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Abstract. We investigate the properties of a rating migration process assuming that it is given
by subordination of a discrete time Markov chain and a Cox process. The problem of pricing of
defaultable bonds with fractional recovery of par value with rating migration and credit default
swaps is considered. As an example of applications of our results, we give an explicit solution to
the pricing problem in a model with short rate and intensity processes given by the solution of
a two-dimensional Ornstein-Uhlenbeck equation with a Lévy noise.

1. Introduction. Jarrow, Lando and Turnbull in the seminal paper [15] introduced
Markov chains to model evolution in time of credit ratings. Lando [16] has extended
work of Jarrow et al. by introducing the rating migration process which follows the so
called conditional Markov chain (see Bielecki and Rutkowski [5] for the precise definition
of conditional Markov property). The conditional generator of the credit rating process
follows a matrix-valued stochastic process, under construction provided by Lando [16]
and Bielecki and Rutkowski [5]. Lando [16] has considered the problem of providing
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explicit formulae for some credit derivatives connected with ratings. He has shown that
under the assumption that the generator has eigenvectors constant in time, it is possible
to solve the conditional Kolmogorov equation and obtain explicit formulae for the bond
prices and rating-dependent payoffs. Many papers are concerned with pricing of credit
derivatives with rating migrations, for example Acharya, Das and Sundaram [1], Das
and Tufano [6]. For the extension of the HJM methodology to the case of defaultable
bonds with rating migrations see Bielecki and Rutkowski [3], and for models with Lévy
noise see Eberlein and Özkan [8]. Some recent papers consider infinite-dimensional noise
in HJM type models: see Schmidt [20], Jakubowski and Zabczyk [14] and Jakubowski,
Niewęgłowski and Zabczyk [13]. It is also worth to mention recent papers by Bielecki
et al. [2] and Hurd and Kuznetsov [11], [12] concerning the valuation of basket credit
derivatives in a rating migration environment.

In this paper we consider the problem of pricing defaultable bonds and credit default
swaps with rating migration. First, we derive formulae for conditional expectations in-
volving the rating migration process. We focus on the case of payoffs which depend on
the time of default and on the state of the rating process before default (pre-default rat-
ing). Such payoffs appear naturally when one considers defaultable bonds with recovery
payment dependent on a pre-default rating, and also in the case of credit default swaps
connected with such bonds. In the third section we consider a rating migration process
C which is constructed by superposition (subordination) of a discrete time-homogeneous
Markov chain C̄ with finite state space with one absorbing state and the remaining states
transient, and a Cox process N (independent of the Markov chain C̄), i.e. Ct := C̄Nt .
The default is defined as the time at which the rating migration process enters the ab-
sorbing state. We prove that, under this construction, the rating migration process is a
conditionally Markov process and also that the so called (H) hypothesis, known in credit
risk theory, holds. We present the form of the joint conditional distribution of the default
time and the pre-default state of the rating migration process in terms of the exponential
of some matrix. Then, we give an explicit formula for it in terms of the Jordan decom-
position of the transition matrix. In the fourth section, we use all these results to solve
the problem of pricing of defaultable bonds with fractional recovery of par value and
pricing of credit default swaps (CDS). As an example of applications of our results we
present a model for which we find an explicit solution to the pricing problem. In this
example, short rate and intensity processes are given as the solution of a two-dimensional
Ornstein-Uhlenbeck equation with a Lévy noise. In the appendix, we prove useful lem-
mas on the credit rating process induced by a Cox process, which are of independent
interest. We give the proof of Lemma 2 which states a general fact on conditional inde-
pendence and quote, for the convenience of the reader, facts from matrix algebra used in
the previous sections.

2. Useful conditional expectations for processes of credit migrations. We con-
sider an arbitrage-free market on which defaultable instruments are also traded. All pro-
cesses are defined on a complete probability space (Ω,F ,P). A credit rating migration
process C of a defaultable instrument (e.g. bond) is a càdlàg process which takes values
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in the set of rating classes K = {1, . . . ,K}, where the state i = 1 represents the highest
rank, i = K − 1 the lowest rank and the state i = K the bankruptcy, so the state K
corresponds to the default event. Therefore,

τ := inf{t > 0 : Ct = K}

is the default time. Here we preserve the interpretation of rating classes, i.e. the fact the
higher rated bonds are more expensive than lower rated. In this section we present some
general formulae for conditional expectations useful in the pricing of defaultable claims.
We will denote by F the reference filtration corresponding to observation of the market
without credit rating, i.e. a filtration corresponding to the interest rate risk and other
market factors that drive the credit risk. As usual, FX denotes the filtration generated
by the process X, i.e. FXt = σ(Xu : u ≤ t).

All results in this paper will be proved under the following assumptions:

Assumption 1. For every i ∈ K and any u ≥ t ≥ 0 we have

P(Cu = i|F∞ ∨ FCt ) = P(Cu = i|F∞ ∨ σ(Ct)).

Assumption 2. For every F∞ measurable integrable random variable Y we have

E(Y |Ft ∨ FCt ) = E(Y |Ft) ∀t ∈ R+.

Assumption 3. For every i ∈ K and for every t > 0 we have

P(Ct = i|Ft) > 0.

In the next section we give an example of a rating process for which these assumptions
are satisfied.

Remark 1. a) It is also worth to note that Assumption 1 is redundant if K = 2
(so we have only two states: default and non-default). This follows from rephrasing of
Lemma 5.1.4, p. 146 in Bielecki, Rutkowski [4]. Under the assumption P(Ct = 1|F∞) > 0,
this lemma implies that for u ≥ t,

P(Cu = 1|F∞ ∨ FCt ) = 1{Ct=1}
P(Cu = 1|F∞)
P(Ct = 1|F∞)

.

Since {Cu = 1} ⊆ {Ct = 1}, we have

P(Cu = 1|F∞ ∨ FCt ) = 1{Ct=1}
P(Cu = 1, Ct = 1|F∞)

P(Ct = 1|F∞)
= 1{Ct=1}P(Cu = 1|F∞ ∨ σ(Ct)),

where in the last equality we use the same arguments as in the proof of Lemma 3 below.
b) If we fix an event A belonging to F∞, then by Assumption 1, C is a Markov

process (usually time inhomogeneous) conditionally on that event A. This assumption
is in the spirit of the theory of doubly stochastic Poisson processes, so we could say
that processes which satisfy this property are doubly stochastic Markov chains opposite
to the conditional Markov chains (see Definition 11.2.1 in Bielecki and Rutkowski [5]).
Assumption 1 is satisfied for the construction presented in the third section of this paper,
and also for the construction in Bielecki and Rutkowski [5] and Lando [16].
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c) Assumption 2 for K = 2 is well known in the default risk literature and there are
many different equivalent formulations of this assumption (see Bielecki and Rutkowski
[5] section 6.1.1).

d) Assumption 3 means that each state is attainable with positive probability. In
particular, this means that for any small t > 0 the process C can reach the state K (i.e.
the default state) with positive probability, although this probability may be very small.

e) Assumption 3 also implies that FCt (Ft.

It is easily seen that Assumption 1 can be expressed in a different way, namely

Proposition 1. The following conditions are equivalent:

a) Assumption 1.
b) For every t ≥ 0 and every bounded random variable X which is FC,t := σ{Cu : u ≥ t}
measurable we have

E(X|F∞ ∨ FCt ) = E(X|F∞ ∨ σ(Ct)). (1)

In the next lemma we give an equivalent formulation of Assumption 2.

