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Abstract. We consider a two-dimensional Navier-Stokes shear flow with time dependent bound-

ary driving and subject to Tresca law. We establish the existence of a unique global in time

solution and then, using a recent method based on the concept of the Kuratowski measure

of noncompactness of a bounded set, we prove the existence of the pullback attractor for the

associated cocycle. This research is motivated by a problem from lubrication theory.

1. Introduction. In this article we study the problem of existence of the pullback at-

tractor for a class of two-dimensional turbulent boundary driven flows subject to the

Tresca law which naturally appears in lubrication theory.

The problem is as follows. The flow of an incompressible fluid in a two-dimensional

domain Ω is described by the equation of motion

ut − ν∆u + (u · ∇)u + ∇p = 0 in Ω (1.1)

and the incompressibility condition

div u = 0 in Ω. (1.2)
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To define the domain of the flow Ω consider first the channel

Ω∞ = {x = (x1, x2) : −∞ < x1 < ∞, 0 < x2 < h(x1)},
where h is a positive function, smooth, and L-periodic in x1. Then

Ω = {x = (x1, x2) : 0 < x1 < L, 0 < x2 < h(x1)}
and ∂Ω = Γ̄0 ∪ Γ̄L ∪ Γ̄1, where Γ0 and Γ1 are the bottom and the top, and ΓL is the

lateral part of the boundary of Ω.

We are interested in solutions of (1.1)-(1.2) in Ω which are L-periodic with respect to

x1. We assume that

u = 0 at Γ1. (1.3)

Moreover, we assume that there is no flux condition across Γ0 so that the normal com-

ponent of the velocity on Γ0 satisfies

u · n = 0 at Γ0, (1.4)

and that the tangential component of the velocity uη on Γ0 is unknown and satisfies

the Tresca law with a constant and positive friction coefficient k. This means that, c.f.,

e.g., [7],

|ση(u, p)| < k ⇒ uη = U0(t)e1

|ση(u, p)| = k ⇒ ∃λ ≥ 0 such that uη = U0(t)e1 − λση(u, p)

}

at Γ0 (1.5)

where ση is the tangential component of the stress tensor on Γ0 and

t 7→ U0(t)e1 = (U0(t), 0)

is the time dependent velocity of the lower surface, producing the driving force of the

flow. We suppose that U0 is a locally Lipschitz continuous function of time t.

If n = (n1, n2) is the unit outward normal to Γ0, and η = (η1, η2) is the unit tangent

vector to Γ0 then, using the summation convention, we have

ση(u, p) = σ(u, p) · n − ((σ(u, p) · n) · n)n, (1.6)

where σij(u, p) = −pδij + ν (ui,j + uj,i) is the stress tensor.

In the end, the initial condition for the velocity at time τ ∈ R is

u(x, τ) = u0(x) for x ∈ Ω. (1.7)

The problem is motivated by a flow in an infinite (rectified) journal bearing Ω ×
(−∞, +∞), where Γ1 × (−∞, +∞) represents the outer cylinder, and Γ0 × (−∞, +∞)

represents the inner, rotating cylinder. In the lubrication problems the gap h between

cylinders is never constant. We can assume that the rectification does not change the

equations as the gap between cylinders is very small with respect to their radii.

The system (1.1)-(1.2) with boundary conditions: (1.3) at Γ1, for h = const, and

u = const on Γ0 instead of (1.4)-(1.5), was intensively studied in several contexts, some of

them mentioned in the introduction of our paper [4]. The autonomous case with h 6= const

and with u = const on Γ0 was considered in [2], [3]. See also [4] where the case h 6= const,

u = U(t)e1 on Γ0, was considered. On the other hand, the important for applications
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dynamical problem we consider in this paper has not been studied earlier, neither in the

autonomous nor in the nonautonomous case.

