj , λj , j = 1, 2, are positive constants, κ small parameter, νκ(x, t) is a unit

normal to γκ(t) directed into Ω
(κ)
2 (t), ∂t = ∂/∂t, ∂νκ

= ∂/∂νκ the normal derivative, Vνκ

velocity of the free boundary in the direction of νκ. Due to the equation of γκ(t) (1.1)

Vνκ
= νκN

T ∂tρκ.
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We consider (1.2)–(1.6) as a problem with a small parameter κ, therefore we have

ascribed an index κ to all unknowns. This problem is singularly perturbed because κ is

in the principal term in a Stefan condition (1.6).

Putting κ = 0 in the problem (1.2)–(1.6) we obtain the Florin [14] or degenerate

Stefan problem with unknown functions uj , j = 1, 2, ρ, which satisfy parabolic equations

(1.7) ∂tuj − aj ∆uj = 0 in QjT , j = 1, 2,

with initial and boundary conditions

(1.8) γ(t)|t=0 = Γ, uj |t=0 = u0j(x) in Ωj , j = 1, 2,

(1.9) u1|Σ = p(x, t), t ∈ (0, T ),

and conditions on a free boundary γ(t), t ∈ (0, T ),

(1.10) u1 = u2 = 0,

(1.11) λ1 ∂νu1 − λ2 ∂νu2 = 0,

where as above γ(t) ⊂ Ω, t ∈ [0, T ], is a closed surface, ∂Ω1(t) = Σ∪γ(t), ∂Ω2(t) = γ(t),

Ωj := Ωj(0), QjT , ΩjT are defined as Q
(κ)
jT , Ω

(κ)
jT .

We study the problems in the Hölder spaces C
l,l/2
x t ( Ω̄T ), l positive non-integer, of

functions u(x, t) with the norm [18]

|u|(l)ΩT
:=

∑

2k+|m|<l

|∂kt ∂mx u|ΩT
+

∑

2k+|m|=[l]

[∂kt ∂
m
x u]

(l−[l])
ΩT

+
∑

2k+|m|=[l]−1

[∂kt ∂
m
x u]

( 1+l−[l]
2 )

ΩT
,

where the last term is omitted if [l] = 0,

| v|ΩT
= max

(x,t)∈ Ω̄T

|v|,

[v]
(α)
x,ΩT

= max
(x,t), (z,t)∈Ω̄T

|v(x, t)−v(z, t)| |x− z|−α,

[v]
(α)
t,ΩT

= max
(x,t), (x,t1)∈Ω̄T

|v(x, t) − v(x, t1)| |t− t1|−α, α ∈ (0, 1).

C
◦ l,l/2
x t ( Ω̄T ) is the set of u(x, t) ∈ C

l,l/2
x t ( Ω̄T ) satisfying ∂kt u|t=0 = 0, k ≤ [l/2].

To study solutions in Hölder spaces it is necessary to require compatibility conditions

of initial and boundary data. The compatibility conditions of zero and first order for the

problem (1.2)–(1.6) are as follows

u01|Σ = p (x, 0), u01|Γ = u02|Γ = 0,(1.12)

a1∆u01|Σ = ∂tp(x, 0),
a1∆u01|Γ
∂ν0u01|Γ

=
a2∆u02|Γ
∂ν0u02|Γ

,(1.13)

(λ1 ∂ν0u01 − λ2 ∂ν0u02)|Γ − κ
aj∆u0j |Γ
∂ν0u0j |Γ

= 0, j = 1, 2.(1.14)
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For the Florin problem (1.7)–(1.11) the compatibility conditions have the form (1.12),

(1.13) and

(1.15) (λ1 ∂ν0u01 − λ2 ∂ν0u02)|Γ = 0

((1.15) is the condition (1.14) with κ = 0).

2. Stefan problem with a small parameter

Theorem 2.1. Let Σ, Γ ∈ C2+α, α ∈ (0, 1). For any functions u0j ∈ C2+α(Ω̄j), j = 1, 2,

p ∈ C
2+α,1+α/2
x t (ΣT ) satisfying the compatibility conditions (1.12), (1.13), (1.15) and the

condition ∂ν0 u0j |Γ ≤ −d2 or ∂ν0 u0j |Γ ≥ d2, j = 1, 2, d2 = const > 0 there exists T0 > 0

such that the Florin problem (1.7)–(1.11) has a solution uj ∈ C
2+α,1+α/2
x t (Q̄jT0

), j = 1, 2,

ρ ∈ C
2+α,1+α/2
x t (ΓT0

) and the following estimate holds:

(2.1)
2∑

j=1

|uj |(2+α)
Qjt

+ |ρ|(2+α)
Γt

≤ C1

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)

for 0 < t ≤ T0.

In [9] unique solvability of the Stefan problem (1.2)–(1.6) was proved with κ = 1/c0,

c0 arbitrary positive value, in the weighted Hölder spaces C2+α
s (ΩT ), 1 < s ≤ 2 +α with

time power weight [3]. From this result the following theorem follows.

Theorem 2.2 ([9]). Let Σ, Γ ∈ C2+α, α ∈ (0, 1). For any functions u0j ∈ C2+α(Ω̄j),

j = 1, 2, p ∈ C
2+α,1+α/2
x t (ΣT ) satisfying the compatibility conditions (1.12)–(1.14) and

the conditions

(2.2) 0 < κ ≤ κ0, ∂ν0 u0j |Γ ≤ −d3 or − κ0 ≤ κ < 0, ∂ν0 u0j |Γ ≥ d3,

j = 1, 2, d3 = const > 0, there exists T1 > 0 such that the Stefan problem (1.2)–

(1.6) has a unique solution ujκ ∈ C
2+α,1+α/2
x t (Q̄

(κ)
jT1

), j = 1, 2, ρκ ∈ C
2+α,1+α/2
x t (ΓT1

),

∂tρκ ∈ C
1+α,1+α/2
x t (ΓT1

) and the following estimate holds:

2∑

j=1

|ujκ|(2+α)

Q
(κ)
jt

+ |ρκ|(2+α)
Γt

+ |∂tρκ|(1+α)
Γt

≤ C
( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)
, t ≤ T1.(2.3)

This theorem does not permit us to obtain the solvability of the Florin problem

(1.7)–(1.11) putting κ to zero in the solution of Stefan problem (1.2)–(1.6), because the

constant C in (2.3) and T1 depend on κ. So we have to prove

Theorem 2.2′. Let the conditions of Theorem 2.2 be fulfilled. Then there exists T0 > 0

such that the Stefan problem (1.2)–(1.6) has a unique solution ujκ ∈ C
2+α,1+α/2
x t (Q̄

(κ)
jT0

),

j = 1, 2, ρκ ∈ C
2+α,1+α/2
x t (ΓT0

), κ∂tρκ ∈ C
1+α,1+α/2
x t (ΓT0

) and the following estimate

holds:
2∑

j=1

|ujκ|(2+α)

Q
(κ)
jt

+ |ρκ|(2+α)
Γt

+ |κ∂tρκ|(1+α)
Γt

≤ C2

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)
, t ≤ T0,(2.4)

where T0 and the constant C2 do not depend on κ.
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We reduce (1.2)–(1.6) to the problem in the fixed domain Ω1 ∪ Ω2 with the help of

the coordinate transformation [16, 9, 8]

x = y + χ(λ(y)) ρκ(ξ, τ)N(ξ), y ∈ O, ξ = ξ(y) ∈ Γ,

x = y, y ∈ Ω\O, t = τ,
(2.5)

where O is a 2λ0-neighborhood of Γ, λ0 > 0 sufficiently small value depending on Γ and

such that γκ(t) ⊂ O for t ∈ [0, t0], λ(y) is the distance between ξ = ξ(y) ∈ Γ and y ∈ O
lying on a vector N(ξ) or its continuation (see [9]), χ(λ) is a smooth cut-off function:

χ = 1, |λ| < λ0, χ = 0, |λ| ≥ 2λ0. The mapping (2.5) transforms Γ into γκ(t) and the

domains Ωj into the unknown ones Ω
(κ)
j (t), j = 1, 2.

