# COBORDISMS OF FOLD MAPS OF $2 k+2$-MANIFOLDS INTO $\mathbb{R}^{3 k+2}$ 

TAMÁS TERPAI<br>Lévai u. 29, 2040 Budä̈rs, Hungary<br>E-mail: terpai@math.elte.hu


#### Abstract

We calculate the group of cobordisms of $k$-codimensional maps into Euclidean space with no singularities more complicated than fold for a $2 k+2$-dimensional source manifold in both oriented and unoriented cases.


1. Concept. Given a descending set of singularities $\{\eta\} \cup \tau=\tau^{\prime}$ with a top singularity $\eta$ and a fixed codimension $k$ of the mappings involved, we can consider the classifying spaces $X_{\tau^{\prime}}$ and $X_{\tau}$, the homotopy groups of which are isomorphic to the cobordism groups of mappings into Euclidean spaces with all singularities in $\tau^{\prime}$ and $\tau$, respectively. It is known ([8]) that there is a fibration

$$
X_{\tau^{\prime}} \xrightarrow{X_{\tau}} \Gamma T \xi^{\eta},
$$

where $\xi^{\eta}$ is the bundle associated to the universal $G_{\eta}$-bundle via the representation of $G_{\eta}$ in the image. Hence we have a long exact sequence

$$
\begin{gather*}
\cdots \rightarrow \pi_{N+1}\left(\Gamma T \xi^{\eta}\right) \rightarrow \pi_{N}\left(X_{\tau}\right) \rightarrow \pi_{N}\left(X_{\tau^{\prime}}\right) \xrightarrow{T} \pi_{N}\left(\Gamma T \xi^{\eta}\right) \rightarrow \pi_{N-1}\left(X_{\tau}\right) \rightarrow \cdots \\
\approx \downarrow  \tag{1}\\
\pi_{N}^{S}\left(T \xi^{\eta}\right)
\end{gather*}
$$

where the mapping $\pi_{N}\left(X_{\tau^{\prime}}\right) \xrightarrow{T} \pi_{N}\left(\Gamma T \xi^{\eta}\right)$ assigns to every map $f: M \rightarrow \mathbb{R}^{N}$ the map that classifies the immersion $f: \eta(f) \rightarrow \mathbb{R}^{N}$ with the $\xi^{\eta}$ normal structure added.

This will be applied to $\tau^{\prime}=\left\{\Sigma^{1,1,0}\right\} \cup\left\{\Sigma^{1,0}, \Sigma^{0}\right\}$. We will denote the cobordism groups of $\tau^{\prime}$-maps ( $\tau$-maps) of $n$-dimensional manifolds $\operatorname{Cob}^{1,1}\left(n, \mathbb{R}^{n+k}\right)$ (respectively, $\operatorname{Cob}^{1,0}\left(n, \mathbb{R}^{n+k}\right)$ ); the corresponding classifying space will be called $X_{1,1}$ (respectively, $\left.X_{1,0}\right)$. The classifying space for maps without restrictions on the singularities will be

[^0]called $X_{\infty}=\Omega^{\infty} M(S) O(k+\infty)$. We have
\[

$$
\begin{align*}
& \ldots \rightarrow \pi_{N+1}\left(X_{1,1}\right) \xrightarrow{T} \pi_{N+1}^{S}\left(T \xi^{1,1}\right) \rightarrow \pi_{N}\left(X_{1,0}\right) \rightarrow \pi_{N}\left(X_{1,1}\right) \xrightarrow{T} \pi_{N}^{S}\left(T \xi^{1,1}\right) \rightarrow \ldots \\
& \approx  \tag{2}\\
& \operatorname{Cob}^{1,0}\left(N-k, \mathbb{R}^{N}\right)
\end{align*}
$$
\]

and after calculating the groups and mappings involved we will be able to describe the groups $\operatorname{Cob}^{1,0}\left(2 k+2, \mathbb{R}^{3 k+2}\right)$.

## 2. Calculations

Lemma 1. Given a vector bundle $\xi$ of rank $n \geq 1$ over a connected base $B$,

$$
\pi_{n}(T \xi)= \begin{cases}\mathbb{Z} & \text { if } \xi \text { is orientable }  \tag{3}\\ \mathbb{Z}_{2} & \text { if } \xi \text { is not orientable }\end{cases}
$$

and the mapping $[f] \rightarrow[f \cap B \xi]$ is an isomorphism. Here $[f \cap B \xi]$ denotes the number of intersection points of $B \xi$ and the image of $f$, taken with sign if $\xi$ is oriented, after a small perturbation to make $f$ transversal to $B \xi$.