Our plan is as follows. First, we homogenize the boundary condition (1.5) by defining

a smooth background flow, a simple version of the Hopf construction. In section 2 we

study the variational formulation of the homogenized problem. In section 3 we prove

existence and uniquness of a global in time solution of our problem. In section 4 we study

the existence of the pullback attractor.

To homogenize the boundary condition (1.5) let

u(x1, x2, t) = U(x2, t)e1 + v(x1, x2, t) (1.8)

with

U(0, t) = U0(t), U(h(x1), t) = 0, x ∈ (0, L), t ∈ (−∞,∞). (1.9)

The new vector field v is L-periodic in x1 and satisfies the equation of motion

vt − ν∆v + (v · ∇)v + ∇p = G(v) (1.10)

with

G(v) = −Uv,x1
−(v)2 U,x2

e1 + νU,x2x2
e1 − U,t e1

where by (v)2 we denoted the second component of v. As div(Ue1) = 0 we get

div v = 0 in Ω. (1.11)

From (1.8)–(1.9) we obtain

v = 0 on Γ1, (1.12)

and

v · n = 0 on Γ0. (1.13)

Moreover, we have,

ση(v, p) = ση(u, p) +

(

ν
∂U(x2, t)

∂x2

∣

∣

∣

∣

x2=0

, 0

)

.

Since we can define the extension U in such a way that

∂U(x2, t)

∂x2

∣

∣

∣

∣

x2=0

= 0

the Tresca condition (1.5) transforms to

|ση(v, p)| < k ⇒ vη = 0

|ση(v, p)| = k ⇒ ∃λ ≥ 0 such that vη = −λση(v, p)

}

at Γ0 (1.14)

In the end the initial condition becomes

v(x, τ) = v0(x) = u0(x) − U(x2, τ )e1. (1.15)

2. Variational formulation of the problem. In this section we present the variational

formulation of the homogenized problem (1.10)-(1.15). Then, for the convenience of the

readers, we describe the relations between the classical and the weak formulations.

We begin with some basic definitions of the paper.
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Let

Ṽ = {v ∈ C∞(Ω)2 : div v = 0 in Ω, v is L-periodic in x1,

v = 0 at Γ1, v · n = 0 at Γ0}
and

V = closure of Ṽ in H1(Ω)2, H = closure of Ṽ in L2(Ω)2.

We define scalar products in H and V , respectively, by

(u, v) =

∫

Ω

u(x)v(x) dx and (∇u,∇v)

and their associated norms by

|v| = (v, v)
1
2 and ‖v‖ = (∇v,∇v)

1
2 .

Let, for u, v and w in V

a(u, v) = (∇u,∇v) and b(u, v, w) = ((u · ∇)v, w).

In the end, let us define the functional j on V by

j(u) =

∫

Γ0

k|u(x1, 0)|dx1.

The variational formulation of the homogenized problem (1.10)–(1.15) is as follows.

Problem 2.1. Given τ ∈ R and v0 ∈ H, find v : (τ,∞) → H such that:

(i) for all T > τ ,

v ∈ C([τ, T ]; H) ∩ L2(τ, T ; V ), with vt ∈ L2(τ, T ; V ′)

(ii) for all Θ in V , all T > τ , and for almost all t in the interval [τ, T ], the following

variational inequality holds

〈vt(t), Θ − v(t)〉 + νa(v(t), Θ − v(t)) + b(v(t), v(t), Θ − v(t))

+j(Θ) − j(v(t)) ≥ (L(v(t)), Θ− v(t)) (2.1)

(iii) the initial condition

v(x, τ) = v0(x). (2.2)

holds.

In (2.1) the functional L(v(t)) is defined for almost all t ≥ τ by,

(L(v(t)), Θ) = −νa(ξ, Θ)− (ξ,t(t), Θ)

− b(ξ(t), v(t), Θ)− b(v(t), ξ(t), Θ), (2.3)

where ξ = Ue1 is a suitable smooth background flow.

We have the following relations between classical and weak formulations.