We note that the points y ∈ Ω̄\O (or |λ| ≥ 2λ0) remain fixed (x = y). We keep the

variable t instead of a new one τ .

We construct auxiliary functions ρ0(ξ, t) on ΓT under the conditions

(2.6) ρ0|t=0 = 0, ∂tρ0|t=0 ≡ ∂tρ|t=0 = − a1∆u01|Γ
ν0NT ∂ν0u01|Γ

and Vj(y, t), j = 1, 2, as the solutions of the Cauchy problems

∂tVj − aj ∆Vj−χ∂tρ0N ∇TVj = 0 in RnT ,(2.7)

Vj |t=0 = ũ0j(y) in R
n,(2.8)

where j = 1, 2 and the tilde denotes the smooth extension of a function into R
n, RnT =

R
n × (0, T ).

Lemma 2.1 ([18, 22, 9, 8]). For arbitrary functions u0j ∈ C2+α(Ωj), j = 1, 2, each

one of the problems (2.6), (2.7)–(2.8) has a unique solution ρ0 ∈ C
3+α, 3+α

2
y t (ΓT ), Vj ∈

C
2+α,1+α/2
y t (RnT ), j = 1, 2, and the following estimates are valid

|ρ0|(3+α)
ΓT

≤ C3|u01|(2+α)
Ω1

,(2.9)

|Vj |(2+α)
Rn

T
≤ C4|u0j |(2+α)

Ωj
, j = 1, 2.(2.10)

In the problem (1.2)–(1.6) we make the following substitutions

ρκ(ξ, t) = ρ0(ξ, t) + ψκ(ξ, t),

ujκ(y + χρκN, t) = vjκ(y, t) + Vj(y, t),
(2.11)

where ψκ, vjκ are the new unknown functions satisfying zero initial conditions ∂kt vjκ|t=0 =

0, ∂kt ψκ|t=0 = 0, k = 0, 1; j = 1, 2.

With the help of the expansion formulas (A.5) and (A.4) of the inverse Jacobian

matrix J−1 of the transformation (2.5) and J−1
0 respectively [8] (J0 = J(ρ0 + ψ)|ψ=0,

see (A.2)) we extract linear principal terms with respect to unknown functions, known

functions and remainder terms containing the rests after separating linear terms and

known functions. Then we obtain the parabolic problem for the unknown functions vjκ,

j = 1, 2, ψκ

∂tvjκ − aj ∆vjκ − (∂tψκ−aj ∆ψκ)χNJ
−T
0 ∇TVj

= fj(y, t) + Fj(vjκ, ψκ) in ΩjT , j = 1, 2,
(2.12)
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with boundary and zero initial conditions

(2.13) v1κ|Σ = p1(y, t), t ∈ (0, T ),

and the transmission conditions on Γ, t ∈ (0, T ),

vjκ|Γ = ηj(y, t), j = 1, 2,(2.14)

(λ1 ∂ν0v1κ − λ2 ∂ν0v2κ + κ ν0N
T ∂tψκ(2.15)

−ν0NT [(λ1 ∇V1 − λ2 ∇V2)J
−1
0 J−T

0 + κNJ−T
0 ∂tρ0]∇Tψκ) |Γ

= ϕ(y, t;κ) + Φ(v1κ, v2κ, ψκ;κ)|Γ,
where “T ” means transposed matrix and column-vector, ν0N

T ≥ d1 > 0,

(2.16) fj = χ∂tρ0NJ
−T
0 ∇TVj − ∂tVj + aj(J

−T
0 ∇T )TJ−T

0 ∇TVj ,

(2.17) Fj = χ∂t(ρ0 + ψκ)NJ
−T (∇T vjκ − JT1 J

−T
0 ∇TVj)

+aj [∇BT + (BT J−T ∇T )T J−TJT11

−(J−T
0 JT1 J

−T ∇T )T + (J−T ∇T )TJ−TJT12] J
−T
0 ∇TVj

−aj [∇BT + (BT J−T∇T )T ]J−T∇T vjκ − aj(∇ψ)∇T (χNJ−T
0 ∇TVj),

(2.18) p1 = (p(y, t) − V1(y, t))|Σ, ηj = −Vj(y, t)|Γ, j = 1, 2,

(2.19) ϕ = −ν0 J−1
0 [J−T

0 ∇T (λ1V1 − λ2V2)|Γ + κNT∂tρ0],

Φ = ν0(B
T + J−1B) J−T∇T (λ1 v1κ − λ2 v2κ)(2.20)

−ν0 M∇T (λ1 V1 − λ2 V2)

+κ ν0J
−1 (BNT ∂tψκ + (J12 −B J11) J

−1
0 NT ∂tρ0),

B = J01 + J1,

M = J−1[B JT11 + JT01J
−T
0 JT11 − J−T

0 JT12] J
−T + J−1(B J11 − J12) J

−1
0 J−T

0 ,

where the matrices J = I + J01 + J1, J0 = I + J01, J1 = J11 + J12 are determined by

formulae (A.1)–(A.3). Here we omit the index κ at the matrices J−1, J1 = J11 + J12, for

convenience.

Theorem 2.3. Let the assumptions of Theorem 2.2 be fulfilled. Then there exists T0 > 0

such that the Stefan problem (2.12)–(2.15) has a unique solution vjκ ∈ C
◦ 2+α,1+α/2
y t ( Ω̄jT0

),

j = 1, 2, ψκ ∈ C
◦ 2+α,1+α/2
y t ( ΓT0

), κ∂tψκ ∈ C
◦ 1+α, 1+α

2
y t ( ΓT0

) and this solution satisfies the

following estimate for t ≤ T0

2∑

j=1

|vjκ|(2+α)
Ωjt

+ |ψκ|(2+α)
Γt

+ |κ∂tψκ|(1+α)
Γt

≤ C5

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p |(2+α)
Σt

)
,(2.21)

where T0 and the constant C5 do not depend on κ.

From the formulae (2.11) with x = y + χρκN due to this theorem and Lemma 2.1

we shall have Theorem 2.2′ and estimate (2.4).
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We consider the given functions h(y, t) = (f1, f2, p1, η1, η2, ϕ), t ≤ t1 in the problem

(2.12)–(2.15). They are expressed via the inverse matrix J−1
0 which exists for t ≤ t1 (see

(A.6) and [8]).

Lemma 2.2. Let Σ, Γ ∈ C2+α, α ∈ (0, 1). For any functions u0j ∈ C2+α(Ω̄j), j =

1, 2, p ∈ C
2+α,1+α/2
y t (ΣT ) satisfying the compatibility conditions (1.12)–(1.14), fj ∈

C
◦α,α/2
y t ( Ω̄jt1), ηj ∈C

◦ 2+α,1+α/2
y t ( Γt1), j = 1, 2, p1∈C

◦ 2+α,1+α/2
y t ( Σt1), ϕ∈C

◦ 1+α, 1+α
2

y t ( Γt1)

and the following estimate holds

2∑

j=1

(|fj |(α)
Ωjt

+ |ηj |(2+α)
Γt

) + |p1|(2+α)
Σt

+ |ϕ|(1+α)
Γt

≤ C6

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)
, t ≤ t1,

(2.22)

where the constant C6 does not depend on κ.