Lemma 2. Assumption 2 is equivalent to any of the two following conditions:

i) For each t ∈ R+, the σ-fields F∞ and FCt are conditionally independent given Ft.
ii) For each n ∈ N and any sequences 0 ≤ u1 < . . . < un ≤ t , (i1, . . . , in) ∈ Kn the
following equality holds

P(Cu1 = i1, . . . , Cun = in|Ft) = P(Cu1 = i1, . . . , Cun = in|F∞). (2)

The proof of this simple, but very useful lemma will be given in the appendix.
Now we prove a general fact on conditional expectation. It is a key lemma in later

calculations.

Lemma 3. Let X be an integrable random variable on (Ω,M,P) and let Y be a random
variable which takes a finite number of values y1, . . . , yK . For an arbitrary σ-field G ⊂M
such that

P(Y = yi|G) > 0 for i = 1, . . . ,K,

we have

E(X|G ∨ σ(Y )) =
K∑
i=1

1{Y=yi}
E(X1{Y=yi}|G)
P(Y = yi|G)

. (3)

Proof. It is sufficient to prove that

E(X|G ∨ σ(Y ))1{Y=yi} = 1{Y=yi}
E(X1{Y=yi}|G)
P(Y = yi|G)

, (4)

so we have to show that for every A ∈ G ∨ σ(Y ),∫
A

X1{Y=yi}P(Y = yi|G)dP =
∫
A

1{Y=yi}E(X1{Y=yi}|G)dP. (5)

The class L of M-measurable sets satisfying (5) constitutes a λ-system. Let P denote
the class of sets of the following form

P = {A ∈M : ∃B ∈ G, ∃yj ∈ {y1, . . . , yK} such that A = B ∩ {Y = yj}}.
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P is a π-system. Moreover the σ-field generated by P is equal to G ∨σ(Y ). Therefore, by
the lemma on π − λ systems, to prove (5) for sets from G ∨ σ(Y ) it is enough to prove it
for sets from P. To end the proof it is enough to show (5) for yj = yi, since it is obvious
for yj 6= yi:

LHS =
∫
B∩{Y=yi}

X1{Y=yi}P(Y = yi|G)dP

=
∫
B

E(X1{Y=yi}E(1{Y=yi}|G)|G)dP

=
∫
B

E(X1{Y=yi}|G)E(1{Y=yi}|G)dP

=
∫
B

E(1{Y=yi}E(X1{Y=yi}|G)|G)dP

=
∫
B

1{Y=yi}E(X1{Y=yi}|G)dP

=
∫
B∩{Y=yi}

1{Y=yi}E(X1{Y=yi}|G)dP = RHS.

Remark 2. By Assumption 3

p̃i,j(t, u) :=
P(Cu = j, Ct = i|F∞)

P(Ct = i|F∞)
(6)

is a well defined F∞ measurable random variable. Using Lemma 3 we obtain

P(Cu = j|F∞ ∨ FCt )1{Ct=i} = p̃i,j(t, u)1{Ct=i}.

Now we derive some conditional expectations useful in pricing of defaultable bonds
with credit rating migration and their derivatives:

Theorem 4. Let X be an F∞-measurable integrable random variable. Then

a) for every 0 ≤ t ≤ u and every j ∈ K

E(X1{Cu=j}|Ft ∨ FCt ) =
K∑
i=1

1{Ct=i}E(Xp̃i,j(t, u)|Ft), (7)

b) for every 0 ≤ t ≤ u and j ∈ K \ {K}

E(X1{t<τ≤u,Cτ−=j}|Ft ∨ FCt ) =
K−1∑
i=1

1{Ct=i}E(XGt,i,j(u)|Ft), (8)

where

Gt,i,j(u) :=
P(t < τ ≤ u,Cτ− = j, Ct = i|F∞)

P(Ct = i|F∞)
(9)

for i, j ∈ K \K and u ≥ t.

Proof. a) It is enough to show equality (7) on the set {Ct = i}. Using, successively, the
chain rule for conditional expectation, Assumption 1, Lemma 3, Assumption 2 we have
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E(X1{Cu=j}|Ft ∨ FCt )1{Ct=i} = E(XE(1{Cu=j}|F∞ ∨ FCt )1{Ct=i}|Ft ∨ F
C
t )

= E(XE(1{Cu=j}|F∞ ∨ σ(Ct))1{Ct=i}|Ft ∨ F
C
t )

= E
(
X

E(1{Cu=j,Ct=i}|F∞)
P(Ct = i|F∞)

1{Ct=i}

∣∣∣∣Ft ∨ FCt )
= 1{Ct=i}E(Xp̃i,j(t, u)|Ft ∨ FCt ) = 1{Ct=i}E(Xp̃i,j(t, u)|Ft).

b) The proof is similar to the proof of part a). Using (1) with X = 1A and

A := {t < τ ≤ u, Cτ− = j} ∈ FC,t

we obtain

P(t < τ ≤ u,Cτ− = j|F∞ ∨ FCt ) = P(t < τ ≤ u,Cτ− = j|F∞ ∨ σ(Ct)). (10)

Hence

E(X1A|Ft ∨ FCt )1{Ct=i} = E(XE(1A|F∞ ∨ FCt )1{Ct=i}|Ft ∨ F
C
t )

= E(XE(1A|F∞ ∨ σ(Ct))1{Ct=i}|Ft ∨ F
C
t )

= E
(
X

E(1A∩{Ct=i}|F∞)
P(Ct = i|F∞)

1{Ct=i}

∣∣∣∣Ft ∨ FCt )
= 1{Ct=i}E

(
X

P(A ∩ {Ct = i}|F∞)
P(Ct = i|F∞)

|Ft
)

= 1{Ct=i}E(XGt,i,j(u)|Ft)

where the second equality is a consequence of property (10), the third follows from
Lemma 3 and the fourth equality follows from Assumption 2 applied to the integrable
random variable Y = E(X1A∩{Ct=i}|F∞).

Corollary 5. For every bounded F∞-measurable random variable X and for any u ≥ t

E(X1{τ>u}|Ft ∨ FCt ) =
K∑
i=1

1{Ct=i}E
(
X

K−1∑
j=1

p̃i,j(t, u)|Ft
)
. (11)

Proof. Since {τ > u} = {Cu 6= K}, we obtain formula (11) by applying (7).

Theorem 6. Let Z be a bounded, F-predictable stochastic process. Then we have:

a) for every 0 ≤ t ≤ u

E(Zτ1{t<τ≤u}|Ft ∨ FCt ) =
K−1∑
i=1

1{Ct=i}E
(∫ u

t

ZvdFt,i(v)
∣∣∣∣Ft), (12)

where

Fi,t(v) :=
P(τ ≤ v, Ct = i|F∞)

P(Ct = i|F∞)
(13)

for every 0 ≤ t ≤ v and for each i ∈ K \K,
b) for every 0 ≤ t ≤ u

E(Zτ1{t<τ≤u,Cτ−=j}|Ft ∨ FCt ) =
K−1∑
i=1

1{Ct=i}E
(∫ u

t

ZvdGt,i,j(v)
∣∣∣∣Ft). (14)
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Remark 3. From condition ii) in Lemma 2 it follows that the process Fi,t, for fixed i, t, is
nondecreasing, so the integral under conditional expectation in (12) should be understood
as the Lebesgue-Stieltjes integral. The same concerns Gt,i,j .

Remark 4. Notice that

Fi,t(v) :=
P(τ ≤ v, Ct = i|F∞)

P(Ct = i|F∞)
=

P(Cv = K,Ct = i|F∞)
P(Ct = i|F∞)

= p̃i,K(t, v).