Proposition 2.1. Every classical solution of problem (1.10)–(1.15) is also a solution of

Problem 2.1. On the other hand, every solution of Problem 2.1 which is smooth enough

is also a classical solution of problem (1.10)–(1.15).
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Proof. Let v be a classical solution of problem (1.10)–(1.15). As it is (by assumption)

sufficiently regular, we have to check only (2.1). Remark first that (1.10) can be written

as

vt − σij,j(v, p) + (v · ∇)v = G(v(t)). (2.4)

Let Θ ∈ V . Mutiplying (2.4) by Θ − v(t) and using Green’s formula we obtain

〈vt, Θ − v(t)〉 +

∫

Ω

σij(v, p)(Θ − v(t))i,jdx + b(v(t), v(t), Θ − v(t))

=

∫

∂Ω

σij(v, p)nj(Θ − v(t))i + 〈G(v(t)), Θ − v(t)〉 for almost all t ∈ [τ, T ]. (2.5)

As v(t) and Θ are in V , we have
∫

Ω

σij(v, p)(Θ − v(t))i,jdx = νa(v(t), Θ − v(t)) (2.6)

and using (1.6) we obtain
∫

∂Ω

σij(v, p)nj(Θ − v(t))i =

∫

Γ0

ση(v, p) · (Θ − vη(t)) −
∫

Γ0

(σijnjni)ni(Θ − vη(t))i

As ni(Θ − vη(t))i = 0 on Γ0, we get
∫

∂Ω

σij(v, p)nj(Θ − v(t))i =

∫

Γ0

ση(v, p) · (Θ − vη(t)) =

∫

Γ0

(ση · Θ + k|Θ|)

−
∫

Γ0

k(|Θ| − |vη(t)|) −
∫

Γ0

(k|vη(t)| + ση · vη(t)).

Remark that ση · Θ + k|Θ| ≥ 0, and the Tresca condition (1.14) is equivalent [7] to

k|vη(t)| + ση · vη(t) = 0 a.e on Γ0.

Thus
∫

∂Ω

σij(v, p)nj(Θ − v(t))i ≥ −
∫

Γ0

k(|Θ| − |vη(t)|) = −j(Θ) + j(v(t)). (2.7)

As

〈G(v(t)), Θ − v(t)〉 = (L(v(t)), Θ− v(t))

from (2.6) and (2.7) we see that (2.5) becomes (2.1), and (2.2) is the same as (1.15).

Conversely, suppose that v is a solution to Problem 2.1 and let ϕ be in the space

(H1
div(Ω))2 = {ϕ ∈ V : ϕ = 0 on Γ}. We take Θ = v(t)± ϕ in (2.1), and using the Green

formula, we obtain

〈vt − ν∆v(t) + v(t) · ∇v(t) − G(v(t)), ϕ〉 = 0 ∀ϕ ∈ (H1
div(Ω))2.

Thus, there exists p ∈ H−1(Ω) such that

vt − ν∆v(t) + v(t) · ∇v(t) − G(v(t)) = ∇p a.e. in Ω.

so that (1.10) holds. We obtain (1.14) as in [1], and we have immediately (1.11)–(1.13)

and (1.15).
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3. Existence and uniqueness of a global in time solution. In this section we

establish the existence and uniqueness of a global in time solution for Problem 2.1. First,

we present three lemmas.

Lemma 3.1 ([4]). For any t ∈ R consider the smooth extension

ξ(x2, t) = U(x2, t)e1 = U0(t)ρ(x2/(h0ε(t)))e1.

of U0(t)e1 from Γ0 to Ω, where

ε = ε(t) =

{

2 if |U0(t)| ≤ ν/(8h0),

ν/(4h0|U0(t)|) if |U0(t)| ≥ ν/(8h0),

h0 = min0≤x1≤L h(x1), and ρ : [0,∞) → [0, 1] is a smooth function such that

ρ(0) = 1, ρ′(0) = 0, supp ρ ⊂ [0, 1/2], max |ρ′(s)| ≤
√

8.