Proof. Estimate (2.22) is derived by direct evaluation of the functions (2.16), (2.18),

(2.19) with the help of the estimates (2.9), (2.10) for the functions ρ0 and Vj , j = 1, 2,

and (A.6) for the matrix J−1
0 .

Functions fj |t=0, j = 1, 2, are zero by the equation (2.7) and condition J−1
0 |t=0 = I,

I the identity matrix. For the functions p1, ηj , ϕ we have

p1|t=0 = p(x, 0) − u01|Σ = 0, ∂tp1|t=0 = pt(x, 0) − aj ∆u01|Σ = 0

by compatibility conditions (1.12), (1.13) and χ|Σ = 0;

ηj |t=0 = −Vj |t=0,Γ = −u0j |Γ = 0,

∂tηj |t=0 = −aj ∆u0j |Γ −N ∇Tu0j |Γ∂tρ0|t=0

= −aj ∆u0j |Γ +
a1∆u01|Γ

ν0NT ∂ν0u01|Γ
∂Nu0j |Γ = 0, j = 1, 2,

by the conditions (2.8), (2.6), (1.12), (1.13), χ|Γ = 1 and the identity ∂Nu0j |Γ =

ν0N
T ∂ν0u0j |Γ, j = 1, 2;

ϕ|t=0 = −[(λ1∂ν0u0j − λ1∂ν0u0j)|Γ + κν0N
T ∂ρ0|t=0]

= −
[
(λ1∂ν0u01 − λ1∂ν0u02)|Γ − κ

a1∆u01|Γ
∂ν0u01

]
= 0

by (2.6) and compatibility condition (1.14).

To prove Theorem 2.3 we consider a linear problem with the unknown functions Zjκ,

j = 1, 2, Ψκ satisfying zero initial conditions

∂tZjκ − aj ∆Zjκ − αj(x, t)(∂tΨκ − aj ∆Ψκ) = fj(x, t) in ΩjT , j = 1, 2,(2.23)

(2.24) Z1κ|Σ = p1(x, t), t ∈ (0, T ),

(2.25) Zjκ|Γ = ηj(x, t), j = 1, 2,

(λ1 ∂ν0Z1κ − λ2 ∂ν0Z2κ)|Γ+κ ∂tΨκ + d(x, t)∇TΨκ = ϕ(x, t), t ∈ (0, T ),(2.26)

where λj are positive constants, j = 1, 2, d = (d1, . . . , dn).
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Theorem 2.4. Let Σ, Γ ∈ C2+α, α ∈ (0, 1), αj(x, t) ∈ C
α,α/2
x t (Ω̄jT ), di(x, t) ∈

C
1+α,1+α/2
x t (ΓT ), j = 1, 2, i = 1, . . . , n, and

(2.27) 0 < |κ| ≤ κ0, −καj(x, 0)|Γ ≥ d4 = const > 0, j = 1, 2.

Then for any fj ∈ C
◦α,α/2
x t ( Ω̄jT ), p1 ∈ C

◦ 2+α,1+α/2
x t ( ΣT ), ηj ∈ C

◦ 2+α,1+α/2
x t ( ΓT ),

j = 1, 2, ϕ ∈ C
◦ 1+α, 1+α

2
x t ( ΓT ) the problem (2.23)–(2.26) has a unique solution Zjκ ∈

C
◦ 2+α,1+α/2
x t ( Ω̄jT ), j = 1, 2, Ψκ ∈ C

◦ 2+α,1+α/2
x t ( ΓT ), κ∂tΨκ ∈ C

◦ 1+α, 1+α
2

x t ( ΓT ) and it satis-

fies the estimate

2∑

j=1

|Zjκ|(2+α)
Ωjt

+|Ψκ|(2+α)
Γt

+ |κ∂tΨκ|(1+α)
Γt

(2.28)

≤ C7(

2∑

j=1

(|fj |(α)
Ωjt

+ |ηj |(2+α)
Γt

) + |p1|(2+α)
Σt

+ |ϕ|(1+α)
Γt

), t ≤ T,

where the constant C7 does not depend on κ.

Proof. We derive (2.28) with the help of the Schauder method. Let ξ0 ∈ Γ be an arbitrary

point. In (2.23), (2.25), (2.26) we make the substitution

Zjκ = zjκ + αj(ξ0, 0)Ψκ, j = 1, 2,

where zjκ are new unknown functions, then we obtain the problem for zjκ, j = 1, 2, Ψκ

∂tzjκ − aj ∆zjκ = fj(x, t)(2.29)

+(αj(x, t) − αj(ξ0, 0))(∂tΨκ − aj ∆Ψκ) in ΩjT , j = 1, 2,

zjκ|Γ + αj(ξ0, 0)Ψκ = ηj(x, t), j = 1, 2,(2.30)

(λ1 ∂ν0z1κ − λ2 ∂ν0z2κ)|Γ + κ ∂tΨκ + d(x, t)∇TΨκ = ϕ(x, t), t ∈ (0, T ).(2.31)

Up to translation and rotation, we can assume that the origin of coordinates is at

ξ0 and xn-axis coincides with the normal ν0 to Γ directed into Ω2 (that is ξ0 = 0).

Let B2δ0 = {x : |x − ξ0| < 2δ0, x ∈ Ω}, δ0 > 0. Choosing δ0 sufficiently small we

can represent the surface Γ ∩ B2δ0 by an equation xn = q(x′), where q ∈ C2+α(B̄2δ0),

q(0) = 0, ∂xµ
q(0) = 0, µ = 1, . . . , n− 1.

Let ζ(x) be a smooth cut-off function such, that ζ(x) = 1 if |x| ≤ δ0, ζ(x) = 0 if

|x| ≥ 2δ0.

We multiply (2.29) by ζ(x) and the conditions (2.30), (2.31) by ζ(x)|Γ, extend q(x′)

into an entire space R
n−1 preserving smoothness and notation and make a change of

coordinates y = Y (x) : y′ = x′, yn = xn − q(x′).

Let D1 = R
n
−, D2 = R

n
+, DjT = Dj×(0, T ), R be the plane yn = 0, RT = R×[0, T ].

We denote

ẑj(y, t) = ζ(x) zjκ(x, t)|x=Y −1(y), ψ̂(y′, t) = (ζ(x)|ΓΨκ)|x=Y −1(y),

f̂j(y, t) = ζ(x) fj(x, t)|x=Y−1(y), η̂j(y
′, t) = (ζ(x)|Γ ηj(x, t))|x=Y−1(y),

ϕ̂(y′, t) = (ζ(x)|Γϕ(x, t))|x=Y−1(y), j = 1, 2,
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and extend by zero the functions ẑj , f̂j into Dj , j = 1, 2, and ψ̂, η̂j , ϕ̂ into R
n−1.

Then for the functions ẑj , j = 1, 2, and ψ̂ we obtain the model conjunction problem

(2.32) ∂tẑj − aj ∆ẑj = f̂j(y, t) +Qj(zjκ,Ψκ; ζ) in DjT , j = 1, 2,

(2.33) ẑj |yn=0 + αj(ξ0, 0)ψ̂ = η̂j(y
′, t), j = 1, 2,

(λ1 ∂yn
ẑ1 − λ2 ∂yn

ẑ2)|yn=0 + κ ∂tψ̂ + d′(ξ0, 0))∇T ψ̂κ(2.34)

= ϕ̂(y′, t) + P (z1κ, z2κ,Ψκ; ζ)|yn=0, t ∈ (0, T ),

where

Qj = −aj (2∇ζ∇T + ∆ζ)(zjκ − αj(ξ0, 0)Ψκ)|x=Y −1(y)

+ζ(x)(αj(x, t) − αj(ξ0, 0))(∂tΨκ − aj ∆Ψκ)|x=Y −1(y)

−aj
(
∆′
y′ q∂yn

+ 2

n−1∑

µ=1

∂yµ
q ∂2

yµyn
−∇′q∇′T q∂2

yn

)

×(ẑj−αj(ξ0, 0)ζ(x)Ψκ|x=Y −1(y)),

P = −(ζ(x)(ν0(x) − ν0(ξ0))∇T
x (λ1 z1κ − λ2 z2κ)

+ζ(x)(d(x, t) − d(ξ0, 0))∇T
xΨκ)|Γ, x=Y −1(y)

+(Ψκd(x, t) + (λ1 z1κ − λ2 z2κ)ν0(x))∇T
x ζ(x)|Γ, x=Y −1(y),

∇′ = (∂y1 , . . . , ∂yn−1
), ∆′ = ∂2

y1 + . . .+ ∂2
yn−1

, d′ = (d1, . . . , dn−1).