Proof. Since $T \xi$ is $n-1$-connected, $\pi_{n}(T \xi) \approx H_{n}(T \xi ; \mathbb{Z}) \approx H^{n}(T \xi ; \mathbb{Z})$. This group is generated by the Thom class, which is a free generator if $\xi$ is orientable and has order 2 if $\xi$ is not orientable. The mapping $[f] \rightarrow[f \cap B \xi]$ is the evaluation of the Thom class on the image of $[f]$ under the Hurewicz homomorphism, hence it is an isomorphism.

Lemma 2. Let $\xi$ be an arbitrary vector bundle of rank $n \geq 3$ over a connected base $B$. Then the mapping

$$
\begin{align*}
& C: \pi_{n+1}(T \xi) \ni[f] \mapsto[f \cap B] \\
& \in \begin{cases}\left\{[\gamma] \in \mathfrak{N}_{1}(B): \gamma^{*} \xi\right. & \text { is orientable }\} \approx \operatorname{ker} w_{1}(\xi) \leq H_{1}\left(B ; \mathbb{Z}_{2}\right) \\
\Omega_{1}(B) \approx H_{1}(B ; \mathbb{Z}) & \text { if } \xi \text { is } \xi \text { is orientable } \text { orientable },\end{cases} \tag{4}
\end{align*}
$$

is onto and its kernel is either isomorphic to $\mathbb{Z}_{2}$ or trivial, depending on whether $w_{2}(\xi)$ vanishes or not.
Proof. We can kill $\pi_{n}(T \xi)$ by constructing a fibration $K\left(\pi_{n}(T \xi), n-1\right) \rightarrow X \rightarrow T \xi$ with an $n$-connected $X$ in the usual way (see e.g. [6]), by pulling back the fibration $K\left(H^{n}(T \xi), n-1\right) \rightarrow P K\left(H^{n}(T \xi), n\right) \rightarrow K\left(H^{n}(T \xi), n\right)$ with the classifying map of the generator of $H^{n}(T \xi)$, the Thom class $U$. This way $\pi_{n+1}(T \xi) \approx \pi_{n+1}(X) \approx H_{n+1}(X) \approx$ $H^{n+1}(X)$ can be calculated from the Serre spectral sequence. Indeed, due to dimensional constraints the only potentially non-zero differentials influencing $H^{n+1}(X)$ are transgressions $H^{n-1+j}\left(K\left(\pi_{n}(T \xi), n-1\right)\right) \rightarrow H^{n+j}(T \xi)=U \cup H^{j}(B)$ for $j=0,1,2$. The transgression for $j=0$ is an isomorphism by design. For $j=1$, we have $H^{n}(K(\mathbb{Z}, n-1))=0$ in the oriented case and $H^{n}\left(K\left(\mathbb{Z}_{2}, n-1\right)\right)=\left\langle S q^{1}\right\rangle$ if $\xi$ is not oriented; in this latter case, the transgression sends this element to $S q^{1}(U)=U \cup w_{1}(\xi)$ since transgressions commute with Steenrod operations. Finally, for $j=2$ we have $H^{n+1}\left(K\left(\pi_{n}(T \xi), n-1\right)=\left\langle S q^{2}\right\rangle\right.$ in both cases, and the transgression sends this element to $S q^{2} U=U \cup w_{2}(\xi)$. Therefore,
the $E_{\infty}^{* *}$ term in dimension $n+1$ will contain only $E_{\infty}^{n+1,0}$, which can be identified with $U \cup\left(H^{1}(B) /\left\langle w_{1}(\xi)\right\rangle\right)$ and $E_{\infty}^{0, n+1}$, which is 0 when $w_{2}(\xi) \neq 0$ and $\mathbb{Z}_{2}$ otherwise. The statement of the lemma follows immediately.

Corollary 3. If the bundle $\xi$ is associated to the universal G-bundle via the representation $\lambda: G \rightarrow \operatorname{Iso}\left(\mathbb{R}^{n}\right), n>1$, then the mapping $C$ from Lemma 2 is an isomorphism if and only if $\lambda_{*}\left(\pi_{1}(G, e)\right)=\pi_{1}(S O(n), e)$, that is, the image of the fundamental group of $G$ under $\lambda$ contains a non-contractible loop in $S O(n)$.