Then we have

|b(v, ξ(t), v)| ≤ ν

4
‖v‖2 for all , v ∈ V.

and

∂U(x2, t)

∂x2
|x2=0 = 0.

Lemma 3.2 ([4]). Let U be as in Lemma 3.1. Then for almost all t,

|ξ(t)|2 =

∫

Ω

|U(x2, t)|2dx1dx2 ≤ 1

2
Lh0U

2
0 (t)ε(t),

|∇ξ(t)|2 =

∫

Ω

|U,x2
(x2, t)|2dx1dx2 ≤ 4LU2

0 (t)

h0

1

ε(t)
,

and

|ξ,t |2 =

∫

Ω

|U,t (x2, t)|2dx1dx2 ≤
(

|U ′
0(t)| +

√
2|U0(t)|

|ε′(t)|
ε(t)

)2
Lh0ε(t)

2
.

Lemma 3.3. For all v in V we have the anisotropic Ladyzhenskaya inequality

‖v‖L4(Ω) ≤ C(Ω)|v| 12 ‖v‖ 1
2 . (3.1)

Proof. Let v ∈ V and ξ ∈ C1(] − L, L[) such that ξ = 1 on [0, L] and ξ = 0 at x1 = −L.

Define ϕ = ξv, and extend ϕ by 0 to Ω1 =] − L, L[×]0, h[, where h = max0≤x1≤L h(x1).

We obtain

ϕ2(x1, x2) = 2

∫ x1

−L

ϕ(t1, x2)
∂ϕ

∂t1
(t1, x2)dt1 ≤ 2

∫ L

−L

|ϕ(x1, x2)|
∣

∣

∣

∣

∂ϕ

∂x1
(x1, x2)

∣

∣

∣

∣

dx1

and

ϕ2(x1, x2) = −2

∫ h

x2

ϕ(x1, t2)
∂ϕ

∂t2
(x1, t2)dt2 ≤ 2

∫ h

0

|ϕ(x1, x2)|
∣

∣

∣

∣

∂ϕ

∂x2
(x1, x2)

∣

∣

∣

∣

dx2,
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whence

‖ϕ‖4
L4(Ω1)

=

∫

Ω1

ϕ2(x1, x2)ϕ
2(x1, x2)dx1dx2

≤
(

∫ h

0

sup
−L≤x1≤L

ϕ2(x1, x2)dx2

)(
∫ L

−L

sup
0≤x2≤h

ϕ2(x1, x2)dx1

)

≤ 4

(
∫ h

0

∫ L

−L

|ϕ|
∣

∣

∣

∣

∂ϕ

∂x1

∣

∣

∣

∣

dx1dx2

)

×
(

∫ h

0

∫ L

−L

|ϕ|
∣

∣

∣

∣

∂ϕ

∂x2

∣

∣

∣

∣

dx2dx1

)

By the Cauchy-Schwarz inequality,

‖ϕ‖4
L4(Ω1)

≤ 4|ϕ|2L2(Ω1)

∣

∣

∣

∣

∂ϕ

∂x1

∣

∣

∣

∣

L2(Ω1)

∣

∣

∣

∣

∂ϕ

∂x2

∣

∣

∣

∣

L2(Ω1)

≤ 2|ϕ|2L2(Ω1)

(
∣

∣

∣

∣

∂ϕ

∂x1

∣

∣

∣

∣

2

L2(Ω1)

+

∣

∣

∣

∣

∂ϕ

∂x2

∣

∣

∣

∣

2

L2(Ω1)

)

≤ 2|ϕ|2L2(Ω1)
|∇ϕ|2L2(Ω1)

We use |ξ| ≤ 1 and the Poincaré inequality to get

‖v‖L4(Ω) ≤ ‖ϕ‖L4(Ω1), |ϕ|L2(Ω1) ≤ 2|v|L2(Ω) and |∇ϕ|L2(Ω1) ≤ C‖v‖V

for some constant C, whence (3.1) holds.