(2.32)–(2.34) is the problem (B.1)–(B.4), for the solution of which we have an esti-

mate (B.6) under the conditions (B.5). These conditions for the problem (2.32)–(2.34):

−καj(ξ0, 0)λj > 0, j = 1, 2, are fulfilled due to (2.27) and λj > 0. We apply (B.6) to the

solution of the problem (2.32)–(2.34)

||ŵ||t :=

2∑

j=1

|ẑj |(2+α)
Djt

+ |ψ̂|(2+α)
Rt

+ |κ∂tψ̂|(1+α)
Rt

≤ C8

( 2∑

j=1

(|f̂j +Qj |(α)
Djt

+ |η̂j |(2+α)
Rt

) + |ϕ̂+ P |(1+α)
Rt

)
,

where ŵ = (ẑ1, ẑ2, ψ̂), then we estimate the norms |Qj |(α)
Djt

, |P |(1+α)
Rt

and choosing δ0
and T3 sufficiently small we find

||ŵ||t ≤ q||ŵ||t + C8

( 2∑

j=1

(|f̂j |(α)
Djt

+ |η̂j |(2+α)
Rt

) + |ϕ̂|(1+α)
Rt

)
,

q ∈ (0, 1), t ≤ T3, where T3 and the constant C8 do not depend on κ. From this we

derive an estimate for ||ŵ||t. Returning to the original coordinates {x} and remembering
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that ζ(x) = 1, if |x| ≤ δ0 we obtain an estimate for Ψκ

|Ψκ|(2+α)
Γδ0,t

+ |κ∂tΨκ|(1+α)
Γδ0,t

≤ C9

( 2∑

j=1

(|f̂ |j |(α)

B
(j)
2δ0,t

+ |η̂j |(2+α)
Γ2δ0,t

) + |ϕ̂|(1+α)
Γ2δ0,t

)
(2.35)

≤ C10

( 2∑

j=1

(|fj |(α)
Djt

+ |ηj |(2+α)
Γt

) + |ϕ|(1+α)
Γt

)
, t ≤ T3,

where B
(j)
2δ0,t

= (Ωj ∩B2δ0) × (0, t), Γ2δ0,t = (Γ ∩B2δ0) × (0, t).

With the help of (2.35) due to the arbitrariness of a point ξ0 ∈ Γ, center of a ball Bδ0
we obtain an estimate

|Ψκ|(2+α)
Γt

+|κ∂tΨκ|(1+α)
Γt

≤ C11

( 2∑

j=1

(|fj |(α)
Djt

+ |ηj |(2+α)
Γt

) + |ϕ|(1+α)
Γt

)
, t ≤ T3,(2.36)

where the constant C11 does not depend on κ.

In the equations of the problem (2.23)–(2.26) we move all the terms containing Ψκ

to the right-hand sides, then we obtain the first boundary value problems (2.23), (2.24),

(2.25) for Z1κ, j = 1, and (2.23), (2.25) for Z2κ, j = 2. Every one of these problems has

a unique solution satisfying an estimate [18]

|Z1κ|(2+α)
Ω1t

≤ C12(|f1|(α)
Ω1t

+ |p1|(2+α)
Σt

+ |η1|(2+α)
Γt

+ |Ψκ|(2+α)
Γt

),

|Z2κ|(2+α)
Ω2t

≤ C13(|f2|(α)
Ω2t

+ |η2|(2+α)
Γt

+ |Ψκ|(2+α)
Γt

),
(2.37)

where the constants C12, C13 do not depend on κ.

Combining the estimates (2.36), (2.37) we obtain the required estimate (2.28) for

t ≤ T3.

The existence of the solution of the problem (2.23)–(2.26) is proved by constructing

a regularizer [18] and applying Theorem B.1.

The solution of the problem (2.23)–(2.26) obtained for t ≤ T3 (T3, independent of κ),

may be extended on (0, T ) as in [9], [4].

Proof of Theorem 2.3. We introduce the Hölder spaces. Let D
◦

2+α(ΓT ) be the space of

functions ψκ(ξ, t) such that ψκ(ξ, t) ∈ C
◦ 2+α,1+α/2
y t (ΓT ), κ∂tψκ ∈ C

◦ 1+α, 1+α
2

y t (ΓT ). Let

B(ΩT ) := C
◦ 2+α,1+α/2
y t (Ω̄1T ) × C

◦ 2+α,1+α/2
y t (Ω̄2T ) × D

◦

2+α(ΓT ),

H(ΩT ) := C
◦α,α/2
y t (Ω̄1T ) × C

◦α,α/2
y t (Ω̄2T ) × C

◦ 2+α,1+α/2
y t (ΣT )

× C
◦ 2+α,1+α/2
y t (ΓT ) × C

◦ 2+α,1+α/2
y t (ΓT ) × C

◦ 1+α, 1+α
2

y t (ΓT )

be the spaces of the functions wκ = (v1κ, v2κ, ψκ) and h = (f1, f2, p1, η1, η2, ϕ) respec-

tively with the norms

‖wκ‖B(ΩT ) :=

2∑

j=1

|vjκ|(2+α)
ΩjT

+ |ψκ|(2+α)
ΓT

+ |κ∂tψκ|(1+α)
ΓT

.(2.38)

‖h‖H(ΩT ) :=
2∑

j=1

|fj |(α)
ΩjT

+ |p1|(2+α)
ΣT

+
2∑

j=1

|ηj |(2+α)
ΓT

+ |ϕ|(1+α)
ΓT

.(2.39)
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We have reduced free boundary problem (1.2)–(1.6) to the nonlinear one (2.12)–(2.15)

in the given domain Ω1 ∪ Ω2. We write this problem in the operator form

(2.40) A[wκ] = h+ N [wκ],

where wκ = (v1κ, v2κ, ψκ) is an unknown vector, h = (f1, f2, p1, η1, η2, ϕ) a given one, A is

the linear operator determined by all the terms in the left-hand sides of the equations and

conditions of the problem (2.12)–(2.15), N = (F1, F2, 0, 0, 0, Φ) a nonlinear operator,

moreover A : B(ΩT ) → H(ΩT ), N : B(ΩT ) → H(ΩT ).

In the left-hand sides of the equations and conditions of the problem (2.12)–(2.15)

there are the same linear terms as in the problem (2.23)–(2.26). The condition (2.27):

−καj(x, 0)|Γ ≥ d4 > 0 with αj(x, 0)|Γ = χNJ−T
0 ∇TVj |Γ, t=0 = ∂Nu0j |Γ = ν0N

T ∂ν0u0j |Γ
is fulfilled by ν0N

T ≥ d1 > 0 and (2.2). So we can apply Theorem 2.4 to the problem

(2.40), represent it in the form

(2.41) wκ = A−1[h+ N [wκ]]

where A−1 is the inverse operator, and by (2.28) obtain

||wκ||B(ΩT ) ≡ ||A−1[h+ N [wκ]]||B(ΩT )(2.42)

≤ C7

(
‖h‖H(ΩT ) +

2∑

j=1

|Fj(vjκ, ψκ)|(α)
ΩjT

+ |Φ(v1κ, v2κ, ψκ;κ)|(1+α)
ΓT

)
.