Proof of theorem. Let us consider an F-predictable simple process, i.e. a process of the
following form

Zs =
n∑
k=1

ξk1{tk<s≤tk+1}, (15)

where ξk is a bounded Ftk -measurable random variable.
a) Note that {τ ≤ v, Ct = i} ∈ FC,t for v ≥ t. Hence and by Proposition 1 it follows that

E(ξk1{τ≤v}|Ft ∨ FCt )1{Ct=i} = E(ξkE(1{τ≤v,Ct=i}|F∞ ∨ F
C
t )1{Ct=i}|Ft ∨ F

C
t )

= E(ξkE(1{τ≤v,Ct=i}|F∞ ∨ σ(Ct))1{Ct=i}|Ft ∨ F
C
t )

= E
(
ξk

P(τ ≤ v, Ct = i|F∞)
P(Ct = i|F∞)

1{Ct=i}

∣∣∣∣Ft ∨ FCt )
= E(ξkFt,i(v)|Ft ∨ FCt )1{Ct=i}
= E(ξkFt,i(v)|Ft)1{Ct=i}, (16)

where in the third equality we have used Lemma 3 and in the fifth equality Assumption 2.
Using (16) for v = tk and v = tk+1 we obtain

E(ξk1{tk<τ≤tk+1}|Ft ∨ F
C
t )1{Ct=i}

= 1{Ct=i}E(ξk(Ft,i(tk+1)− Ft,i(tk))|Ft) = 1{Ct=i}E
(∫ tk+1

tk

ZvdFt,i(v)
∣∣∣∣Ft). (17)

Since Zτ for Z given by (15) is equal to

Zτ =
n∑
k=1

ξk1{tk<τ≤tk+1},

(17) gives formula (12) for an F-predictable simple processes. For a general bounded F-
predictable process the assertion follows by the monotone class theorem (see e.g. Protter
[19] page 7).
b) The proof goes in the same manner as in point a). It is enough to prove (14) for an
F-predictable process Z of the form (15). Applying the monotone class theorem we obtain
the general case. Now, we briefly sketch the main steps of the proof.

For every v ≥ t formula (8) implies

E(ξk1{t<τ≤v,Cτ−=j}|Ft ∨ FCt )1{Ct=i} = 1{Ct=i}E(ξkGt,i,j(v)|Ft). (18)

To complete the proof for a simple F-predictable process Z it is enough to notice that
for tk+1 > tk ≥ t we have

E(ξk1{tk<τ≤tk+1,Cτ−=j,Ct=i}|Ft ∨ F
C
t ) = 1{Ct=i}E(ξk(Gt,i,j(tk+1) − Gt,i,j(tk))|Ft),

which follows from equality (18) applied to v = tk+1 and v = tk.
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3. Model of rating migration induced by a Cox process. Let F be a given
reference filtration which contains all market information apart from the information
about rating migration. We construct a rating migration process using the following
objects:

1. A discrete time homogeneous Markov chain (C̄k)k≥0, independent of F∞, with
values in the set K = {1, . . . ,K}. We assume that C̄ has one absorbing state K
and the remaining states are transient. So the transition matrix, denoted by P , is
of the following form

P =



p1,1 p1,2 p1,3 . . . p1,K

p2,1 p2,2 p2,3 . . . p2,K

p3,1 p3,2 p3,3 . . . p3,K

...
...

...
. . .

...
pK−1,1 pK−1,2 pK−1,2 . . . pK−1,K

0 0 0 0 1


.

2. A Cox process (Nt)t≥0 with an F-adapted intensity (λt)t≥0.

We recall here the definition of Cox processes (conditional Poisson processes, see
e.g. [4]).

Definition 1. A stochastic process (Nt)t≥0 is called a Cox process if there exists a
nonnegative F-adapted stochastic process (λt)t≥0 which satisfies

P
(∫ t

0

λudu < +∞; ∀ t > 0
)

= 1 (19)

and

P
(∫ ∞

0

λudu =∞
)

= 1, (20)

and such that the process (Nt)t≥0 conditionally on realization of the intensity, i.e. con-
ditionally on the σ-field Fλ∞, is a time inhomogeneous Poisson process with the intensity
(λt)t≥0. This means that for all 0 ≤ s < t <∞ we have

E(eiu(Nt−Ns)|FNs ∨ Fλ∞) = e(e
iu−1)

R t
s
λvdv.

This definition implies that

P(Nt −Ns = k|FNs ∨ Fλ∞) =
(
∫ t
s
λudu)k

k!
e−

R t
s
λudu. (21)

Now, we define the rating migration process C by the formula

Ct := C̄Nt . (22)

In this model the Cox process generates impulses in time. Each impulse can cause a rating
change, the rating migration process jumps from the current rating i to the rating j with
probability pi,j and stays in the current rating i with probability pi,i. The intensity of
transition from the state i has the form

−Λi,i(t) = (1− pi,i)λ(t).
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The probability of change of rating from the state i to the state j, given that the rating
changes at time t, is equal to

−Λi,j(t)
Λi,i(t)

=
pi,jλ(t)

(1− pi,i)λ(t)
=

pi,j
(1− pi,i)

.

In this section we make Assumption 3 and the following assumption

Assumption 4. The processes (C̄k)k≥0 and (Nt)t≥0 are conditionally independent
given F∞.

It is easy to see that an appropriate specification of the P matrix ensures that As-
sumption 3 holds.

In the next theorem we prove that the process (Ct)t≥0 satisfies properties which are
equivalent to Assumptions 1 and 2 from the previous section. Thus, the process (Ct)t≥0

satisfies Assumption 1, 2, 3, so we can use the results from the previous sections to
investigate properties of a model with rating migrations induced by a Cox process.

Theorem 7. The proces C defined by the formula (22) has the following properties:

i) For every t ≥ 0 and for every bounded FC,t := σ{Cu : u ≥ t} measurable random
variable X,

E(X|F∞ ∨ FCt ) = E(X|F∞ ∨ σ(Ct)).

ii) For any n ∈ N, (i1, . . . , in) ∈ Kn and all u1 ≤ . . . ≤ un ≤ t we have

P(Cu1 = i1, . . . , Cun = in|Ft) = P(Cu1 = i1, . . . , Cun = in|F∞).

Proof. i) Fix an arbitrary t ≥ 0, and let L be a class of sets satisfying

E(1A|F∞ ∨ FCt ) = E(1A|F∞ ∨ σ(Ct)). (23)

The class L is a λ-system. Consider a class Pt of sets of the following form

Pt :=
{
A ∈ F : A = {Cu1 = j1, . . . , Cun = jn} for some n ∈ N, (j1, . . . , jn) ∈ Kn,

(u1, . . . , un) ∈ [0,∞)n, min {u1, . . . , un} ≥ t
}
.

Obviously, Pt is a π-system. In Lemma 23 in the appendix we prove that equality (23)
holds for sets A from the class Pt. So Pt ⊆ L and applying the lemma on π − λ systems
we get that equality (23) holds on sets A from σ(Pt) = FC,t := σ{Cu : u ≥ t}. Applying
the monotone class theorem we obtain that equality (23) holds for an arbitrary bounded
FC,t measurable random variable, which is precisely the assertion i).
ii) We will prove this fact in the appendix in Lemma 22 part b).

Corollary 8. The process C given by (22) is an (F,F∨ FC) conditional Markov chain.

3.1. Transition probabilities. For an absorbing Markov chain with one absorbing state
the canonical form of the transition matrix P has the form

P =

 Q R

0 1

 , (24)
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where

Q =


p1,1 p1,2 p1,3 . . . p1,K−1

p2,1 p2,2 p2,3 . . . p2,K−1

p3,1 p3,2 p3,3 . . . p3,K−1

...
...