Theorem 3.1. Let v0 ∈ H and the function s 7→ |U0(s)|3 + |U ′
0(s)|2 be locally integrable

on the real line. Then there exists a solution of Problem 2.1.

Proof. We provide only the main steps of the proof as it is quite standard and, on the

other hand, long. The estimates we obtain will be used further in the paper.

Observe that the functional j is convex but nondifferentiable. To overcome this diffi-

culty we use the following approach (see, i.e., [8]). For δ > 0 let jδ : V → R be a functional

defined by

ϕ 7→ jδ(ϕ) =
1

1 + δ

∫

Γ0

k|ϕ|1+δdx

which is convex, lower continuous and finite on V , and has the following properties

• ∃χ ∈ V ′ and µ ∈ R such that jδ(ϕ) ≥ 〈χ, ϕ〉 + µ ∀ϕ ∈ V ,

• limδ→0+ jδ(ϕ) = j(ϕ) ∀ϕ ∈ V ,

• vδ ⇀ v (weakly) in V ⇒ limδ→0+ jδ(vδ) ≥ j(v).

The functional jδ is Gâteaux differentiable in V , with

(j′δ(v), Θ) =

∫

Γ0

k|v|δ−1vΘ dx ∀Θ ∈ V.

Let us consider the following equation
(

dvδ

dt
, Θ

)

+ νa(vδ(t), Θ) + b(vδ(t), vδ(t), Θ) + (j′δ(vδ), Θ)

= −νa(ξ(t), Θ)− (ξ,t, Θ) − b(ξ(t), vδ(t), Θ) − b(vδ(t), ξ(t), Θ) (3.2)

with initial condition

vδ(τ ) = v0. (3.3)
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For δ > 0, we establish an a priori estimate of vδ. Since (j′δ(vδ), vδ) ≥ 0, vδ(t) ∈ V ,

and b(vδ(t), vδ(t), vδ(t)) = b(ξ, vδ(t), vδ(t)) = 0 then taking Θ = vδ(t) in (3.2) we get

1

2

d

dt
|vδ(t)|2 + ν‖vδ(t)‖2 ≤ (−νa(ξ(t), vδ(t))

− (ξ,t, vδ(t)) − b(vδ(t), ξ(t), vδ(t)) (3.4)

In view of estimate (3.1) and the Poincaré inequality we obtain from (3.4)

1

2

d

dt
|vδ(t)|2 +

ν

2
‖vδ(t)‖2 ≤ 2ν‖ξ‖2 +

1

νλ1
|ξ,t |2.

where λ1 is the first eigenvalue of the Stokes operator in our problem. We estimate the

right hand side in terms of the data using Lemma 3.2 with ε as in Lemma 3.1 to get

1

2

d

dt
|vδ(t)|2 +

ν

2
‖vδ(t)‖2 ≤ F (t), (3.5)

with

F (t) = 2ν

(

1

2
Lh0U

2
0 (t)ε(t) +

4LU2
0 (t)

h0ε(t)

)

+
1

νλ1

(

|U ′
0(t)| +

√
2|U0(t)|

|ε′(t)|
ε(t)

)2
Lh0ε(t)

2

= c1(ν, Ω)(|U0(t)|3 + |U ′
0(t)|2). (3.6)

From (3.5) we conclude that

|vδ(t)|2 + ν

∫ t

τ

‖vδ(s)‖2ds ≤ |v(τ )|2 + 2

∫ t

τ

F (s)ds. (3.7)

As the function F is, by assumption, locally integrable on the real line, we deduce that

vδ is bounded in L2(τ, T ; V ) ∩ L∞(τ, T ; H), independently of δ. (3.8)

The existence of vδ satisfying (3.2)–(3.3) is based on inequality (3.5), the Galerkin ap-

proximations, and the compactness method. Moreover from (3.7) we can deduce that

dvδ

dt
is bounded in L2(τ, T ; V ′). (3.9)

From (3.8) and from (3.9) we conclude that there exists v such that (possibly for a

subsequence)

vδ ⇀ v in L2(τ, T ; V ), and
dvδ

dt
⇀

dv

dt
in L2(τ, T ; V ′) (weakly) (3.10)

In view of (3.10), v ∈ C([τ, T ]; H), and

vδ → v in L2(τ, T ; H) strongly.

