GEOMETRY AND TOPOLOGY OF CAUSTICS — CAUSTICS '06 BANACH CENTER PUBLICATIONS, VOLUME 82 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2008

COBORDISMS OF FOLD MAPS OF 2k + 2-MANIFOLDS INTO \mathbb{R}^{3k+2}

TAMÁS TERPAI

Lévai u. 29, 2040 Budaörs, Hungary E-mail: terpai@math.elte.hu

Abstract. We calculate the group of cobordisms of k-codimensional maps into Euclidean space with no singularities more complicated than fold for a 2k + 2-dimensional source manifold in both oriented and unoriented cases.

1. Concept. Given a descending set of singularities $\{\eta\} \cup \tau = \tau'$ with a top singularity η and a fixed codimension k of the mappings involved, we can consider the classifying spaces $X_{\tau'}$ and X_{τ} , the homotopy groups of which are isomorphic to the cobordism groups of mappings into Euclidean spaces with all singularities in τ' and τ , respectively. It is known ([8]) that there is a fibration

$$X_{\tau'} \xrightarrow{X_{\tau}} \Gamma T \xi^{\eta},$$

where ξ^{η} is the bundle associated to the universal G_{η} -bundle via the representation of G_{η} in the image. Hence we have a long exact sequence

where the mapping $\pi_N(X_{\tau'}) \xrightarrow{T} \pi_N(\Gamma T \xi^{\eta})$ assigns to every map $f: M \to \mathbb{R}^N$ the map that classifies the immersion $f: \eta(f) \to \mathbb{R}^N$ with the ξ^{η} normal structure added.

This will be applied to $\tau' = \{\Sigma^{1,1,0}\} \cup \{\Sigma^{1,0}, \Sigma^0\}$. We will denote the cobordism groups of τ' -maps (τ -maps) of *n*-dimensional manifolds $Cob^{1,1}(n, \mathbb{R}^{n+k})$ (respectively, $Cob^{1,0}(n, \mathbb{R}^{n+k})$); the corresponding classifying space will be called $X_{1,1}$ (respectively, $X_{1,0}$). The classifying space for maps without restrictions on the singularities will be

²⁰⁰⁰ Mathematics Subject Classification: Primary 57R90; Secondary 57R45, 55N22.

Key words and phrases: singular cobordism, fold map, cusp.

The paper is in final form and no version of it will be published elsewhere.

called $X_{\infty} = \Omega^{\infty} M(S) O(k + \infty)$. We have

and after calculating the groups and mappings involved we will be able to describe the groups $Cob^{1,0}(2k+2,\mathbb{R}^{3k+2})$.

2. Calculations

LEMMA 1. Given a vector bundle ξ of rank $n \ge 1$ over a connected base B,

$$\pi_n(T\xi) = \begin{cases} \mathbb{Z} & \text{if } \xi \text{ is orientable,} \\ \mathbb{Z}_2 & \text{if } \xi \text{ is not orientable,} \end{cases}$$
(3)

and the mapping $[f] \rightarrow [f \cap B\xi]$ is an isomorphism. Here $[f \cap B\xi]$ denotes the number of intersection points of $B\xi$ and the image of f, taken with sign if ξ is oriented, after a small perturbation to make f transversal to $B\xi$.

Proof. Since $T\xi$ is n-1-connected, $\pi_n(T\xi) \approx H_n(T\xi;\mathbb{Z}) \approx H^n(T\xi;\mathbb{Z})$. This group is generated by the Thom class, which is a free generator if ξ is orientable and has order 2 if ξ is not orientable. The mapping $[f] \rightarrow [f \cap B\xi]$ is the evaluation of the Thom class on the image of [f] under the Hurewicz homomorphism, hence it is an isomorphism.

LEMMA 2. Let ξ be an arbitrary vector bundle of rank $n \geq 3$ over a connected base B. Then the mapping

$$C \colon \pi_{n+1}(T\xi) \ni [f] \mapsto [f \cap B]$$

$$\in \begin{cases} \{[\gamma] \in \mathfrak{N}_1(B) \colon \gamma^*\xi \text{ is orientable}\} \approx \ker w_1(\xi) \leq H_1(B; \mathbb{Z}_2) \\ & \text{if } \xi \text{ is not orientable}, \\ \Omega_1(B) \approx H_1(B; \mathbb{Z}) & \text{if } \xi \text{ is orientable}. \end{cases}$$

$$(4)$$

is onto and its kernel is either isomorphic to \mathbb{Z}_2 or trivial, depending on whether $w_2(\xi)$ vanishes or not.