Proof. We will check the criterion of Lemma 2. $G$-bundles over $\mathbb{S}^{2}$ correspond in a one-to-one fashion to their gluing maps, which can be identified with the elements of $\pi_{1}(G)$. For any $[s] \in \pi_{2}(B G)$ the pullback of the universal $G$-bundle on $\mathbb{S}^{2}$ by $s$ has the gluing map $\partial[s] \in \pi_{1}(G)$ with $\partial$ being an isomorphism taken from the homotopy long exact sequence of the universal $G$-bundle. Indeed, when we lift $[s]: \mathbb{S}^{2} \backslash\{$ point $\} \rightarrow B G$ as a homotopy of a trivial mapping of a circle to $E G$, we will get the mapping $\partial[s]$ on the boundary (in the fibre over the excised point), and it gives the difference between the trivialisations of the pullback bundle over the two hemispheres, i.e. the gluing map. Since $\xi$ is associated to the universal bundle via $\lambda$, the gluing map for the pullback of $\xi$ will be the image of the gluing map for the universal bundle under $\lambda$ and hence the degree of $s^{*} \xi$ can be regarded as $\lambda_{*}(\partial[s]) \in \pi_{1}(O(n))$. But as $[s]$ takes all values from $\pi_{2}(B G)$, $\partial[s]$ takes all values from $\pi_{1}(G)$, so we will obtain a pulled-back bundle of odd degree if and only if the whole image $\lambda_{*}\left(\pi_{1}(G)\right)$ contains the generator of $\pi_{1}(O(n))=\pi_{1}(S O(n))$, and that completes the proof. We will also need to know what the symmetry group of the singularity $\Sigma^{1,1}$ looks like. $G_{\Sigma^{1,1}}$ in the unoriented case has the homotopy type of the group $\mathbb{Z}_{2} \times O(k)$ and the representations $\lambda_{1}$ (in the source) and $\lambda_{2}$ (in the image) are of the form

$$
\lambda_{1}(\varepsilon, A)=\left(\begin{array}{cccc}
\varepsilon & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & A & 0 \\
0 & 0 & 0 & \varepsilon A
\end{array}\right) \quad \text { and } \quad \lambda_{2}(\varepsilon, A)=\left(\begin{array}{ccccc}
\varepsilon & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & A & 0 & 0 \\
0 & 0 & 0 & \varepsilon A & 0 \\
0 & 0 & 0 & 0 & \varepsilon A
\end{array}\right)
$$

in an appropriate local coordinate system. Hence the symmetry group in the oriented case, that is, the subgroup of $\mathbb{Z}_{2} \times O(k)$ forming the kernel of the orientation mapping of the virtual normal bundle $(\varepsilon, A) \mapsto \operatorname{det} \varepsilon A=\varepsilon^{k} \operatorname{det} A$, is $\mathbb{Z}_{2} \times S O(k)$ for even $k$ and $\{1\} \times S O(k) \cup\{-1\} \times(-1) S O(k)$ for odd $k$. This implies that the connected components of $G_{\Sigma^{1,1}}$ are in all cases separated by the projections $p r_{1}(\varepsilon, A)=\varepsilon$ and $p r_{2}(\varepsilon, A)=\operatorname{det} \varepsilon A$. When interpreted as projections from $\pi_{1}\left(B G_{\Sigma^{1,1}}\right), p r_{1}$ is returning the orientability of the kernel bundle over $\Sigma^{1,1}$ (on every loop in $\Sigma^{1,1}(f)$ ), and $p r_{2}$ is returning the orientability of the virtual normal bundle of $f$ over $\Sigma^{1,1}$ (on every loop in $\Sigma^{1,1}(f)$ ). We will express these projections in terms of the Stiefel-Whitney characteristic classes of the underlying manifold $M$ defined by the Pontryagin-Thom construction from a representative mapping $f$ of $[f] \in \pi_{3 k+3}(T \xi)$ (and hence additive notation will be used for convenience). $p r_{2}$ is obviously evaluating $\overline{w_{1}} \cdot T p_{\Sigma^{1,1}}=\overline{w_{k+1}^{2} w_{1}}+\overline{w_{k+2} w_{k} w_{1}}$ on the fundamental class of $M$, $[M]$, since $\overline{w_{1}}$ gives the orientability of all restrictions of the virtual normal bundle, in
particular, the restriction to the dual of $T p_{\Sigma^{1,1}}$, represented by $\Sigma^{1,1}(f)$. As to $p r_{1}$, a direct adaptation of [5] (using [1]) gives us the characteristic number $\overline{w_{k+3} w_{k}}+\overline{w_{k+2} w_{k+1}}$.
2.1. Calculating $\pi_{3 k+2}\left(X_{1,0}\right)$. The long exact sequence (2) gives a short exact sequence