We can now pass to the limit δ → 0 in (3.2)–(3.3) exactly as in [7] to obtain the variational

inequality (2.1) for almost every point t ∈ ]τ, T [. Thus the existence of a solution of

Problem 2.1 is established.

Theorem 3.2. Under the hypotheses of Theorem 3.1, the solution v of Problem 2.1 is

unique and the map v(τ ) → v(t), for t > τ , is continuous in H.
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Proof. Let v and w be two solutions of Problem 2.1. Then for u(t) = w(t)− v(t) we have

1

2

d

dt
|u(t)|2 + ν‖u(t)‖2 ≤ b(u(t), w(t), u(t)) + b(u(t), ξ(t), u(t))

By Lemma 3.1 and the anisotropic Ladyzhenskaya inequality (3.1) we obtain

d

dt
|u(t)|2 +

ν

4
‖u(t)‖2 ≤ 4

ν
C(Ω)‖w(t)‖2|u(t)|2,

and in view of the Poincaré inequality we conclude

d

dt
|u(t)|2 +

σ

4
|u(t)|2 ≤ 4

ν
C(Ω)‖w(t)‖2|u(t)|2.

Using again the Gronwall lemma, we obtain

|u(t)|2 ≤ [u(τ )]2 exp{−
∫ t

τ

(

σ

4
− 4

ν
C(Ω)‖w(s)‖2

)

ds}. (3.11)

From (3.10) it follows that the solution w of Problem 2.1 belongs to L2(τ, t; V ). We have

thus proved that the map v(τ ) → v(t), t > τ , in H is continuous. In particular, as

u(τ ) = w(τ ) − v(τ ) = 0, the solution v of Problem 2.1 is unique. This ends the proof of

Theorem 3.2.

4. Existence of the pullback attractor. In this section we prove existence of the

pullback attractor for the cocycle associated to the considered problem by using a method

based on the concept of the Kuratowski measure of noncompactness of a bounded set.

This method is very useful when one deals with variational inequalities as it overcomes

obstacles coming from the usual methods. One needs neither compactness of the dynamics

which results from the second energy inequality nor asymptotic compactness, cf., i.e., [4,

5, 6, 11], which results from the energy equation. In the case of variational inequalities it

is much more difficult to obtain the second energy inequality due to presence of boundary

functionals, on the other hand, we do not have any energy equation.

First we recall the definition of a cocycle and a pullback attractor, then, following [10],

recall the abstract theory, and in the end apply the latter to our problem.

Definition 4.1. Let P be a metric space and θ : R × P → P be a mapping such that

θt : P → P form a group, namely,

θ0 = Id, and θt+r = θt ◦ θr ∀t, r ∈ R.

Let H be a complete metric space. A mapping Φ : R+ × P × H → H is said to be a

cocycle on H with respect to a group θ if

Φ(0, p, v0) = v0 ∀v0 ∈ H, p ∈ P,

Φ(t + r, p, v0) = Φ(t, θr(p), Φ(r, p, v0)), ∀t, r ∈ R+, p ∈ P.

Definition 4.2. A family A = {Ap}p∈P of nonempty compact sets of H is called a

pullback attractor of the θ-cocycle Φ if it is Φ-invariant, that is,

Φ(t, p,Ap) = Aθt(p) ∀(t, p) ∈ R+ × P,

and pullback attracting, that is,

lim
t→∞

dist (Φ(t, θ−t(p), B),Ap) = 0 ∀B ∈ B(H), ∀p ∈ P.
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where B(H) is the set of all bounded subsets of H, and dist is the Hausdorff semidistance

between X and Y defined by

dist(X, Y ) = sup
x∈X

inf
y∈Y

d(x, y).