...
. . .

...
pK−1,1 pK−1,2 pK−1,2 . . . pK−1,K−1

 , R =


p1,K

p2,K

p3,K

...
pK−1,K

 ,

0 = [ 0 , 0 , 0 , . . . , 0 ].

The matrix P is stochastic, so it is uniquely determined by the matrix Q (since R =
(I−Q)1).

From now on, the element ai,j of an arbitrary matrix A = [ai,j ]Ki,j=1 will be denoted
by [A]i,j .

Theorem 9. Let (Ct)t≥0 be a process given by the formula (22). Then p̃i,j(s, t) defined
by (6) is given by

p̃i,j(s, t) = [e(P−I)
R t
s
λudu]i,j . (25)

Moreover, for i, j ∈ K \K

p̃i,j(s, t) = [e−(I−Q)
R t
s
λudu]i,j

=
k∑
l=1

n′l+nl∑
m=n′l+1

ai,m

(n′l+nl∑
p=m

bp,je
−(1−dl)

R t
s
λudu

(
∫ t
s
λudu)p−m

(p−m)!

)
, (26)

where Q is the matrix from the canonical form of P (see (24)), and A = [ai,j ]K−1
i,j=1 is the

matrix from the Jordan decomposition of Q, i.e. a decomposition of the form Q = AJA−1

with a nonsingular matrix A, J = ⊕kl=1Jnl(dl) and Jnl(dl) is a Jordan block of dimension
nl associated with eigenvalue dl and n′1 := 0, n′l := n′l−1+nl for l > 1, and bp,j := [A−1]p,j.

Proof. Using formula (45) from Lemma 22 and (6), we see after some elementary calcu-
lations that

p̃i,j(s, t) =
∞∑
k=0

[P k]i,je−
R t
s
λvdv

(
∫ t
s
λvdv)k

k!
= e−

R t
s
λvdv

[ ∞∑
k=0

(P
∫ t
s
λvdv)k

k!

]
i,j

= e−
R t
s
λvdv[eP

R t
s
λvdv]i,j = [e(P−I)

R t
s
λvdv]i,j .

This ends the proof of formula (25). Now, we deduce formula (26). First, notice that
the matrix Q − I has a Jordan decomposition Q − I = AJ̃A−1, where J̃ = (J − I) =
⊕kl=1Jnl(dl − 1). So, it is well known (see Lemma 24) that

e−(I−Q)
R t
s
λudu = A

( k⊕
l=1

e(
R t
s
λudu)Jnl (dl−1)

)
A−1,

where the matrices in the sum have dimensions nl × nl, l = 1, . . . , k, and terms given by

[eJnl (dl−1)
R t
s
λudu]i,j =

{
(
R t
s
λudu)j−i

(j−i)! e−(1−dl)
R t
s
λudu, if j − i ≥ 0;

0, if j − i < 0,
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for i, j ∈ K \K. Hence, for i, j ∈ K \K

[e−(I−Q)
R t
s
λudu]i,j =

k∑
l=1

n′l+nl∑
m=n′l+1

ai,m

(n′l+nl∑
p=m

bp,j
(
∫ t
s
λudu)p−m

(p−m)!
e−(1−dl)

R t
s
λudu

)
,

where n′1 := 0 , n′l := n′l−1 + nl, and the proof is complete.

In some cases formula (26) simplifies considerably:

Example 10. Assume that the matrix Q is diagonalizable i.e. there exist a nonsingular
matrix A and a diagonal matrix D = diag(d1, . . . , dK−1) such that Q = ADA−1. Then
formula (26) simplifies significantly, namely for i, j ∈ K \K we have

[e−(I−Q)
R t
s
λudu]i,j =

K−1∑
n=1

ai,nbn,je
−(1−dn)

R t
s
λudu , (27)

where bn,j := [A−1]n,j .

3.2. Joint distribution of a default time and a pre-default state of rating. In this subsec-
tion we show how to calculate a joint conditional distribution of a default time τ and a
pre-default state of the rating migration process C in terms of the transition matrix P
as well as the matrix from the canonical decomposition of P .

Theorem 11. Assume that the process C is given by (22) and i, j ∈ K \ K. Then for
any v > 0 and every 0 ≤ t ≤ v, we have

P(t < τ ≤ v, Cτ− = j|F∞ ∨ σ(Ct))1{Ct=i}

= 1{Ct=i}e
−

R v
t
λudupj,K

∞∑
l=1

( l∑
m=1

[Pm−1]i,j
) (
∫ v
t
λudu)l

l!
. (28)

Proof. By Lemma 3

P(t < τ ≤ v, Cτ− = j|F∞ ∨ σ(Ct))1{Ct=i} =
P(t < τ ≤ v, Cτ− = j, Ct = i|F∞)

P(Ct = i|F∞)
1{Ct=i}.

(29)
Let

A := {Cτ− = j, Ct = i, t < τ ≤ v}.

Our task is to derive P(A|F∞) in terms of the matrix P and the intensity process (λt)t≥0.
Since the process C is defined by (22) we have

A =
∞⋃
l=0

{Cτ− = j, Ct = i, t < τ ≤ v,Nv −Nt = l}

and

{Ct = i} =
∞⋃
k=0

{C̄k = i,Nt = k}.
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Therefore, we can represent the event A in the following way

A =
∞⋃
k=0

∞⋃
l=1

(
{Nt = k} ∩ {Nv −Nt = l} ∩

l⋃
m=1

{Cγm+k = K,Cγm−1+k = j, Cγk = i}
)

=
∞⋃
k=0

∞⋃
l=1

(
{Nt = k,Nv −Nt = l} ∩

l⋃
m=1

{C̄m+k = K, C̄m−1+k = j, C̄k = i}
)
,

where by (γn)n≥0 we denote the subsequent jumps of the Cox process (Nt)t≥0. Using this
form of the event A we conclude that

P(A|F∞)

= P
( ∞⋃
k=0

∞⋃
l=1

(
{Nt = k,Nv −Nt = l} ∩

l⋃
m=1

{C̄m+k = K, C̄m−1+k = j, C̄k = i}
)∣∣∣F∞)

=
∞∑
k=0

∞∑
l=1

P
(
{Nt = k,Nv −Nt = l} ∩

l⋃
m=1

{C̄m+k = K, C̄m−1+k = j, C̄k = i}
∣∣∣F∞)

=
∞∑
k=0

∞∑
l=1

P
(
Nt = k,Nv −Nt = l

∣∣F∞)P( l⋃
m=1

{C̄m+k = K, C̄m−1+k = j, C̄k = i}
∣∣∣F∞)

=
∞∑
k=0

∞∑
l=1

P
( l⋃
m=1

{C̄m+k = K, C̄m−1+k = j, C̄k = i}
∣∣∣F∞)e− R v

t
λudu

(
∫ v
t
λudu)l

l!

× e−
R t
0 λudu

(
∫ t
0
λudu)k

k!
, (30)

where the third equality follows from Assumption 4. Independence of the Markov chain
(C̄k)k≥0 and the σ-field F∞ implies that

P
( l⋃
m=1

{C̄m+k = K, C̄m−1+k = j, C̄k = i}
∣∣∣F∞)

= P
( l⋃
m=1

{C̄m+k = K, C̄m−1+k = j, C̄k = i}
)

=
l∑

m=1

P(C̄m+k = K|C̄m−1+k = j)P(C̄m−1+k = j|C̄k = i)P(C̄k = i|C̄0 = i0)

= pj,K [P k]i0,i
l∑

m=1

[Pm−1]i,j .