Let B(M) ⊂ B(ΩT0
be a closed ball with center at zero: B(M) : = {wκ | vjκ ∈

C
◦ 2+α,1+α/2
y t (Ω̄jT0

), j = 1, 2, ψκ ∈ C
◦ 2+α,1+α/2
y t (ΓT0

), κ∂tψκ∈C
◦ 1+α, 1+α

2
y t (ΓT0

), ||wκ||B(ΩT0
)

≤M, t ≤ T0}, M = C7||h||H(ΩT0
)(1 − q)−1, q ∈ (0, 1), where ||wκ||B(ΩT ), ||h||H(ΩT ) are

the norms of the vectors wκ = (v1κ, v2κ, ψκ) and h = (f1, f2, p1, η1, η2, ϕ) determined

by (2.38) and (2.39).

We prove that the operator A−1[h+N [wκ]] acts from the closed ball B(M) into itself

and is contractive. For this we estimate the norms (2.42) and

‖A−1[h+ N [wκ]] −A−1[h+ N [w̃κ]]‖B(Ωt) ≡ ‖A−1[N [wκ] −N [w̃κ]]‖B(Ωt)(2.43)

≤ C7

( 2∑

j=1

|Fj(vjκ, ψκ) − Fj(ṽjκ, ψ̃κ)|(α)
Ωjt

+ |Φ(v1κ, v2κ, ψκ;κ) − Φ(ṽ1κ, ṽ2κ, ψ̃κ;κ)|(1+α)
Γt

)

for w, w̃ ∈ B(M).

We evaluate the norms of the functions (2.17) Fj , j = 1, 2, (2.20) Φ in (2.42) applying

the estimates (A.17) of the inverse Jacobian matrix J−1; (A.9), (A.7), (A.8) for J1 =

J11 + J12; (A.6), (A.13) for J−1
0 , J01 and (A.11), (A.12), then we obtain

(2.44) ||A−1[h+ N [wκ]]||B(Ωt) ≤ C7 ||h||H(Ωt) + r1(t, |ψκ|(2+α)
Γt

) ||wκ||B(Ωt),
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where

r1 = C14 t
α
2 (t

2−α
2 + t

1
2 |ψκ|(2+α)

Γt
)(1 + t

1
2 |ψκ|(2+α)

Γt
)(1 + t

1
2 )(1 + |ψκ|(2+α)

Γt
)(2.45)

+ C15 t
1
2 (1 + t

1
2 |ψκ|(2+α)

Γt
)(1 + |ψκ|(2+α)

Γt
+ t

1
2 |ψκ|(2+α)

Γt
)

+ C16 (t
1+α

2 |ψκ|(2+α)
Γt

+ t
1−α

2 + t
1
2 + t)(1 + |ψκ|(2+α)

Γt
)2.

In the same manner we estimate the norms in (2.43)

‖A−1[h+ N [wκ]] −A−1[h+ N [w̃κ]]‖B(Ωt)(2.46)

≤ r2(t, |v1κ|(2+α)
Ω1t

, |v2κ|(2+α)
Ω2t

, |ψκ|(2+α)
Γt

) ||wκ − w̃||B(Ωt),

where r2 is similar to (2.45) and r2(0,M,M,M) = 0.

We find T4 from the inequalities

r1(t,M) ≤ q, r2(t,M,M,M) ≤ q, q ∈ (0, 1),

then from (2.44) and (2.46) we have

||A−1[h+ N [wκ]]||B(Ωt) ≤ C7 ||h||H(Ωt) + q ||wκ||B(Ωt)(2.47)

≤ C7 ||h||H(Ωt)+qM ≤M ≡ C7 ||h||H(ΩT0
)(1 − q)−1,

‖A−1[h+ N [wκ]] −A−1[h+ N [w̃κ]]‖B(Ωt) ≤ q ||wκ − w̃||B(Ωt),(2.48)

for all w, w̃ ∈ B(M), t ≤ T0 = min(t0, t1, t2, T4, ) (the parametrization of a free boundary

(1.1) is valid for t ≤ t0; for t ≤ t1 and t ≤ t2 the inverse matrices J−1
0 and J−1 exist).

From (2.47) and (2.48) by the contraction mapping principle it follows that the prob-

lem (2.41) or (2.12)–(2.15) has a unique solution wκ = (v1κ, v2κ, ψκ) ∈ B(ΩT0
).

We can see that T0 and the constant C7(1 − q)−1 do not depend on κ.

Applying (2.47) and an estimate (2.22) for the vector h in (2.42) we find an estimate

||wκ||B(Ωt) :=
2∑

j=1

|vjκ|(2+α)
Ωjt

+ |ψκ|(2+α)
Γt

+ |κ∂tψκ|(1+α)
Γt

(2.49)

≤ C7 (1 − q)−1 ||h||H(ΩT0
) ≤ C5

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)
,

t ≤ T0, with C5 = C6 C7(1− q)−1 independent of κ (C6 is from (2.22) for the vector h).

Proof of Theorem 2.1. Due to Theorem 2.3 Stefan problem (2.12)–(2.15) has a unique so-

lution vjκ∈C
◦ 2+α,1+α/2
y t (Ω̄jT0

), j = 1, 2, ψκ ∈ C
◦ 2+α,1+α/2
y t (ΓT0

), κ∂tψκ ∈ C
◦ 1+α, 1+α

2
y t (ΓT0

)

and it satisfies a uniform (with respect to κ) estimate (2.49) ((2.21)) for t ≤ T0, that is,

the sequences {vjκ}, j = 1, 2, {ψκ} and {κ∂tψκ}, as κ → 0 are compact in C
◦ 2,1
y t (Ω̄jT0

),

C
◦ 2,1
y t(ΓT0

) and C
◦ 1,1/2
y t (ΓT0

) respectively. We choose converging subsequences

(2.50) {vjκn
}, j = 1, 2, {ψκn

} and {κn∂tψκn
}

and denote

(2.51) lim
κn→0

vjκn
= vj , lim

κn→0
ψκn

= ψ.

Here vj ∈ C
◦ 2,1
y t (Ω̄jT0

), ψ ∈ C
◦ 2,1
y t(ΓT0

).
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We rewrite the problem (2.12)–(2.15) for the functions of the subsequences (2.50) and

with κn instead of κ in a Stefan condition (2.15), in the problem we let κn → 0, then we

obtain that functions vj , j = 1, 2, ψ are the solution of the Florin problem

∂tvj − aj ∆vj − (∂tψ − aj ∆ψ)χNJ−T
0 ∇TVj

= fj(y, t) + Fj(vj , ψ) in ΩjT , j = 1, 2,

(2.52) v1|Σ = p1(y, t), t ∈ (0, T ), vj |Γ = ηj(y, t), j = 1, 2,

(λ1 ∂ν0v1 − λ2 ∂ν0v2 − ν0N
T (λ1 ∇V1 − λ2 ∇V2) J

−1
0 J−T

0 ∇T ψ) |Γ
= ϕ(y, t; 0) + Φ(v1, v2, ψ; 0)|Γ, t ∈ (0, T ),

where functions fj , Fj , p1, ηj , ϕ, Φ are determined by formulae (2.16)–(2.20).

