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Abstract. We calculate the group of cobordisms of k-codimensional maps into Euclidean space

with no singularities more complicated than fold for a 2k + 2-dimensional source manifold in

both oriented and unoriented cases.

1. Concept. Given a descending set of singularities {η} ∪ τ = τ ′ with a top singularity

η and a fixed codimension k of the mappings involved, we can consider the classifying

spaces Xτ ′ and Xτ , the homotopy groups of which are isomorphic to the cobordism

groups of mappings into Euclidean spaces with all singularities in τ ′ and τ , respectively.

It is known ([8]) that there is a fibration

Xτ ′

Xτ−→ ΓTξη,

where ξη is the bundle associated to the universal Gη-bundle via the representation of

Gη in the image. Hence we have a long exact sequence

. . . // πN+1(ΓTξη) //

≈
��

πN (Xτ ) // πN (Xτ ′)
T

// πN (ΓTξη) //

≈
��

πN−1(Xτ ) // · · ·

πS
N (Tξη) πS

N (Tξη)

(1)

where the mapping πN (Xτ ′)
T
→ πN (ΓTξη) assigns to every map f : M → RN the map

that classifies the immersion f : η(f) → RN with the ξη normal structure added.

This will be applied to τ ′ = {Σ1,1,0} ∪ {Σ1,0, Σ0}. We will denote the cobordism

groups of τ ′-maps (τ -maps) of n-dimensional manifolds Cob1,1(n, Rn+k) (respectively,

Cob1,0(n, Rn+k)); the corresponding classifying space will be called X1,1 (respectively,

X1,0). The classifying space for maps without restrictions on the singularities will be
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called X∞ = Ω∞M(S)O(k + ∞). We have

... → πN+1(X1,1)
T
→ πS

N+1(Tξ1,1) →πN (X1,0) → πN (X1,1)
T
→ πS

N (Tξ1,1) → ...

≈ (2)

Cob1,0(N − k, RN )

and after calculating the groups and mappings involved we will be able to describe the

groups Cob1,0(2k + 2, R3k+2).

2. Calculations

Lemma 1. Given a vector bundle ξ of rank n ≥ 1 over a connected base B,

πn(Tξ) =

{

Z if ξ is orientable,

Z2 if ξ is not orientable,
(3)

and the mapping [f ] → [f ∩ Bξ] is an isomorphism. Here [f ∩ Bξ] denotes the number

of intersection points of Bξ and the image of f , taken with sign if ξ is oriented, after a

small perturbation to make f transversal to Bξ.

Proof. Since Tξ is n − 1-connected, πn(Tξ) ≈ Hn(Tξ; Z) ≈ Hn(Tξ; Z). This group is

generated by the Thom class, which is a free generator if ξ is orientable and has order 2

if ξ is not orientable. The mapping [f ] → [f ∩Bξ] is the evaluation of the Thom class on

the image of [f ] under the Hurewicz homomorphism, hence it is an isomorphism.

Lemma 2. Let ξ be an arbitrary vector bundle of rank n ≥ 3 over a connected base B.

Then the mapping

C : πn+1(Tξ) ∋ [f ] 7→ [f ∩ B]

∈











{[γ] ∈ N1(B) : γ∗ξ is orientable} ≈ ker w1(ξ) ≤ H1(B; Z2)

if ξ is not orientable,

Ω1(B) ≈ H1(B; Z) if ξ is orientable.

(4)

is onto and its kernel is either isomorphic to Z2 or trivial, depending on whether w2(ξ)

vanishes or not.

Proof. We can kill πn(Tξ) by constructing a fibration K(πn(Tξ), n − 1) → X → Tξ

with an n-connected X in the usual way (see e.g. [6]), by pulling back the fibration

K(Hn(Tξ), n − 1) → PK(Hn(Tξ), n) → K(Hn(Tξ), n) with the classifying map of the

generator of Hn(Tξ), the Thom class U . This way πn+1(Tξ) ≈ πn+1(X) ≈ Hn+1(X) ≈

Hn+1(X) can be calculated from the Serre spectral sequence. Indeed, due to dimensional

constraints the only potentially non-zero differentials influencing Hn+1(X) are transgres-

sions Hn−1+j(K(πn(Tξ), n − 1)) → Hn+j(Tξ) = U ∪ Hj(B) for j = 0, 1, 2. The trans-

gression for j = 0 is an isomorphism by design. For j = 1, we have Hn(K(Z, n− 1)) = 0

in the oriented case and Hn(K(Z2, n−1)) = 〈Sq1〉 if ξ is not oriented; in this latter case,

the transgression sends this element to Sq1(U) = U ∪w1(ξ) since transgressions commute

with Steenrod operations. Finally, for j = 2 we have Hn+1(K(πn(Tξ), n − 1) = 〈Sq2〉 in

both cases, and the transgression sends this element to Sq2U = U ∪ w2(ξ). Therefore,
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the E∗∗
∞ term in dimension n + 1 will contain only En+1,0

∞ , which can be identified with

U ∪ (H1(B)/〈w1(ξ)〉) and E0,n+1
∞ , which is 0 when w2(ξ) 6= 0 and Z2 otherwise. The

statement of the lemma follows immediately.