Substituting this expression into the formula (30) we obtain

P(A|F∞)

=
∞∑
k=0

∞∑
l=1

(
pj,K [P k]i0,i

l∑
m=1

[Pm−1]i,j
)
e−

R v
t
λudu

(
∫ v
t
λudu)l

l!
e−

R t
0 λudu

(
∫ t
0
λudu)k

k!
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=
( ∞∑
k=0

[P k]i0,ie
−

R t
0 λudu

(
∫ t
0
λudu)k

k!

)

×
( ∞∑
l=1

(
pj,K

l∑
m=1

[Pm−1]i,j
)
e−

R v
t
λudu

(
∫ v
t
λudu)l

l!

)

= P(Ct = i|F∞)
( ∞∑
l=1

(
pj,K

l∑
m=1

[Pm−1]i,j
)
e−

R v
t
λudu

(
∫ v
t
λudu)l

l!

)
,

where the last equality follows from Lemma 22 (formula (45)). Putting the derived formula
for P(A|F∞) into (29) we obtain the desired result.

Since

1{Ct=i}Gt,i,j(v) = 1{Ct=i}
P(τ ≤ v, Ct = i, Cτ− = j|F∞)

P(Ct = i|F∞)
= P(t < τ ≤ v, Cτ− = j|F∞ ∨ σ(Ct))1{Ct=i}, (31)

we see that the previous theorem is useful in deriving the probabilities Gt,i,j(v). In the
next theorem we derive a formula for Gt,i,j(v) in terms of some matrix exponent given
in terms of the matrix Q.

Theorem 12. Let Q be the matrix from the canonical decomposition of P and i, j ∈ K\K.
Then for any v > 0 and for every 0 ≤ t ≤ v we have

P(t < τ ≤ v, Cτ− = j|F∞ ∨ σ(Ct))1{Ct=i}

= 1{Ct=i}pj,K [(I−Q)−1(I− e−(I−Q)
R v
t
λudu)]i,j . (32)

Proof. Set

I := e−
R v
t
λudupj,K

∞∑
l=1

( l∑
m=1

[Pm−1]i,j
) (
∫ v
t
λudu)l

l!
.

Taking into account (28), it is enough to prove that

I = pj,K [(I−Q)−1(I− e−(I−Q)
R v
t
λudu)]i,j .

First of all, notice that for any k ≥ 0 we have

P k =

 Qk (I−Qk)1

0 1

 .
Hence, for i, j ∈ K \K, we obtain

I = pj,K

[ ∞∑
l=1

( l∑
m=1

Qm−1
) (
∫ v
t
λudu)l

l!
e−

R v
t
λudu

]
i,j

.

For absorbing Markov chains with one absorbing state and with remaining state tran-
sient, (I−Q)−1 exists (see e.g. Grinstead and Snell [10]) and as a consequence we obtain

l∑
m=1

Qm−1 = (I−Q)−1(I−Ql).
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Therefore

I = pj,K

[ ∞∑
l=1

(I−Q)−1(I−Ql)
(
∫ v
t
λudu)l

l!
e−

R v
t
λudu

]
i,j

= pj,Ke
−

R v
t
λudu

[
(I−Q)−1

( ∞∑
l=1

I
(
∫ v
t
λudu)l

l!
−
∞∑
l=1

(Q
∫ v
t
λudu)l

l!

)]
i,j

= pj,Ke
−

R v
t
λudu[(I−Q)−1(Ie

R v
t
λudu − I− (eQ

R v
t
λudu − I))]i,j

= pj,Ke
−

R v
t
λudu[(I−Q)−1(Ie

R v
t
λudu − eQ

R v
t
λudu)]i,j

= pj,K [(I−Q)−1(I− e−(I−Q)
R v
t
λudu)]i,j ,

which completes the proof.

Using Theorem 12, the definition of G and (31) we can find a compact form of the
differential dGt,i,j(v).

Corollary 13. The differential dGt,i,j(v) has the following form

dGt,i,j(v) = [e−(I−Q)
R v
t
λudu]i,jpj,Kλvdv. (33)

4. Pricing of bonds and credit default swaps

4.1. Pricing of defaultable bonds. We consider the defaultable bond with fractional re-
covery of par value, maturing at time T , which is subject to a rating migration according
to the process C defined by the formula (22). The default time is defined as before, i.e.
as the first moment of reaching the absorbing state K by C, i.e.,

τ := inf{t > 0 : Ct = K}.

Such bond pays 1 unit of cash at maturity time T provided that a credit event occurred
after T (i.e. on the set {τ > T}). While on the set {τ ≤ T} the bond pays at the default
moment τ a recovery payment δCτ− ∈ [0, 1) which is some fraction of its nominal value (δj
is a fixed number for each j ∈ K \K). It is important to notice that a recovery payment
depends on Cτ−, i.e. on the rating of bond before the default time. Under the assumption
of absence of arbitrage opportunities, the price (the ex-dividend price) of such defaultable
bond is expressed by the following conditional expectation

D(t, T ) = BtE
(

1
BT

1{τ>T} +
δCτ−
Bτ

1{t<τ≤T}|Gt
)
,

where (Bt)t≥0 is the value of the saving account. Of course, the short rate process is
F-adapted and will be denoted by (rt)t≥0, so Bt = exp(

∫ t
0
rs ds). In this section, we

assume that G = F ∨ FC . Now, applying formulae for conditional expectations from
section 2 we can calculate the price of bonds under consideration.

Theorem 14. Assume that C is given by (22) with intensity process (λu)u≥0 and tran-
sition matrix P . For t < T , the price of a defaultable bond with fractional recovery of par
value is equal to
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D(t, T )1{τ>t} =
K−1∑
i=1

1{Ct=i}

[K−1∑
j=1

(E(e−
R T
t
rudu[e−(I−Q)

R T
t
λudu]i,j |Ft)

+ δj

∫ T

t

E(e−
R u
t
rvdv[e−(I−Q)

R u
t
λvdv]i,jpj,Kλu|Ft)du)

]
.

Proof. For i ∈ K \K we have

D(t, T )1{Ct=i} = 1{Ct=i}BtE
(

1
BT

1{τ>T} +
δCτ−
Bτ

1{t<τ≤T}

∣∣∣∣Gt)
= 1{Ct=i}BtE

(
1
BT

1{CT 6=K} +
δCτ−
Bτ

1{t<τ≤T}

∣∣∣∣Gt)
= 1{Ct=i}

K−1∑
j=1

BtE
(

1
BT

1{CT=j} +
δj
Bτ

1{t<τ≤T,Cτ−=j,Ct=i}

∣∣∣∣Gt).
The process (Bt)t≥0 is F-predictable, by assumption, and therefore application of Corol-
lary 5 and Theorem 6 enables us to write

D(t, T )1{Ct=i} = 1{Ct=i}
K−1∑
j=1

E
(
Bt
BT

p̃i,j(t, T ) + δj

∫ T

t

Bt
Bu

dGt,i,j(u)
∣∣∣∣Ft) = I.

Using formulae (26) and (33) and the conditional stochastic Fubini theorem (see Apple-
baum [2]) we obtain

I = 1{Ct=i}
K−1∑
j=1

(
E(e−

R T
t
rudu[e−(I−Q)

R T
t
λudu]i,j |Ft)

+ δj

∫ T

t

E(e−
R u
t
rvdv[e−(I−Q)

R u
t
λvdv]i,jpj,Kλu|Ft)du

)
,

which establishes the formula.

Using Theorem 14 and Theorem 9 (equality (26)) we can express the price of a de-
faultable bond in explicit form.