Definition 4.3. The pullback ω-limit set ωp(B) of B is defined, for any t ≥ 0, by the

following

ωp(B) =
⋂

s≥0

⋃

t≥s

Φ(t, θ−t(p), B).

The other definitions and theorems we need are as follows. Let B ∈ B(H). The

Kuratowski measure of noncompactness [9] is defined by

α(B) = inf{δ : B admits a finite cover by sets of diameter ≤ δ}.

Definition 4.4 ([10]). A cocycle Φ on H is said to be pullback ω-limit compact if for

any B ∈ B(H), for any p ∈ P,

lim
τ→∞

α
(

⋃

t≥τ

Φ(t, θ−t(p), B)
)

= 0.

Definition 4.5 ([10]). Let H be a Banach space. A cocycle Φ is said to be norm-to-weak

continuous on H if for all (t, p, x) ∈ R+ × P × H and for every sequence (xn) ∈ H,

xn → x strongly in H ⇒ Φ(t, p, xn) ⇀ Φ(t, p, x) weakly in H.

Theorem 4.1 ([10]). Let H be a Banach space. Let Φ be a cocycle on H with respect to

a group θ. If Φ is norm-to-weak continuous and possesses a uniformly absorbing set B0,

then Φ possesses a pullback attractor A = {Ap}p∈P , satisfying

Ap = ωp(B0), ∀p ∈ P,

if and only if it is pullback ω-limit compact.

Theorem 4.2 ([10]). Let H be a Banach space. If the cocycle Φ satisfies the pullback

condition (PC): for any p ∈ P, B ∈ B(H) and ε > 0, there exists t0(p, B, ε) and a finite

dimensional subspace E of H such that for a bounded projector P : H → E,

P
(

⋃

t≥t0

Φ(t, θ−t(p), B)
)

is bounded, ∀t ∈ R+,

∣

∣

∣
(I − P )

(

⋃

t≥t0

Φ(t, θ−t(p), x)
)
∣

∣

∣
≤ ε, ∀x ∈ B,

then Φ is pullback ω-limit compact.

Now, we define a cocycle Φ : R+×R×H → H as the evolutionary process U associated

with Problem 2.1, namely,

Φ(s, t, v0) = U(s + t, t)v0

with θs(t) = t + s. In particular,

Φ(s, θ−s(t), v0) = U(θ−s(t) + s, θ−s(t))v0 = U(t, t − s)v0.
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Lemma 4.1. Let

sup
h∈R

∫ h+1

h

F (s)ds < R(F ) < ∞, (4.1)

σ > 0 and t ≥ τ . Then for every ε > 0 there exists δ = δ(ε) > 0 such that
∫ t

τ

e−σ(t−s)F (s)ds ≤ ε

2
+

e−σδ

1 − e−σ
R(F ). (4.2)

Proof. Let δ be such that
∫ t

t−δ
F (s)ds ≤ ε

2 , τ < δ < t. Then, by (4.1),

∫ t

τ

e−σ(t−s)F (s)ds ≤ ε

2
+

∞
∑

k=1

∫ t−(δ+k)

t−(δ+k+1)

e−σ(t−s)F (s)ds ≤ ε

2
+

e−σδ

1 − e−σ
R(F ).

Let F (s) = |U0(s)|3 + |U ′
0(s)|2 be as in (3.6). Then we have

Lemma 4.2. Let the initial condition v0 in Problem 2.1 belong to a ball B(0, ρ) in H.