$$
0 \rightarrow \operatorname{coker} T \rightarrow \pi_{3 k+2}\left(X_{1,0}\right) \rightarrow \operatorname{ker} T_{3 k+2}^{1,0} \rightarrow 0
$$

where $\operatorname{ker} T_{3 k+2}^{1,0}$ has been calculated in [3], so we need to determine coker $T$.
First, we claim that Corollary 3 is applicable and the kernel of $C$ is always trivial. Indeed, in all cases the component of unity of the symmetry group $G_{\Sigma^{1,1}}$ is the group $S O(k)$ and the bundle $\xi^{1,1}$ is associated to the universal $G_{\Sigma^{1,1}}$-bundle via the image representation. Hence, it is sufficient to check whether the image of a non-contractible loop $\gamma$ in $S O(k)$ under the image representation $\lambda_{2}$ is non-contractible as well. The representation $\lambda_{2}$ has the form $(\varepsilon, A) \mapsto \operatorname{diag}(1,1, A, \varepsilon A, \varepsilon A)$, and it is easy to check that the mapping $[\gamma] \mapsto[\operatorname{diag}(1,1, \gamma, \gamma, \gamma)]$ is an isomorphism from $\pi_{1}(S O(k))$ to $\pi_{1}(S O(3 k+$ $2)$ ). It follows by applying Corollary 3 that $C$ is indeed an isomorphism.

This fact implies that coker $T=$ coker $C \circ T$. Given an element $[f] \in \pi_{3 k+3}\left(X_{1,1}\right)$ let us denote by $\alpha_{f}$ the corresponding cobordism class of cusp-maps in $\operatorname{Cob}^{1,1}\left(2 k+3, \mathbb{R}^{3 k+3}\right)$. Let $g: M^{2 k+3} \rightarrow \mathbb{R}^{3 k+3}$ be any representative of $\alpha_{f}$. We claim that $C \circ T([f])$ depends only on the cobordism class of the source manifold $M$ in $\Omega_{2 k+3}$ or $\mathfrak{N}_{2 k+3}$ (depending on whether we consider the oriented or the unoriented case). Indeed, if we have an arbitrary cobordism of $M$ and represent it with a generic mapping into $\mathbb{R}^{3 k+3} \times[0,1]$, it will have only isolated $I I I_{2,2}$-points apart from cusps and folds, so $C \circ T([f])$ is well-defined up to the subgroup generated by the mapping on the boundary of a normal form of a $I I I_{2,2}$ point. This subgroup is however trivial, because both the kernel bundle and the virtual normal bundle over the cusp-circle are trivial (recall that these two bundles give a complete set of invariants of cobordisms of cusp-maps). The virtual normal bundle is trivial because both the source and the image bundles are trivial as normal bundles of a circle in a $2 k+2$-sphere and a $3 k+2$-sphere, respectively, and the kernel bundle contains the line defined by the vector $(\sin \alpha,-\cos \alpha, 0,0,0,0,0,0, \overline{0}, \overline{0})$ over the cone of cusps with the base $\left(\sin ^{2} \alpha \cos \alpha, \sin \alpha \cos ^{2} \alpha,-3 \sin ^{2} \alpha \cos \alpha,-\sin ^{3} \alpha,-\cos ^{3} \alpha,-3 \sin \alpha \cos ^{2} \alpha, \overline{0}, \overline{0}\right) \quad$ in the canonical form of the $I I I_{2,2}$ singularity, $(x, y, u, v, w, z, \bar{s}, \bar{t}) \mapsto\left(x y, x^{2}+u x+v y, y^{2}+\right.$ $w x+z y, x \bar{s}+y \bar{t}, u, v, w, z, \bar{s}, \bar{t}$ ) (see [4]).

So, $C \circ T$ can be expressed in terms of Stiefel-Whitney characteristic numbers (and Pontryagin numbers in the oriented case) of the underlying manifold. Hence we have the following cases:

- Unoriented case: $\pi_{1}\left(G_{\Sigma^{1,1}}\right) \approx \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and $C \circ T$ can be identified with the pair

$$
\left(\overline{w_{k+1}^{2} w_{1}+w_{k+2} w_{k} w_{1}}, \overline{w_{k+2} w_{k+1}+w_{k+3} w_{k}}\right) .
$$

However, the characteristic number

$$
\left(S q^{1}+w_{1} \cdot\right)\left(\overline{w_{k+1}^{2}+w_{k+2} w_{k}}\right)
$$

which always evaluates to 0 according to [2], is the first element of the given pair when $k$ is odd and the sum of the two elements of the pair when $k$ is even. Therefore it is enough to check whether the second element of the pair always evaluates to 0
or not; it is an easy computation to see that $Y^{5}$ evaluates to 1 and multiplying by $\mathbb{R} P^{2}$ does not change this value.
So $\pi_{3 k+2}\left(X_{1,0}\right)$ is an extension of $\operatorname{ker}\left\{T: \pi_{3 k+2}\left(X^{1,1}\right) \rightarrow \pi_{3 k+2}\left(\Gamma T \xi^{1,1}\right)\right\}$, which is an index 2 subgroup of $\mathfrak{N}_{2 k+2}$, by $\mathbb{Z}_{2}$.