Proof. We can kill $\pi_n(T\xi)$ by constructing a fibration $K(\pi_n(T\xi), n-1) \to X \to T\xi$ with an *n*-connected X in the usual way (see e.g. [6]), by pulling back the fibration $K(H^n(T\xi), n-1) \to PK(H^n(T\xi), n) \to K(H^n(T\xi), n)$ with the classifying map of the generator of $H^n(T\xi)$, the Thom class U. This way $\pi_{n+1}(T\xi) \approx \pi_{n+1}(X) \approx H_{n+1}(X) \approx H^{n+1}(X)$ can be calculated from the Serre spectral sequence. Indeed, due to dimensional constraints the only potentially non-zero differentials influencing $H^{n+1}(X)$ are transgressions $H^{n-1+j}(K(\pi_n(T\xi), n-1)) \to H^{n+j}(T\xi) = U \cup H^j(B)$ for j = 0, 1, 2. The transgression for j = 0 is an isomorphism by design. For j = 1, we have $H^n(K(\mathbb{Z}, n-1)) = 0$ in the oriented case and $H^n(K(\mathbb{Z}_2, n-1)) = \langle Sq^1 \rangle$ if ξ is not oriented; in this latter case, the transgression sends this element to $Sq^1(U) = U \cup w_1(\xi)$ since transgressions commute with Steenrod operations. Finally, for j = 2 we have $H^{n+1}(K(\pi_n(T\xi), n-1) = \langle Sq^2 \rangle$ in both cases, and the transgression sends this element to $Sq^2U = U \cup w_2(\xi)$. Therefore, the E_{∞}^{**} term in dimension n + 1 will contain only $E_{\infty}^{n+1,0}$, which can be identified with $U \cup (H^1(B)/\langle w_1(\xi) \rangle)$ and $E_{\infty}^{0,n+1}$, which is 0 when $w_2(\xi) \neq 0$ and \mathbb{Z}_2 otherwise. The statement of the lemma follows immediately.

COROLLARY 3. If the bundle ξ is associated to the universal G-bundle via the representation $\lambda: G \to Iso(\mathbb{R}^n), n > 1$, then the mapping C from Lemma 2 is an isomorphism if and only if $\lambda_*(\pi_1(G, e)) = \pi_1(SO(n), e)$, that is, the image of the fundamental group of G under λ contains a non-contractible loop in SO(n).

Proof. We will check the criterion of Lemma 2. G-bundles over \mathbb{S}^2 correspond in a oneto-one fashion to their gluing maps, which can be identified with the elements of $\pi_1(G)$. For any $[s] \in \pi_2(BG)$ the pullback of the universal G-bundle on \mathbb{S}^2 by s has the gluing map $\partial[s] \in \pi_1(G)$ with ∂ being an isomorphism taken from the homotopy long exact sequence of the universal G-bundle. Indeed, when we lift $[s]: \mathbb{S}^2 \setminus \{point\} \to BG$ as a homotopy of a trivial mapping of a circle to EG, we will get the mapping $\partial[s]$ on the boundary (in the fibre over the excised point), and it gives the difference between the trivialisations of the pullback bundle over the two hemispheres, i.e. the gluing map. Since ξ is associated to the universal bundle via λ , the gluing map for the pullback of ξ will be the image of the gluing map for the universal bundle under λ and hence the degree of $s^{*}\xi$ can be regarded as $\lambda_{*}(\partial[s]) \in \pi_{1}(O(n))$. But as [s] takes all values from $\pi_{2}(BG)$, $\partial[s]$ takes all values from $\pi_1(G)$, so we will obtain a pulled-back bundle of odd degree if and only if the whole image $\lambda_*(\pi_1(G))$ contains the generator of $\pi_1(O(n)) = \pi_1(SO(n))$, and that completes the proof. We will also need to know what the symmetry group of the singularity $\Sigma^{1,1}$ looks like. $G_{\Sigma^{1,1}}$ in the unoriented case has the homotopy type of the group $\mathbb{Z}_2 \times O(k)$ and the representations λ_1 (in the source) and λ_2 (in the image) are of the form

$$\lambda_1(\varepsilon, A) = \begin{pmatrix} \varepsilon & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & A & 0\\ 0 & 0 & 0 & \varepsilon A \end{pmatrix} \quad \text{and} \quad \lambda_2(\varepsilon, A) = \begin{pmatrix} \varepsilon & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & A & 0 & 0\\ 0 & 0 & 0 & \varepsilon A & 0\\ 0 & 0 & 0 & 0 & \varepsilon A \end{pmatrix}$$