From (2.49) we have the following estimate

2∑

j=1

|vjκn
|C2,1

y t (Ω̄jt)
+ |ψκn

|C2,1
y t (Γt)

+ |κn∂tψκn
|
C

1,1/2
y t (Γt)

(2.53)

≤ C5

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)
, t ≤ T0,

we let κn → 0 in (2.53), then due to (2.51) we obtain an estimate for the functions vj ,

j = 1, 2, ψ

2∑

j=1

|vj |C2,1
y t (Ω̄jt)

+ |ψ|C2,1
y t (Γt)

≤ C5

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)
, t ≤ T0.(2.54)

Now we show that the functions vj , j = 1, 2, ψ possess higher smoothness. For that

we should estimate the Hölder constants

[∂2
yvj ]

(α)
ΩjT0

, [∂tvj ]
(α)
ΩjT0

, [∂yvj ]
( 1+α

2 )

t,ΩjT0
, [∂2

yψ]
(α)
ΓT0

, [∂tψ]
(α)
ΓT0

, [∂yψ]
( 1+α

2 )

t,ΓT0
.(2.55)

Consider, for instance, [∂tvj ]
(α)
y,ΩjT0

. We represent the difference as ∂tvj(y, t)−∂tvj(z, t)
= ∂tvj(y, t)−∂tvjκn

(y, t)+∂tvjκn
(y, t)+∂tvjκn

(z, t)−∂tvjκn
(z, t)−∂tvj(z, t), (y, t), (z, t) ∈

Ω̄jT0
, then

|∂tvj(y, t) − ∂tvj(z, t)| ≤ |∂tvj(y, t) − ∂tvjκn
(y, t)|(2.56)

+ |∂tvj(z, t) − ∂tvjκn
(z, t)| + |∂tvjκn

(y, t) − ∂tvjκn
(z, t)|.

We apply (2.49) to the function vjκn

|∂tvjκn
(y, t) − ∂tvjκn

(z, t)| ≤ [∂tvjκ]
(α)
y,ΩjT0

|y − z|α

≤ C5

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
ΣT0

)
|y − z|α

and let κn → 0 in (2.56) taking into account the convergence of subsequence {vjκn
} in

C
◦ 2,1
y t(Ω̄jT0

) to vj (see (2.51)), then we obtain an inequality

|∂tvj(y, t) − ∂tvj(z, t)| ≤ C5

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)
|y − z|α,
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t ≤ T0, which leads to the estimate of the Hölder constant

(2.57) [∂tvj ]
(α)
y,ΩjT0

≤ C5

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
ΣT0

)
.

In the same manner we derive such estimates for all other Hölder constants in (2.55).

By (2.54) and estimates (2.57) of the Hölder constants we have vj ∈ C
◦ 2+α,1+α/2
y t (Ω̄jT0

),

j = 1, 2, ψ ∈ C
◦ 2+α,1+α/2
y t (ΓT0

) and

(2.58)

2∑

j=1

|vj |(2+α)
Ωjt

+ |ψ|(2+α)
Γt

≤ C17

( 2∑

j=1

|u0j |(2+α)
Ωj

+ |p|(2+α)
Σt

)
, t ≤ T0.

We rewrite the substitutions (2.11) and coordinate transformation (2.5) with κn in-

stead of κ

(2.59)
ρκn

= ρ0 + ψκn
, ujκn

(y + χNρκn
, t) = vjκn

(y, t) + Vj(y, t),

x = y + χ(λ) ρκn
(ξ, τ)N(ξ), y ∈ O, ξ ∈ Γ, x = y, y ∈ Ω̄\O,

then we find

(2.60) ρκn
=ρ0+ψκn

, ujκn
(x, t)=vjκn

(x−χNρκn
, t)+Vj(x−χNρκn

, t),

j = 1, 2.

In (2.60) we let κn → 0, take into account (2.51) and denote by ρ and uj the functions

in the right–hand sides

(2.61) ρ := ρ0 + ψ, uj(x, t) := vj(x− χNρ, t) + Vj(x− χNρ, t), j = 1, 2.

In the coordinate transformation (2.59) we let κn tend to zero making use of (2.51)

and ρ := ρ0 + ψ,

(2.62) x = y + χ(λ) ρ(ξ, τ)N(ξ), y ∈ O, ξ ∈ Γ, x = y, y ∈ Ω̄\O.

From (2.61) we obtain that ρ ∈ C
2+α,1+α/2
x t (ΓT0

), uj ∈ C
2+α,1+α/2
x t (Q̄jT0

), j = 1, 2, where

QjT0
= {(x, t) : x ∈ Ωj(t), t ∈ (0, T )}, ∂Ω1(t) = Σ ∪ γ(t), ∂Ω2(t) = γ(t), γ(t) is a

surface: x = ξ + ρ(ξ, t)N(ξ), ξ = ξ(x) ∈ Γ, t ∈ [0, t0], this equation is derived from (1.1)

written for kn → 0 and by (2.51). In (2.61) we make use of the estimates (2.9), (2.10) for

the functions ρ0, Vj ; (2.58) for vj , ψ, then we obtain an estimate (2.1) for the functions

uj(x, t) and ρ.

We show that the functions (2.61) uj(x, t), j = 1, 2, and ρ are the solution of the

problem (1.7)–(1.11). For that we substitute obtained functions uj(x, t), j = 1, 2, and

ρ in the problem (1.7)–(1.11), apply a transform (2.62) and making the change of the

functions

ρ = ρ0 + ψ, uj(y + χNρ, t) = vj(y, t) + Vj(y, t), j = 1, 2,

we get the problem (2.52), the solution of which are the functions vj , j = 1, 2, and ψ.

That means that the functions uj(x, t), j = 1, 2, and ρ are the solution of the Florin

problem (1.7)–(1.11).
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A. Estimates of the Jacobian matrix J. Consider the Jacobian matrix J of the

coordinate transformation (2.5) leaving an index κ at ρκ = ρ0 + ψκ

J = {δij + ∂yj
(Ni χ(ρ0 + ψ))}1≤i, j≤n = I + (∇TNχ (ρ0 + ψ))T := I + J01 + J1,(A.1)

J0 = I + J01, J01 = (∇TNχρ0)
T ,(A.2)

J1 = (∇TNχψ)T = NTχ∇ψ + ψ(∇T (Nχ))T := J11 + J12,(A.3)

where δij is the Kronecker delta, N = (N1, . . . , Nn) ∈ C2+α(Γ; Rn) is a unit vector in the

equation of a free boundary (1.1), I identity matrix, and ”T ” means transposed matrix

and column vector.

In [8] expansion formulae of the inverse matrices J−1
0 , J−1 were obtained

(A.4) J−1
0 ≡ (I + J01)

−1 = I − J01J
−1
0 ,

(A.5) J−1 ≡ (I +B)−1 = I −BJ−1, B = J01 + J1,

existence of the matrices J−1
0 , J−1 was proved for small t ≤ t1 and their estimates

found in the weighted Hölder spaces with time power weights [3]. From these results and

estimates in the classical Hölder spaces it follows that

(A.6) ‖J−1
0 ‖(α+ν)

Γt
≤ 1

1 − q
, ν = 0, 1, q ∈ (0, 1), t ≤ t1,

under the condition ρ0(ξ(y), t) ∈ C
3+α, 3+α

2
y t (ΓT ), α ∈ (0, 1), ρ0|t=0 = 0, where

||{aij}1≤i,j≤n||(l)ΓT
:= n max

i,j
|aij |(l)ΓT

.

The existence and estimate of the inverse matrix J−1 were proved under the as-

sumptions ψ(ξ(y), t) ∈ C
◦ 2+α,1+α/2
y t (ΓT ), ∂tψ ∈ C

◦ 1+α, 1+α
2

y t (ΓT ). We should obtain similar

results, if ψ(ξ, t) ∈ C
◦ 2+α,1+α/2
y t (ΓT ).