Suppose that (4.1) holds. Then the solution v of Problem 2.1 satisfies

sup
h≥τ

∫ h+1

h

‖v(s)‖2ds ≤ 2

ν

{

ρ2 +

(

1 +
e−σδ

1 − e−σ

)

R(F )

}

. (4.3)

Proof. Taking Θ = 0 in (2.1) we obtain, similarly as in the proof of Theorem 3.1,

1

2

d

dt
|v(t)|2 +

ν

2
‖v(t)‖2 ≤ F (t) (4.4)

and, in consequence,

1

2

d

dt
|v(t)|2 +

σ

2
|v(t)|2 ≤ F (t) (4.5)

with σ = νλ1. By Gronwall’s inequality and Lemma 4.1 with ε = ρ2 we conclude from

the last inequality that for t ≥ τ ,

|v(t)|2 ≤ 2ρ2 +
2e−σδ

1 − e−σ
R(F ). (4.6)

By integration of (4.4) we obtain the first energy estimate: for τ ≤ η ≤ t,

|v(t)|2 + ν

∫ t

η

‖v(s)‖2ds ≤ 2

∫ t

η

F (s)ds + |v(η)|2. (4.7)

Using this estimate and (4.6) we obtain (4.3).

Theorem 4.3. Let v0 ∈ H and U0 be such that (4.1) holds, with F (s) = |U0(s)|3 +

|U ′
0(s)|2. Then there exists a pullback attractor A in the sense of Theorem 4.1 for the

cocycle Φ given by the evolutionary process U(t, τ ) above.

Proof. From (4.5), (4.6), the Gronwall inequality, and Lemma 4.1 we obtain

|U(s + t, t)v0|2 ≤ e−σs|v0|2 + ε +
2e−σδ

1 − e−σ
R(F ).

For v0 in B(0, ρ) and s large enough, U(s + t, t)v0 ∈ B(0, ρ0), where ρ0 depends only on

ε, ρ, and R(F ), which means that there exists a uniformly absorbing ball in H.

From (3.11) it follows that the evolutionary process U is strongly continuous in H,

whence, in particular, it is norm-to-weak continuous on H.
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Thus, according to Theorem 4.1 and Theorem 4.2, to finish the proof we have to prove

that the pullback condition (PC) holds.

Let A be the Stokes operator in H. As A−1 is continuous and compact in H, there

exists a sequence {λj}∞j=1 such that

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . with lim
j→+∞

λj = ∞,

and a family of elements {ϕj}∞j=1 of D(A), which are orthonormal in H such that Aϕj =

λjϕj .

We define the m-dimensional subspace Vm, of V , and the orthogonal projection oper-

ator Pm : V → Vm by

Vm = span{ϕ1, . . . , ϕm} and Pmv =

m
∑

j=1

(v, ϕj)ϕj

For v ∈ D(A) ⊂ V , we can write it

v = Pmv + (I − Pm)v = Pmv + v2.

Set Θ = v1(t) in (2.1) to get

1

2

d

dt
|v2(t)|2 + ν‖v2(t)‖2 ≤ j(v1(t)) − j(v(t)) − b(v(t), v(t), v2(t)) + (L(v(t)), v2(t)).

From the continuity of the trace operator we have

j(v1(t)) − j(v(t)) ≤ j(v2(t)) ≤ C +
ν

4
‖v2(t)‖2

Further, using the Ladyzhenskaya inequality (3.1) we easily arrive at

d

dt
|v2(t)|2 + ν‖v2(t)‖2 ≤ C2(1 + F (t) + ‖v(t)‖2).

and
d

dt
|v2(t)|2 + νλm+1|v2(t)|2 ≤ C2(1 + F (t) + ‖v(t)‖2).

Now, let ε > 0 ge given. Using Lemmas 4.1 and 4.2, and taking m large enough, we obtain

|(I − Pm)U(s + t, t)v0|2 ≤ ε

uniformly in t, for v0 ∈ B(0, ρ) and all s ≥ s0(ρ, ε) large enough. This ends the proof of

the theorem.
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