Corollary 15. The price of a defaultable bond with fractional recovery of par value is
equal to

D(t, T )1{Ct=i} = 1{Ct=i}
K−1∑
j=1

k∑
l=1

n′l+nl∑
m=n′l+1

ai,m

n′l+nl∑
p=m

bp,j

(
H(t, T, p−m, 1− dl)

+ δjpj,K

∫ T

t

B(t, u, p−m, 1− dl)du
)
,

where:

B(t, u, k, w) := E
(

(
∫ u
t
λvdv)k

k!
e−

R u
t

[rv+wλv ]dvλu

∣∣∣∣Ft), (34)

H(t, u, k, w) := E
(

(
∫ u
t
λvdv)k

k!
e−

R u
t

[rv+wλv ]dv

∣∣∣∣Ft). (35)
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Using (27) we obtain

Corollary 16. Assume that the matrix Q is diagonalizable. Then

D(t, T )1{Ct=i} =

1{Ct=i}
K−1∑
j=1

K−1∑
n=1

ai,nbn,j

(
H(t, T, 0, 1− dn) + δjpj,K

∫ T

t

B(t, u, 0, 1− dn)du
)
.

4.2. Pricing of Credit Default Swaps. In this subsection, using the previous results we
describe a method of finding prices of credit derivatives connected with bonds considered
before. We do it considering a Credit Default Swap. The Credit Default Swap (CDS)
is an agreement between two counterparties: a protection buyer and a protection seller.
This agreement has two legs:

Premium Leg : The protection buyer agrees to pay a fixed amount κ (CDS spread) on
fixed dates in time T = {T1 < T2 < . . . < Tn}. He pays κ at time Tk provided that
default does not occur before or at Tk. Then, for t < T1 the value of the premium leg is
equal to

VP (t) = BtE
( n∑
k=1

κ

BTk
1{τ>Tk}

∣∣∣∣Gt).
Default Leg: The protection seller agrees to cover all losses connected with this bond
provided that loss occurs before the protection horizon Tn. For t < Tn, the value of this
default leg is equal to

VD(t) = BtE
(

1− δCτ−
Bτ

1{t<τ≤Tn}

∣∣∣∣Gt).
If we know the value of the spread, i.e. κ, then the CDS value at time t is the difference
between the premium leg and default leg

CDS(t, T , κ) = VP (t)− VD(t) = BtE
( n∑
k=1

κ

BTk
1{τ>Tk} −

(1− δCτ−)
Bτ

1{t<τ≤Tn}

∣∣∣∣Gt).
The market CDS spread κ (sometimes also called the “fair spread”) is determined at the
contract inception date t < T1 in such a way that the value of the contract is 0, i.e.

CDS(t, T , κ) = 0.

Pricing of CDS is mainly the issue of calculation of the fair spread κ(t, T ). In order to
do this we have to be able to calculate the value of both legs, since the fair CDS spread
is given as

κ(t, T )1{τ>t} = 1{τ>t}
E(BtBτ (1− δCτ−)1{t<τ≤Tn}|Gt)

E(
∑n
k=1

Bt
BTk

1{τ>Tk}|Gt)
.

The next theorem provides formulae for the value of both legs expressed through an
exponential involving the matrix (Q− I) and the intensity process (λt)t≥0.

Theorem 17. Assume that C is given by (22) with intensity process (λu)u≥0 and tran-
sition matrix P . Let t < T1. The value of the default leg is equal to

VD(t) =
K−1∑
i=1

1{Ct=i}

(K−1∑
j=1

(1− δj)
∫ Tn

t

E(e−
R u
t
rvdv[e−(I−Q)

R u
t
λvdv]i,jpj,Kλu|Ft)du

)
.
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The value of the premium leg is given by

VP (t) =
K−1∑
i=1

1{Ct=i}
( n∑
k=1

K−1∑
j=1

E(e−
R Tk
t rudu[e−(I−Q)

R Tk
t λudu]i,j |Ft)

)
.

Proof. Let us first consider the default leg. For each i ∈ K \K we have

VD(t)1{Ct=i} = BtE
(

1− δCτ−
Bτ

1{t<τ≤Tn}

∣∣∣∣Gt)1{Ct=i}

= 1{Ct=i}Bt
K−1∑
j=1

E
(

1− δj
Bτ

1{t<τ≤Tn,Cτ−=j}

∣∣∣∣Gt)

= 1{Ct=i}

(K−1∑
j=1

(1− δj)BtE
(∫ Tn

t

1
Bu

dGt,i,j(u)
∣∣∣∣Ft))

= 1{Ct=i}

(K−1∑
j=1

(1− δj)E
(∫ Tn

t

e−
R u
t
rvdv[e−(I−Q)

R u
t
λvdv]i,jpj,Kλudu|Ft

))

= 1{Ct=i}

(K−1∑
j=1

(1− δj)
∫ Tn

t

E(e−
R u
t
rvdv[e−(I−Q)

R u
t
λvdv]i,jpj,Kλu|Ft)du

)
,

where the third equality follows by application of Theorem 6 (the process (Bt)t≥0 is
F-predictable) and the fourth follows from (33).

To obtain the value of the premium leg, let us note that for i ∈ K \K

VP (t)1{Ct=i} = κBtE
( n∑
k=1

1
BTk

1{τ>Tk}

∣∣∣∣Gt)1{Ct=i}

= κ

n∑
k=1

E
(
Bt
BTk

1{CTk 6=K}

∣∣∣∣Gt)1{Ct=i} = κ

n∑
k=1

E
(
Bt
BTk

K−1∑
j=1

p̃i,j(t, Tk)
∣∣∣∣Ft)1{Ct=i}

= κ

n∑
k=1

K−1∑
j=1

E(e−
R Tk
t rudu[e−(I−Q)

R Tk
t λudu]i,j |Ft)1{Ct=i},

where in the third equality we have used (11) and in the last (25).

Corollary 18. Assume that C is given by expression (22) with intensity process (λu)u≥0

and transition matrix P . Then the value of the fair CDS spread at time t < T1 is given
by the formula

κ(t, T )1{τ>t}

=
K−1∑
i=1

1{Ct=i}

∑K−1
j=1 (1− δj)

∫ Tn
t

E(e−
R u
t
rvdv[e−(I−Q)

R u
t
λvdv]i,jpj,Kλu|Ft)du∑n

k=1

∑K−1
j=1 E(e−

R Tk
t rudu[e−(I−Q)

R Tk
t λudu]i,j |Ft)

.
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Using Jordan’s decomposition of the matrix Q we obtain by (26) more explicit for-
mulae:

Corollary 19. The value of the fair CDS spread at date t < T1 is given by the formula:

κ(t, T )1{τ>t} =

K−1∑
i=1

1{Ct=i}

∑K−1
j=1

∑k
l=1

∑n′l+nl
m=n′l+1

∑n′l+nl
p=m ai,mbp,j(1−δj)pj,K

∫ Tn
t

B(t, u, p−m, 1−dl)du∑n
k=1

∑K−1
j=1

∑k
l=1

∑n′l+nl
m=n′l+1

∑n′l+nl
p=m ai,mbp,jH(t, Tk, p−m, 1− dl)

,

where B and C are defined by (34) and (35) respectively.

Corollary 20. Suppose that the matrix Q is diagonalizable. Then

κ(t, T )1{τ>t} =
K−1∑
i=1

1{Ct=i}

∑K−1
j=1

∑K−1
l=1 ai,lbl,j(1− δj)pj,K

∫ Tn
t

B(t, u, 0, 1− dl)du∑n
k=1

∑K−1
j=1

∑K−1
l=1 ai,lbl,jH(t, Tk, 0, 1− dl)

,

where B and C are defined by (34) and (35) respectively.