in an appropriate local coordinate system. Hence the symmetry group in the oriented case, that is, the subgroup of $\mathbb{Z}_2 \times O(k)$ forming the kernel of the orientation mapping of the virtual normal bundle $(\varepsilon, A) \mapsto \det \varepsilon A = \varepsilon^k \det A$, is $\mathbb{Z}_2 \times SO(k)$ for even k and $\{1\} \times SO(k) \cup \{-1\} \times (-1)SO(k)$ for odd k. This implies that the connected components of $G_{\Sigma^{1,1}}$ are in all cases separated by the projections $pr_1(\varepsilon, A) = \varepsilon$ and $pr_2(\varepsilon, A) = \det \varepsilon A$. When interpreted as projections from $\pi_1(BG_{\Sigma^{1,1}})$, pr_1 is returning the orientability of the kernel bundle over $\Sigma^{1,1}$ (on every loop in $\Sigma^{1,1}(f)$), and pr_2 is returning the orientability of the virtual normal bundle of f over $\Sigma^{1,1}$ (on every loop in $\Sigma^{1,1}(f)$). We will express these projections in terms of the Stiefel-Whitney characteristic classes of the underlying manifold M defined by the Pontryagin-Thom construction from a representative mapping f of $[f] \in \pi_{3k+3}(T\xi)$ (and hence additive notation will be used for convenience). pr_2 is obviously evaluating $\overline{w_1} \cdot Tp_{\Sigma^{1,1}} = \overline{w_{k+1}^2 w_1} + \overline{w_{k+2} w_k w_1}$ on the fundamental class of M, [M], since $\overline{w_1}$ gives the orientability of all restrictions of the virtual normal bundle, in

particular, the restriction to the dual of $Tp_{\Sigma^{1,1}}$, represented by $\Sigma^{1,1}(f)$. As to pr_1 , a direct adaptation of [5] (using [1]) gives us the characteristic number $\overline{w_{k+3}w_k} + \overline{w_{k+2}w_{k+1}}$.

2.1. Calculating $\pi_{3k+2}(X_{1,0})$. The long exact sequence (2) gives a short exact sequence $0 \to \operatorname{coker} T \to \pi_{3k+2}(X_{1,0}) \to \ker T^{1,0}_{3k+2} \to 0$

where ker $T_{3k+2}^{1,0}$ has been calculated in [3], so we need to determine coker T.

First, we claim that Corollary 3 is applicable and the kernel of C is always trivial. Indeed, in all cases the component of unity of the symmetry group $G_{\Sigma^{1,1}}$ is the group SO(k) and the bundle $\xi^{1,1}$ is associated to the universal $G_{\Sigma^{1,1}}$ -bundle via the image representation. Hence, it is sufficient to check whether the image of a non-contractible loop γ in SO(k) under the image representation λ_2 is non-contractible as well. The representation λ_2 has the form $(\varepsilon, A) \mapsto diag(1, 1, A, \varepsilon A, \varepsilon A)$, and it is easy to check that the mapping $[\gamma] \mapsto [diag(1, 1, \gamma, \gamma, \gamma)]$ is an isomorphism from $\pi_1(SO(k))$ to $\pi_1(SO(3k + 2))$. It follows by applying Corollary 3 that C is indeed an isomorphism.

This fact implies that coker $T = \operatorname{coker} C \circ T$. Given an element $[f] \in \pi_{3k+3}(X_{1,1})$ let us denote by α_f the corresponding cobordism class of cusp-maps in $Cob^{1,1}(2k+3,\mathbb{R}^{3k+3})$. Let $g: M^{2k+3} \to \mathbb{R}^{3k+3}$ be any representative of α_f . We claim that $C \circ T([f])$ depends only on the cobordism class of the source manifold M in Ω_{2k+3} or \mathfrak{N}_{2k+3} (depending on whether we consider the oriented or the unoriented case). Indeed, if we have an arbitrary cobordism of M and represent it with a generic mapping into $\mathbb{R}^{3k+3} \times [0,1]$, it will have only isolated $III_{2,2}$ -points apart from cusps and folds, so $C \circ T([f])$ is well-defined up to the subgroup generated by the mapping on the boundary of a normal form of a $III_{2,2}$ point. This subgroup is however trivial, because both the kernel bundle and the virtual normal bundle over the cusp-circle are trivial (recall that these two bundles give a complete set of invariants of cobordisms of cusp-maps). The virtual normal bundle is trivial because both the source and the image bundles are trivial as normal bundles of a circle in a 2k + 2-sphere and a 3k + 2-sphere, respectively, and the kernel bundle contains the line defined by the vector $(\sin \alpha, -\cos \alpha, 0, 0, 0, 0, 0, 0, \overline{0}, \overline{0})$ over the cone of cusps with the base $(\sin^2 \alpha \cos \alpha, \sin \alpha \cos^2 \alpha, -3\sin^2 \alpha \cos \alpha, -\sin^3 \alpha, -\cos^3 \alpha, -3\sin \alpha \cos^2 \alpha, \overline{0}, \overline{0}) \quad \text{in the}$ canonical form of the $III_{2,2}$ singularity, $(x, y, u, v, w, z, \overline{s}, \overline{t}) \mapsto (xy, x^2 + ux + vy, y^2 + vy, y^2 + vy, y^2)$ $wx + zy, x\overline{s} + y\overline{t}, u, v, w, z, \overline{s}, \overline{t})$ (see [4]).