Lemma A.1. Let ψ(ξ(y), t) ∈ C
◦ 2+α,1+α/2
y t (ΓT ), α ∈ (0, 1). Then for the matrix J1 :=

J11 + J12 the following estimates hold for t ≤ T

(A.7) ‖J11‖(α+ν)
Γt

= nmax
i,j

|Ni χ∂yj
ψ|(α+ν)

Γt
≤ C1 t

1−ν
2 |ψ|(2+α)

Γt
,

(A.8) ‖J12‖(α+ν)
Γt

= nmax
i,j

|ψ ∂yj
(Ni χ)|(α+ν)

Γt
≤ C2 t

2−ν
2 |ψ|(2+α)

Γt
,

(A.9) ‖J1‖(α+ν)
Γt

≤ C3 t
1−ν
2 |ψ|(2+α)

Γt
,

(A.10) ‖J2
1‖(α+ν)

Γt
≤ C4 t

2+α−ν
2 |ψ|(2+α)

Γt
, ν = 0, 1.

Proof. The estimates (A.7)–(A.10) are derived by direct evaluation of the norms with

the help of the estimates

(A.11) |f1|(l)Ωt
≤ C5t

r
2 |f1|(l+r)Ωt

,

(A.12) |f1 f2|(l)Ωt
≤ C6t

l+r
2 |f1|(l+r)Ωt

|f2|(l)Ωt
, t ≤ T,

for the functions f1 ∈ C
◦ l+r, l+r

2
y t (Ω̄T ), f2 ∈ C

◦ l, l
2

y t (Ω̄T ), l, l+r positive non-integers, r ≥ 0.
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Lemma A.2. Let ρ0(ξ(y), t) ∈ C
3+α, 3+α

2
y t (ΓT ), α ∈ (0, 1), ρ0|t=0 = 0, ψ(ξ(y), t) ∈

C
◦ 2+α,1+α/2
y t (ΓT ). Then

(A.13) ‖J01‖(α+ν)
Γt

= nmax
i,j

|∂yj
(Ni χρ0)|(α+ν)

Γt
≤ C7 t

2+α−ν
2 |ρ0|(3+α)

Γt
,

(A.14) ‖J2
01‖(α+ν)

Γt
≤ C8 t

4−α−2ν
2 |ρ0|(3+α)

Γt
,

(A.15) ‖J01J1‖(α+ν)
Γt

≤ C9 t
3+α−ν

2 |ρ0|(3+α)
Γt

|ψ|(2+α)
Γt

,

‖(J01 + J1)
2‖(α+ν)

Γt
(A.16)

≤ C10 t
2+α−ν

2 (1 + t1−α + t
1−α

2 )(|ρ0|(3+α)
Γt

+ |ψ|(2+α)
Γt

)2,

ν = 0, 1, t ≤ T .

Proof. The estimates (A.13), (A.14) follow from the estimates of the matrices J01, J
2
01 in

the weighted Hölder spaces obtained in Lemma 5 and Corollary A.2 in [8].

To derive (A.15) we make use of the formulae (A.12) (because ∂yj
ρ0 may be considered

as a function from C
◦α+ν,α+ν

2
y t (ΓT )), and (A.13), (A.9), and get

‖J01J1‖(α+ν)
Γt

≤ C11 t
1+α

2 ‖J01‖(α+ν)
Γt

‖J1‖(1+α)
Γt

≤ C12 t
3+α−ν

2 |ρ0|(3+α)
Γt

|ψ|(2+α)
Γt

.

Applying the estimates (A.12), (A.10), (A.14), (A.15) in an inequality

‖(J01 + J1)
2‖(α+ν)

Γt
≤ ‖J2

01‖(α+ν)
Γt

+ ‖J01J1‖(α+ν)
Γt

+ ‖J1J01‖(α+ν)
Γt

+ ‖J2
1‖(α+ν)

Γt

we obtain (A.16).

Theorem A.1. Let ψ(ξ(y), t) ∈ C
◦ 2+α,1+α/2
y t (ΓT ), α ∈ (0, 1), ρ0(ξ(y), t) ∈ C

◦ 3+α, 3+α
2

y t (ΓT ),

ρ0|t=0 = 0, and |ψ|(2+α)
ΓT

≤ M , |ρ0|(3+α)
ΓT

≤ M1, M > 0, M1 > 0. Then there is

t2 ∈ (0, T ] such that the inverse Jacobian matrix J−1 exists, can be represented in the

form

J−1 =

∞∑

k=0

(J01 + J1)
2k (I − (J01 + J1))

and satisfies an estimate

(A.17) ‖J−1‖(α+ν)
Γt

≤ C13(1 + t
1−ν
2 |ψ|(2+α)

Γt
), ν = 0, 1, t ≤ t2.

Proof. Such theorem was proved in [8] under the assumption ψ(ξ, t) ∈ C
◦ 2+α,1+α/2
y t (ΓT )

and ∂tψ(ξ, t) ∈ C
◦ 1+α, 1+α

2
y t (ΓT ).

First, we shall prove the existence of the inverse matrix (I − (J01 +J1)
2)−1. With the

help of (A.12) we derive

‖((J01 + J1)
2)2‖(α+ν)

Γt
≤ C14 t

α+ν
2 ‖(J01 + J1)

2‖(α+ν)
Γt

‖(J01 + J1)
2‖(α+ν)

Γt

≤ C14C15t
1+α

2 ‖(J01 + J1)
2‖(α+ν)

Γt
‖(J01 + J1)

2‖(1+α)
Γt

,

‖((J01 + J1)
2)k‖(α+ν)

Γt
(A.18)

≤ ‖(J01 + J1)
2‖(α+ν)

Γt
(C14C15 t

1+α
2 ‖(J01 + J1)

2‖(1+α)
Γt

)k−1,
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ν = 0, 1, k = 2, 3, . . . . Formula (A.18) is proved by induction. In (A.18) we apply (A.16)

for (J01 + J1)
2

‖((J01 + J1)
2)k‖(α+ν)

Γt
≤ µ1+ν(t)(C14C15 t

1+α
2 µ2(t))

k−1,

where

µ1+ν(t) = C10 t
2+α−ν

2 (1 + t1−α + t
1−α

2 )(M +M1)
2, ν = 0, 1,

and choose t2 > 0 from the inequalities

µ1+ν(t) ≤ q, C14C15 t
1+α

2 µ2(t) ≤ q, ν = 0, 1, q ∈ (0, 1),

then we have

(A.19) ‖((J01 + J1)
2)k‖(α+ν)

Γt
≤ qk, ν = 0, 1, k = 2, 3, . . . , t ≤ t2,

and

(A.20)

∞∑

k=0

‖((J01 + J1)
2)k‖(α+ν)

Γt
≤

∞∑

k=0

qk =
1

1 − q
, ν = 0, 1, t ≤ t2.

From this estimate it follows that the inverse matrix (I − (J01 + J1)
2)−1 exists, is

expressed in the form

(A.21) (I − (J01 + J1)
2)−1 =

∞∑

k=0

((J01 + J1)
2)k

and satisfies the estimate

‖(I − (J01 + J1)
2)−1‖(α+ν)

Γt
≤ 1

1 − q
, ν = 0, 1, t ≤ t2, q ∈ (0, 1).

Using (A.5) and (A.21) we can obtain formally the identity

J−1 = (I − (J01 + J1)
2)−1 (I − (J01 + J1))(A.22)

≡
∞∑

k=0

((J01 + J1)
2)k(I − (J01 + J1)).