Proof. This is a simple consequence of the previous results and (27).

4.3. Example. In this subsection we provide an example of a specification of the short-
rate process (rt)t≥0 and intensity process (λt)t≥0, under which the conditional transforms
defined by (34) and (35), i.e. the functions B and C, have an explicit form. Therefore,
prices of defaultable bonds with fractional recovery of par value and prices of CDS have
closed forms in the model with such short-rate and intensity processes.

Assume that the processes r and λ are the solution of a general Ornstein-Uhlenbeck
equation with Lévy noise, i.e.:

dr(t) = θr(κr − r(t−))dt+ 〈σr, dZ(t)〉, (36)

dλ(t) = θλ(κλ − λ(t−))dt+ 〈σλ, dZ(t)〉, (37)

where the coefficients θr, κr, θλ, κλ are positive constants, σr, σλ ∈ R2
+ and Z is a two-

dimensional pure jump Lévy process with values in R2
+ and the Lévy measure denoted

by ν.
Now, we quote the theorem which describes explicit forms of the transforms defined

by (34) and (35) (for the proof see Niewęgłowski [18]). We start from

Definition 2. The point (w, v) is called admissible for parameters (θr, θλ, σr, σλ, ν) if
for all t ∈ [0, u]

−σr
θr

(e−θr(u−t) − 1) + σλ

(
ve−θλ(u−t) − w

θλ
(e−θλ(u−t) − 1)

)
∈ IntB,

where

B :=
{
x :
∫
|y|>1

e−〈x,y〉ν(dy) <∞
}
.

The notion of admissibility gives a sufficient condition for existence of integrals in the
following theorem.
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Theorem 21 ([18]). Let a point (w, v) be admissible for parameters (θr, θλ, σr, σλ, ν).
Then for t ∈ [0, u] we have

E(e−
R u
t

[r(s)+wλ(s)]dse−vλ(u)|Ft) = e−Br(t,u)r(t)−Bλ(t,u,w,v)λ(t)+A(t,u,w,v), (38)

where Br(t, u), Bλ(t, u, w, v), A(t, u, w, v) are real valued functions in t for fixed u, w, v
and they are solution on the interval [0, u] to the following system of ODE:

0 = −∂Br(t)
∂t

+Br(t)θr − 1, (39)

0 = −∂Bλ(t)
∂t

+Bλ(t)θλ − w, (40)

0 =
∂A(t)
∂t

− θrκrBr(t)− θλκλBλ(t) + J (σrBr(t) + σλBλ(t)), (41)

with terminal conditions

Br(u) = 0, Bλ(u) = v, A(u) = 0,

and J given by the formula

J(x) = −〈a, x〉+
∫
R2

(e−〈x,y〉 − 1 + 〈x, y〉1{|y|≤1}(y))ν(dy).

Remark 5. The unique solution to the above system of ODE has the form:

Br(t, u) = − 1
θr

(e−θr(u−t) − 1), (42)

Bλ(t, u, w, v) = ve−θλ(u−t) − w

θλ
(e−θλ(u−t) − 1), (43)

A(t, u, w, v) = −κr(Br(t, u) + (u− t))− κλ(v −Bλ(t, u, w, v) + w(u− t))

+
∫ u

t

J (σrBr(s, u) + σλBλ(s, u, w, v))ds. (44)

Remark 6. Theorem 21 gives us the explicit form of the function H defined by (35) for
k = 0, namely

H(t, u, 0, w) = e−Br(t,u)r(t)−Bλ(t,u,w,0)λ(t)+A(t,u,w,0).

The value of the function H(·, ·, k, ·) for arbitrary k ∈ N+ can be derived inductively. To
do this we use the relation

H(t, u, k, w) = −1
k

∂H(t, u, k − 1, w)
∂w

,

which follows from the following calculations

1
k

∂H(t, u, k − 1, w)
∂w

=
1
k

∂

∂w
E
(

(
∫ u
t
λvdv)k−1

(k − 1)!
e−

R u
t

(rv+wλv)dv
∣∣∣Ft)

=
1
k
E
(

(
∫ u
t
λvdv)k−1

(k − 1)!
∂

∂w
e−

R u
t

(rv+wλv)dv
∣∣∣Ft)

= −E
(

(
∫ u
t
λvdv)k

k!
e−

R u
t

(rv+wλv)dv
∣∣∣Ft).

Changing the order of integration and differentiation is justified by admissibility of the
point (w, v).
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The same remark concerns the function defined by (34). For k = 0 we have

B(t, u, 0, w) =
∂

∂v
e−Br(t,u)r(t)−Bλ(t,u,w,v)λ(t)+A(t,u,w,v)

∣∣∣∣
v=0

and, as before, for arbitrary k ∈ N+ we have

B(t, u, k, w) = −1
k

∂B(t, u, k − 1, w)
∂w

.

Remark 7. If an R2-valued (rt, λt) process is affine (see Duffie et al. [7]), then it is also
possible to derive an explicit form of the conditional expectations in (34) and (35).

5. Appendix. In the appendix we present two lemmas used in this paper, and which
are also of independent interest, and the proof of Lemma 2 which is probably known, but
we couldn’t find the proper references. Finally, we quote the known facts from matrix
algebra, which we have used in our proofs.

Lemma 22. Let F be a given filtration, N be a Cox process w.r.t. F and C̄ be a discrete
time homogeneous Markov chain independent of F∞ and with transition matrix P . Define
the process (Ct)t≥0 by the formula:

Ct = C̄Nt .

Assume that P(C̄0 = i0) = 1 and Assumption 4 is satisfied. Then:

a) For 0 ≤ u1 < . . . < un

P(Cu1 = i1, . . . , Cun = in|F∞)

=
n∏

m=1

( ∞∑
km=0

[P km ]im−1,ime
−

R um
um−1

λvdv
(
∫ um
um−1

λvdv)km

km!

)

=
n∏

m=1

[e
(P−I)

R um
um−1

λvdv]im−1,im , (45)

where we put u0 = 0.
b) For every n ∈ N and all sequences 0 ≤ u1 < . . . < un ≤ t, (i1, . . . , in) ∈ Kn we have

P(Cu1 = i1, . . . , Cun = in|Ft) = P(Cu1 = i1, . . . , Cun = in|F∞), (46)

(i.e. the process (Ct)t≥0 have property ii) from Lemma 2).

Proof. a) Fix n ∈ N and sequences (i1, . . . , in), (u1, . . . un), 0 ≤ u1 < . . . < un ≤ t. Then
we have

P(Cu1 = i1, Cu2 = i2, . . . , Cun = in|F∞)

= P(C̄Nu1
= i1, C̄Nu2

= i2, . . . , C̄Nun = in|F∞)

= P(C̄Nu1−Nu0
= i1, C̄Nu2−Nu1+Nu1−Nu0

= i2, . . . , C̄Pn
l=1(Nul−Nul−1 ) = in|F∞)
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=
∞∑

k1,...kn=0

P(C̄k1 = i1, C̄P2
l=1 kl

= i2, . . . , C̄Pn
l=1 kl

= in,

Nu1 −Nu0 = k1, Nu2 −Nu1 = k2, . . . , Nun −Nun−1 = kn)|F∞)

=
∞∑

k1,...kn=0

P
( n⋂
m=1

{C̄Pm
l=1 kl

= im},
n⋂

m=1

{Num −Num−1 = km}
∣∣∣F∞)

=
∞∑

k1,...kn=0

P
( n⋂
m=1

{C̄Pm
l=1 kl

= im}
∣∣∣F∞)P( n⋂

m=1

{Num −Num−1 = km}
∣∣∣F∞),

where the last equality follows from Assumption 4. Independence of (C̄k)k≥0 and F∞,
Markov property of (C̄k)k≥0 and P(C̄0 = i0) = 1 enable us to write the following formula
for the first term in the above product

P
( n⋂
m=1

{C̄Pm
l=1 kl

= im}
∣∣∣F∞) =

n∏
m=1

P(C̄Pm
l=1 kl

= im|C̄Pm−1
l=1 kl

= im−1)

=
n∏

m=1

[P km ]im−1,im .