Corollary 3. If the bundle ξ is associated to the universal G-bundle via the represen-

tation λ : G → Iso(Rn), n > 1, then the mapping C from Lemma 2 is an isomorphism if

and only if λ∗(π1(G, e)) = π1(SO(n), e), that is, the image of the fundamental group of

G under λ contains a non-contractible loop in SO(n).

Proof. We will check the criterion of Lemma 2. G-bundles over S2 correspond in a one-

to-one fashion to their gluing maps, which can be identified with the elements of π1(G).

For any [s] ∈ π2(BG) the pullback of the universal G-bundle on S2 by s has the gluing

map ∂[s] ∈ π1(G) with ∂ being an isomorphism taken from the homotopy long exact

sequence of the universal G-bundle. Indeed, when we lift [s] : S2 \ {point} → BG as a

homotopy of a trivial mapping of a circle to EG, we will get the mapping ∂[s] on the

boundary (in the fibre over the excised point), and it gives the difference between the

trivialisations of the pullback bundle over the two hemispheres, i.e. the gluing map. Since

ξ is associated to the universal bundle via λ, the gluing map for the pullback of ξ will

be the image of the gluing map for the universal bundle under λ and hence the degree

of s∗ξ can be regarded as λ∗(∂[s]) ∈ π1(O(n)). But as [s] takes all values from π2(BG),

∂[s] takes all values from π1(G), so we will obtain a pulled-back bundle of odd degree if

and only if the whole image λ∗(π1(G)) contains the generator of π1(O(n)) = π1(SO(n)),

and that completes the proof. We will also need to know what the symmetry group of

the singularity Σ1,1 looks like. GΣ1,1 in the unoriented case has the homotopy type of the

group Z2 × O(k) and the representations λ1 (in the source) and λ2 (in the image) are of

the form

λ1(ε, A) =









ε 0 0 0

0 1 0 0

0 0 A 0

0 0 0 εA









and λ2(ε, A) =













ε 0 0 0 0

0 1 0 0 0

0 0 A 0 0

0 0 0 εA 0

0 0 0 0 εA













in an appropriate local coordinate system. Hence the symmetry group in the oriented

case, that is, the subgroup of Z2 × O(k) forming the kernel of the orientation mapping

of the virtual normal bundle (ε, A) 7→ det εA = εk detA, is Z2 × SO(k) for even k and

{1}×SO(k)∪{−1}× (−1)SO(k) for odd k. This implies that the connected components

of GΣ1,1 are in all cases separated by the projections pr1(ε, A) = ε and pr2(ε, A) = det εA.

When interpreted as projections from π1(BGΣ1,1), pr1 is returning the orientability of the

kernel bundle over Σ1,1 (on every loop in Σ1,1(f)), and pr2 is returning the orientability

of the virtual normal bundle of f over Σ1,1 (on every loop in Σ1,1(f)). We will express

these projections in terms of the Stiefel-Whitney characteristic classes of the underlying

manifold M defined by the Pontryagin-Thom construction from a representative mapping

f of [f ] ∈ π3k+3(Tξ) (and hence additive notation will be used for convenience). pr2 is

obviously evaluating w1 · TpΣ1,1 = w2
k+1w1 + wk+2wkw1 on the fundamental class of M ,

[M ], since w1 gives the orientability of all restrictions of the virtual normal bundle, in
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particular, the restriction to the dual of TpΣ1,1 , represented by Σ1,1(f). As to pr1, a direct

adaptation of [5] (using [1]) gives us the characteristic number wk+3wk + wk+2wk+1.

2.1. Calculating π3k+2(X1,0). The long exact sequence (2) gives a short exact sequence

0 → cokerT → π3k+2(X1,0) → ker T 1,0
3k+2 → 0

where ker T 1,0
3k+2 has been calculated in [3], so we need to determine cokerT .

First, we claim that Corollary 3 is applicable and the kernel of C is always trivial.