So, $C \circ T$ can be expressed in terms of Stiefel-Whitney characteristic numbers (and Pontryagin numbers in the oriented case) of the underlying manifold. Hence we have the following cases:

• Unoriented case: $\pi_1(G_{\Sigma^{1,1}}) \approx \mathbb{Z}_2 \times \mathbb{Z}_2$, and $C \circ T$ can be identified with the pair $(\overline{w_{k+1}^2 w_1 + w_{k+2} w_k w_1}, \overline{w_{k+2} w_{k+1} + w_{k+3} w_k}).$

However, the characteristic number

$$(Sq^1 + w_1 \cdot)(\overline{w_{k+1}^2 + w_{k+2}w_k}),$$

which always evaluates to 0 according to [2], is the first element of the given pair when k is odd and the sum of the two elements of the pair when k is even. Therefore it is enough to check whether the second element of the pair always evaluates to 0 or not; it is an easy computation to see that Y^5 evaluates to 1 and multiplying by $\mathbb{R}P^2$ does not change this value.

So $\pi_{3k+2}(X_{1,0})$ is an extension of ker $\{T: \pi_{3k+2}(X^{1,1}) \to \pi_{3k+2}(\Gamma T\xi^{1,1})\}$, which is an index 2 subgroup of \mathfrak{N}_{2k+2} , by \mathbb{Z}_2 .

• Oriented case, k odd: $\xi^{1,1}$ is orientable, $\pi_1(G_{\Sigma^{1,1}}) \approx \mathbb{Z}_2$ and the mapping $C \circ T$ is the characteristic number

 $\overline{w_{k+2}w_{k+1} + w_{k+3}w_k}.$

Now, $Y^5 \times (\mathbb{R}P^2)^{k-1} \approx_{\mathfrak{N}} Y^5 \times (\mathbb{C}P)^{(k-1)/2}$ evaluates to 1, so T is always onto and $\pi_{3k+2}(X_{1,0}) \approx \ker\{T \colon \pi_{3k+2}(X^{1,1}) \to \pi_{3k+2}(\Gamma T \xi^{1,1})\}$ is an index 3^v subgroup of Ω_{2k+2} with an appropriate v defined in [7].

• Oriented case, k even: $\xi^{1,1}$ changes orientation over all noncontractible loops in $B\xi^{1,1}$, so T is onto and $\pi_{3k+2}(X_{1,0}) \approx \ker\{T: \pi_{3k+2}(X^{1,1}) \to \pi_{3k+2}(\Gamma T\xi^{1,1})\}$ is "the whole" $\Omega_{2k+2} \approx 0$ when k is either 2 and is an index 2 subgroup of Ω_{2k+2} when $k \ge 4$.

As a reformulation of this result, we have the following theorem:

Theorem 4.

a) There is an exact sequence

$$0 \to \mathbb{Z}_2 \to Cob^{1,0}(2k+2, \mathbb{R}^{3k+2}) \to G \to 0,$$

where G is an index 2 subgroup of \mathfrak{N}_{2k+2} , for all k > 0.

b1) If k is odd, then $Cob_{so}^{1,0}(2k+2,\mathbb{R}^{3k+2})$ is isomorphic to the kernel of the epimorphic mapping

$$\overline{p_{(k+1)/2}}[\cdot]\colon\Omega_{2k+2}\to\mathbb{Z}.$$

b2) $Cob_{so}^{1,0}(6,\mathbb{R}^8) \approx 0$. If $k \ge 4$ is even, then $Cob_{so}^{1,0}(2k+2,\mathbb{R}^{3k+2})$ is an index 2 subgroup of Ω_{2k+2} .

References

- A. Borel and A. Haefliger, La classe d'homologie d'un espace analytique, Boll. Soc. Math. France 89 (1961), 461–513.
- [2] A. Dold, Erzeugende der Thomschen Algebra \mathfrak{N} , Math. Z. 65 (1956), 25–35.
- [3] T. Ekholm, A. Szűcs and T. Terpai, Cobordisms of fold maps and maps with a prescribed number of cusps, Kyushu J. Math. 61 (2007), 395–414.
- [4] R. Rimányi, The hierarchy of $\Sigma^{2,0}$ germs, Acta Math. Hung. 77 (1997), 311–321.
- [5] M. Kazarian, Morin maps and their characteristic classes, http://mi.ras.ru/~kazarian/ papers/morin.pdf.
- [6] R. Mosher and M. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper & Row, 1968.
- [7] R. E. Stong, Normal Characteristic Numbers, Proc. Amer. Math. Soc. 130 (2002), 1507– 1513.
- [8] A. Szűcs, Cobordism of singular maps, http://arxiv.org, math.GT/0612152.