Whereas, by (21),

P
( n⋂
m=1

{Nm −Nm−1 = km}
∣∣∣F∞) =

n∏
m=1

e
−

R um
um−1

λvdv
(
∫ um
um−1

λvdv)km

km!
,

where we have set u0 = 0 and used the assumption P(C0 = i0) = P(N0 = 0) = 1.
Therefore

P(Cu1 = i1, . . . , Cun = in|F∞)

=
∞∑

k1,...kn=0

n∏
m=1

[P km ]im−1,ime
−

R um
um−1

λvdv
(
∫ um
um−1

λvdv)km

km!

=
n∏

m=1

( ∞∑
km=0

[P km ]im−1,ime
−

R um
um−1

λvdv
(
∫ um
um−1

λvdv)km

km!

)
,

which establishes formula (45).
b) The right hand side of (45) is Fun -measurable so, by the chain rule for conditional
expectations, formula (46) follows.

Lemma 23. Under the hypothesis of Lemma 22 for any m ∈ N and all sequences t <
v1 < . . . < vm, (j1, . . . jm) ∈ Km, we have

E(1{Cv1=j1,...,Cvm=jm}|F∞ ∨ F
C
t ) = E(1{Cv1=j1,...,Cvm=jm}|F∞ ∨ σ(Ct)).

Proof. Fix sequences t < v1 < . . . < vm, (j1, . . . , jm) ∈ Km. It suffices to show that for
every set D ∈ F∞ ∨ FCt

E(1{Cv1=j1,...,Cvm=jm}1D) = E(E(1{Cv1=j1,...,Cvm=jm}|F∞ ∨ σ(Ct))1D). (47)

Let us denote by L the class of sets for which equality (47) holds. Obviously, L constitutes
a λ-system. We will denote by Ct the following class of sets
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Ct := {B : B = A ∩H, where A ∈ F∞, H = {Cu1 = i1, . . . , Cun = in},
for some n ∈ N, max{u1, . . . un} ≤ t}.

The class Ct is a π-system and σ(Ct) = F∞ ∨ FCt . So it is enough to prove (47) for sets
belonging to Ct, i.e.

E(1{Cv1=j1,...,Cvm=jm}1A1H) = E(1A1HE(1{Cv1=j1,...,Cvm=jm}|F∞ ∨ σ(Ct))). (48)

Let F = {Cv1 = j1, . . . , Cvm = jm}. Then, the left hand side of (48) equals

E(1AE(1F1H |F∞)) =
K∑
i=1

E(1AE(1F1{Ct=i}1H |F∞)),

and the right hand side of (48), by (3), equals
K∑
i=1

E
(
1A1H1{Ct=i}

E(1{Ct=i}1F |F∞)
P(Ct = i|F∞)

)

=
K∑
i=1

E
(
1A

E(1{Ct=i}1F |F∞)
P(Ct = i|F∞)

E(1H1{Ct=i}|F∞)
)
.

Therefore, it is enough to prove that

E
(
1F1{Ct=i}1H |F∞

)
=

E(1{Ct=i}1F |F∞)
P(Ct = i|F∞)

E(1H1{Ct=i}|F∞). (49)

In order to get this equality it is convenient to apply (45) to the sequences w =
(w0, . . . , wn+m+1) and c = (c0, . . . , cn+m+1) given by

wk =


0, for k = 0,
uk, for k = 1, . . . , n,
t, for k = n+ 1,
vk−n−1, for k = n+ 2, . . . ,m+ n+ 1

and

ck =


i0, for k = 0,
ik, for k = 1, . . . , n,
i, for k = n+ 1,
jk−n−1, for k = n+ 2, . . . ,m+ n+ 1.

We conclude that

E(1F1{Ct=i}1H |F∞) =
m+n+1∏
p=1

( ∞∑
kp=0

(P kp)cp−1,cpe
−

Rwp
wp−1

λvdv
(
∫ wp
wp−1

λvdv)kp

kp!

)
,

E(1{Ct=i}1F |F∞)
P(Ct = i|F∞)

=
m+n+1∏
l=n+2

( ∞∑
kl=0

[P kl ]cl−1,cle
−

Rwl
wl−1

λsds
(
∫ wl
wl−1

λsds)kl

kl!

)
,

E(1H1{Ct=i}|F∞) =
n+1∏
l=1

( ∞∑
kl=0

[P kl ]cl−1,cle
−

Rwl
wl−1

λvdv
(
∫ wl
wl−1

λvdv)kl

kl!

)
.

It remains to combine these formulae to obtain (49).
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Now, we give the proof of Lemma 2 since we couldn’t find a proper reference.

Proof of Lemma 2. It is a well known fact that i) is equivalent to Assumption 2.
i) ⇒ ii). Fix any n ∈ N and sequences u1 < . . . < un ≤ t, (i1, . . . , in) ∈ Kn. Denote

A = {Cu1 = i1, . . . , Cun = in}. For an arbitrary set F from F∞ we have

E(1F1A) = E(E(1F1A|Ft)) = E(E(1A|Ft)E(1F |Ft))
= E(E(1FE(1A|Ft)|Ft)) = E(1FE(1A|Ft)),

which gives us (2).
ii) ⇒ i). Fix n ∈ N. Let A ∈ FCt be a set of the form A = {Cu1 = i1, . . . , Cun = in},

where 0 ≤ u1 < . . . < un ≤ t, (i1, . . . , in) ∈ Kn and let F ∈ F∞ be an arbitrary set. We
have to prove that

E(1F1A|Ft) = E(1A|Ft)E(1F |Ft).

Starting from the right hand side we obtain

E(1A|Ft)E(1F |Ft) = E(1FE(1A|Ft)|Ft) = E(1FE(1A|F∞)|Ft)
= E(E(1F1A|F∞)|Ft) = E(1F1A|Ft)

and the result follows since FCt is generated by the sets of the form A.

For convenience of the reader and to fix notation we quote here the known facts from
matrix algebra (see [17] or [9]), which we have used in our proofs.

Lemma 24. Let B = AJA−1, where A is a nonsingular matrix, J is a Jordan form of
B, i.e. J is a matrix of the following form

J =
k⊕
l=1

Jnl(dl),

where Jnl(dl) is a Jordan block of dimension nl × nl associated with eigenvalue dl with
multiplicity nl. For every a ∈ R we have the following formula

eaB = A
( k⊕
l=1

eaJnl (dl)
)
A−1,

where eaJnl (dl) is an upper triangular matrix with general term given by

[eaJnl (dl)]i,j =

{
eadl a

j−i

(j−i)! , for j − i ≥ 0;
0, for j − i < 0.

Moreover, the general term (i, j) of the matrix eaB can be written as

[eaB ]i,j =
k∑
l=1

n′l+nl∑
m=n′l+1

ai,m

(n′l+nl∑
p=m

bp,je
adl

ap−m

(p−m)!

)
,

where n′1 = 0, n′l = n′l−1 + nl for l = 1, . . . , k and bp,j := [A−1]p,j.
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