Indeed, in all cases the component of unity of the symmetry group GΣ1,1 is the group

SO(k) and the bundle ξ1,1 is associated to the universal GΣ1,1-bundle via the image

representation. Hence, it is sufficient to check whether the image of a non-contractible

loop γ in SO(k) under the image representation λ2 is non-contractible as well. The

representation λ2 has the form (ε, A) 7→ diag(1, 1, A, εA, εA), and it is easy to check that

the mapping [γ] 7→ [diag(1, 1, γ, γ, γ)] is an isomorphism from π1(SO(k)) to π1(SO(3k +

2)). It follows by applying Corollary 3 that C is indeed an isomorphism.

This fact implies that coker T=cokerC ◦T . Given an element [f ] ∈ π3k+3(X1,1) let us

denote by αf the corresponding cobordism class of cusp-maps in Cob1,1(2k + 3, R3k+3).

Let g : M2k+3 → R
3k+3 be any representative of αf . We claim that C ◦ T ([f ]) depends

only on the cobordism class of the source manifold M in Ω2k+3 or N2k+3 (depending on

whether we consider the oriented or the unoriented case). Indeed, if we have an arbitrary

cobordism of M and represent it with a generic mapping into R3k+3 × [0, 1], it will have

only isolated III2,2-points apart from cusps and folds, so C ◦ T ([f ]) is well-defined up to

the subgroup generated by the mapping on the boundary of a normal form of a III2,2

point. This subgroup is however trivial, because both the kernel bundle and the virtual

normal bundle over the cusp-circle are trivial (recall that these two bundles give a com-

plete set of invariants of cobordisms of cusp-maps). The virtual normal bundle is trivial

because both the source and the image bundles are trivial as normal bundles of a circle in

a 2k + 2-sphere and a 3k + 2-sphere, respectively, and the kernel bundle contains the line

defined by the vector (sin α,− cosα, 0, 0, 0, 0, 0, 0, 0, 0) over the cone of cusps with the base

(sin2 α cos α, sin α cos2 α,−3 sin2 α cos α,− sin3 α,− cos3 α,−3 sin α cos2 α, 0, 0) in the

canonical form of the III2,2 singularity, (x, y, u, v, w, z, s, t) 7→ (xy, x2 + ux + vy, y2 +

wx + zy, xs + yt, u, v, w, z, s, t) (see [4]).

So, C ◦ T can be expressed in terms of Stiefel-Whitney characteristic numbers (and

Pontryagin numbers in the oriented case) of the underlying manifold. Hence we have the

following cases:

• Unoriented case: π1(GΣ1,1) ≈ Z2 ×Z2, and C ◦ T can be identified with the pair

(w2
k+1w1 + wk+2wkw1, wk+2wk+1 + wk+3wk).

However, the characteristic number

(Sq1 + w1·)(w2
k+1 + wk+2wk),

which always evaluates to 0 according to [2], is the first element of the given pair

when k is odd and the sum of the two elements of the pair when k is even. Therefore

it is enough to check whether the second element of the pair always evaluates to 0
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or not; it is an easy computation to see that Y 5 evaluates to 1 and multiplying by

RP 2 does not change this value.

So π3k+2(X1,0) is an extension of ker{T : π3k+2(X
1,1) → π3k+2(ΓTξ1,1)}, which is

an index 2 subgroup of N2k+2, by Z2.

• Oriented case, k odd: ξ1,1 is orientable, π1(GΣ1,1) ≈ Z2 and the mapping C ◦ T

is the characteristic number

wk+2wk+1 + wk+3wk.

Now, Y 5 × (RP 2)k−1 ≈N Y 5 × (CP )(k−1)/2 evaluates to 1, so T is always onto and

π3k+2(X1,0) ≈ ker{T : π3k+2(X
1,1) → π3k+2(ΓTξ1,1)} is an index 3v subgroup of

Ω2k+2 with an appropriate v defined in [7].

• Oriented case, k even: ξ1,1 changes orientation over all noncontractible loops in

Bξ1,1, so T is onto and π3k+2(X1,0) ≈ ker{T : π3k+2(X
1,1) → π3k+2(ΓTξ1,1)} is

”the whole” Ω2k+2 ≈ 0 when k is either 2 and is an index 2 subgroup of Ω2k+2

when k ≥ 4.

As a reformulation of this result, we have the following theorem:

Theorem 4.

a) There is an exact sequence

0 → Z2 → Cob1,0(2k + 2, R3k+2) → G → 0,

where G is an index 2 subgroup of N2k+2, for all k > 0.

b1) If k is odd, then Cob1,0
so (2k + 2, R3k+2) is isomorphic to the kernel of the epimorphic

mapping

p(k+1)/2[·] : Ω2k+2 → Z.

b2) Cob1,0
so (6, R8) ≈ 0. If k ≥ 4 is even, then Cob1,0

so (2k+2, R3k+2) is an index 2 subgroup

of Ω2k+2.
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