- Oriented case, $k$ odd: $\xi^{1,1}$ is orientable, $\pi_{1}\left(G_{\Sigma^{1,1}}\right) \approx \mathbb{Z}_{2}$ and the mapping $C \circ T$ is the characteristic number

$$
\overline{w_{k+2} w_{k+1}+w_{k+3} w_{k}} .
$$

Now, $Y^{5} \times\left(\mathbb{R} P^{2}\right)^{k-1} \approx_{\mathfrak{N}} Y^{5} \times(\mathbb{C} P)^{(k-1) / 2}$ evaluates to 1 , so $T$ is always onto and $\pi_{3 k+2}\left(X_{1,0}\right) \approx \operatorname{ker}\left\{T: \pi_{3 k+2}\left(X^{1,1}\right) \rightarrow \pi_{3 k+2}\left(\Gamma T \xi^{1,1}\right)\right\}$ is an index $3^{v}$ subgroup of $\Omega_{2 k+2}$ with an appropriate $v$ defined in [7].

- Oriented case, $k$ even: $\xi^{1,1}$ changes orientation over all noncontractible loops in $B \xi^{1,1}$, so $T$ is onto and $\pi_{3 k+2}\left(X_{1,0}\right) \approx \operatorname{ker}\left\{T: \pi_{3 k+2}\left(X^{1,1}\right) \rightarrow \pi_{3 k+2}\left(\Gamma T \xi^{1,1}\right)\right\}$ is "the whole" $\Omega_{2 k+2} \approx 0$ when $k$ is either 2 and is an index 2 subgroup of $\Omega_{2 k+2}$ when $k \geq 4$.

As a reformulation of this result, we have the following theorem:

## Theorem 4.

a) There is an exact sequence

$$
0 \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Cob}^{1,0}\left(2 k+2, \mathbb{R}^{3 k+2}\right) \rightarrow G \rightarrow 0
$$

where $G$ is an index 2 subgroup of $\mathfrak{N}_{2 k+2}$, for all $k>0$.
b1) If $k$ is odd, then $\operatorname{Cob}_{s o}^{1,0}\left(2 k+2, \mathbb{R}^{3 k+2}\right)$ is isomorphic to the kernel of the epimorphic mapping

$$
\overline{p_{(k+1) / 2}}[\cdot]: \Omega_{2 k+2} \rightarrow \mathbb{Z}
$$

b2) $\operatorname{Cob}_{s o}^{1,0}\left(6, \mathbb{R}^{8}\right) \approx 0$. If $k \geq 4$ is even, then $\operatorname{Cob}_{s o}^{1,0}\left(2 k+2, \mathbb{R}^{3 k+2}\right)$ is an index 2 subgroup of $\Omega_{2 k+2}$.

## References

[1] A. Borel and A. Haefliger, La classe d'homologie d'un espace analytique, Boll. Soc. Math. France 89 (1961), 461-513.
[2] A. Dold, Erzeugende der Thomschen Algebra $\mathfrak{N}$, Math. Z. 65 (1956), 25-35.
[3] T. Ekholm, A. Szűcs and T. Terpai, Cobordisms of fold maps and maps with a prescribed number of cusps, Kyushu J. Math. 61 (2007), 395-414.
[4] R. Rimányi, The hierarchy of $\Sigma^{2,0}$ germs, Acta Math. Hung. 77 (1997), 311-321.
[5] M. Kazarian, Morin maps and their characteristic classes, http://mi.ras.ru/ $k a z a r i a n / ~$ papers/morin.pdf.
[6] R. Mosher and M. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper \& Row, 1968.
[7] R. E. Stong, Normal Characteristic Numbers, Proc. Amer. Math. Soc. 130 (2002), 15071513.
[8] A. Szűcs, Cobordism of singular maps, http://arxiv.org, math.GT/0612152.


[^0]:    2000 Mathematics Subject Classification: Primary 57R90; Secondary 57R45, 55N22.
    Key words and phrases: singular cobordism, fold map, cusp.
    The paper is in final form and no version of it will be published elsewhere.