On the basis of (A.19) we can show as in [8] that the matrix in the right hand side of

(A.22) is the left and right inverse matrix to the Jacobian matrix J = I + J01 + J1, that

is, (A.22) is valid. With the help of the estimates (A.20), (A.13), (A.9) we obtain (A.17):

‖J−1‖(α+ν)
Γt

≤ C16
1

1 − q
(1 + C17 t

2−α−ν
2 |ρ0|(3+α)

Γt
+ C18t

1−ν
2 |ψ|(2+α)

Γt
)

≤ C13(1 + t
1−ν
2 |ψ|(2+α)

Γt
), ν = 0, 1, t ≤ t2.

B. Model problem with a small parameter. Let D1 = R
n
−, D2 = R

n
+, DjT =

Dj × (0, T ), R be the plane xn = 0, RT = R × [0, T ].

In the proof of Theorem 2.4 for a linear problem we have reduced it to the linear model

conjunction problem (2.32)–(2.34) with a small parameter. We consider this problem. It

is required to find functions zj , j = 1, 2, and ψ(x′, t) under the conditions

(B.1) ∂tzj − aj ∆zj = fj(x, t) in DjT , j = 1, 2,

(B.2) ψ|t=0 = 0, zj |t=0 = 0 in Dj , j = 1, 2,
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(B.3) z1 − β1ψ = η1(x
′, t), z2 − β2ψ = η2(x

′, t) on RT ,

(B.4) b∇T z1 − c∇T z2 + h′∇′ψ + κ ∂tψ = ϕ(x′, t) on RT ,

where all coefficients are constant, aj > 0, b = (b′, bn), b
′ = (b1, . . . , bn−1), c =

(c′, cn), c
′ = (c1, . . . , cn−1), h′ = (h1, . . . , hn−1), κ a small parameter.

Theorem B.1. Let

(B.5) 0 < |κ| ≤ κ0, bn β1 κ > 0, cn β2 κ > 0.

For any fj ∈ C
◦α,α/2
x t (DjT ), α ∈ (0, 1), ηj ∈ C

◦ 2+α,1+α/2
x′ t (RT ), j = 1, 2, ϕ ∈ C

◦ 1+α, 1+α
2

x′ t (RT )

the problem (B.1)-(B.4) has a unique solution zj(x, t) ∈ C
◦ 2+α,1+α/2
x t (DjT ), j = 1, 2,

ψ(x′, t) ∈ C
◦ 2+α,1+α/2
x′ t (RT ), κ ∂tψ(x′, t) ∈ C

◦ 1+α, 1+α
2

x′ t (RT ), and it satisfies the estimate

2∑

j=1

|zj |(2+α)
DjT

+ |ψ|(2+α)
RT

+ |κ∂tψ|(1+α)
RT

≤ C1

( 2∑

j=1

(|fj |(α)
DjT

+ |ηj |(2+α)
RT

) + |ϕ|(1+α)
RT

)
,(B.6)

where the constant C1 does not depend on κ.

Proof. We construct auxiliary functions Vj ∈ C
◦ 2+α,1+α/2
x t (DjT ), j = 1, 2, as the solutions

of the following first boundary value problems

∂tVj − aj ∆Vj = fj(x, t) in DjT , Vj |xn=0 = ηj(x
′, t), j = 1, 2.

For the solutions of these problems the following estimates are valid [18]

(B.7) |Vj |(2+α)
DjT

≤ C1+j(|fj |(α)
DjT

+ |ηj |(2+α)
RT

), j = 1, 2.

After substitutions in (B.1)–(B.4)

(B.8) zj = uj + Vj , j = 1, 2,

we obtain the problem for the functions uj , j = 1, 2, ψ

∂tuj − aj ∆uj = 0 in DjT , j = 1, 2,

(B.9) u1 − β1ψ = 0, u2 − β2ψ = 0 on RT ,

b∇u1 − c∇u2 + h′∇′ψ + κ ∂tψ = g(x′, t) on RT ,

where g = ϕ− (b∇TV1 − c∇TV2)|xn=0 ∈ C
◦ 1+α, 1+α

2

x′ t (RT ) and

(B.10) |g|(1+α)
RT

≤ C4

2∑

j=1

|Vj |(2+α)
Djt

+ |ϕ|(1+α)
Rt

.

Applying Laplace (L) transform on t and Fourier (F ) transform on x′ to the problem

(B.9) we find

(B.11) FL[uj(x, t)] := ũj(s
′, xn, p) =

βj
κ ζ

g̃(s′, p) e−rj|xn|, ψ̃ =
1

κ ζ
g̃,

where j = 1, 2,

ζ = p+
β1bn
κ

r1 +
β2cn
κ

r2 + i
d′s′

κ
, rj =

√
p+ ajs′2√

aj
,
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d′ = β1b
′ − β2c

′ + h′, Re ζ ≥ a0 = const > 0 due to (B.5). With the help of the inverse

Laplace transform on p and Fourier transform on s′ applied to the functions (B.11) we

obtain the solution to the problem (B.9) in the explicit form [4], [7]

(B.12) uj(x, t) =
βj
κ

∫ t

0

dτ

∫

Rn−1

g(y′, τ )Gj(x
′ − y′, xn, t− τ ) dy′,

(B.13) ψ(x′, t) =
1

βj
uj(x

′, 0, t), j = 1, 2,

where

Gj(x, t) =

∫ t

0

∂xn
gj(x

′ − d′σ/κ, (−1)jxn, σ/κ, t− σ) dσ,

g1(x
′−d′σ/κ,−xn, σ/κ, t)=4a1a2

∫ t

0

dτ1

∫

Rn−1

Γ1(x
′−η′−d′σ/κ, β1bnσ/κ−xn, t−τ1)

×∂ηn
Γ2(η

′, β2cnσ/κ− ηn, τ1)|ηn=0 dη
′

≡ 2a1

∫ t

0

d τ1

∫

Rn−1

1

(2
√
πa1(t− τ1))n

β2cn σ/κ

(2
√
πa2τ1)nτ1

×e−
(x′

−η′
−d′σ/κ)2+(β1bn σ/κ−xn)2

4a1(t−τ1) e−
η′2+(β2cnσ/κ)2

4a2τ1 d η′, xn < 0,

g2(x− d′σ/κ, xn, σ/κ, t) = 4a1a2

∫ t

0

dτ1

∫

Rn−1

∂ηn
Γ1(η

′, β1bnσ/κ+ ηn, τ1)

×Γ2(x
′ − η′ − d′σ/κ, β2cnσ/κ+ xn, t− τ1)|ηn=0 dη

′

≡ −2a2

∫ t

0

d τ1

∫

Rn−1

β1bn σ/κ

(2
√
πa1τ1)nτ1

1

(2
√
πa2(t− τ1))n

×e−
η′2+(β1bn σ/κ)2

4a1τ1 e
−

(x′
−η′

−d′σ/κ)2+(β2cnσ/κ+xn)2

4a2(t−τ1) d η′, xn > 0,

Γj(x, t) = 1

(2
√
ajπt)n

e
− x2

4ajt is a fundamental solution to the heat equation (B.1). In [7]

the problem (B.9) was studied with a small parameter κ. For its solution (B.12), (B.13)

by direct evaluation the following uniform (with respect to κ) estimate was derived for

every given T > 0

(B.14)

2∑

j=1

|uj |(2+α)
DjT

+ |ψ|(2+α)
RT

+ |κ∂tψ|(1+α)
RT

≤ C5|g|(1+α)
RT

,

where the constant C5 does not depend on κ.

Applying estimates (B.14), (B.7) for uj , Vj in formula (B.8) and gathering estimates

for zj , ψ and (B.10) for g we obtain an estimate (B.6) and Theorem B.1.
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