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Abstract. With the use of exponential martingales and the Girsanov theorem we show how to
calculate bond prices in a large variety of square root processes. We clarify and correct several
errors that abound in financial literature concerning these processes. The most important topics
are linear risk premia, the Longstaff double square model, and calculations concerning correlated
CIR processes.

0. Introduction. The Cox, Ingersoll & Ross model for interest rates was proposed in
1980. Since then it has been the objective of many even recent studies and extensions.
However, in spite of many deep theoretical studies, there are many errors, imprecisions or
trivialities published in the financial literature. The main goal of this article is to correct
some of them, and to show how relevant problems concerning CIR can be solved by easy
applications of exponential martingales.

Usually it is assumed that risk premia are proportional to
√
r(t); and linear risk

premia are considered inadmissible; cf. Rogers (1995).
However, if one wants to work with the CIR model in Risk Neutral World (RNW)

—the only world that can be observed for interest rates (IR) alone—then it turns out
(in some cases) that linear risk premia are allowed. In this case the IR in the physical
(real) world follow a different model. We solve this problem in section 1 using elementary
application of the Girsanov change of measure.

The CIR model is related to the double square root Longstaff model. The wrong
solution of pricing bonds with erroneous use of the Feynman-Kac formula was presented
by Longstaff (1989) and a simple version was solved by Beaglehole & Tenney (1992). The
Longstaff “result” is still quoted in many even recent textbooks. We will show how to
solve the latter case by an elementary use of exponential martingales.
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The Longstaff problem is similar to pricing default bonds in Merton’s structural ap-
proach with CIR as a short rate.

We assume that asset prices follow a geometric Brownian motion and both models
are driven by the same Brownian motion. The case of independent asset prices and IR
was “solved” (in terms of the corresponding Laplace transform) by Wang (1999).

However in the intensity based approach with intensity correlated with IR in many
cases we can obtain explicit results.

In section 4 we will comment how to model negative correlations (observed in some
financial markets) in the CIR setting. We cannot agree with the statement by Dai & Sin-
gleton (2000) that square-root diffusions are theoretically incapable of generating negative
correlations.

An easy use of exponential martingales to price bonds in extended CIR was introduced
in Szatzschneider (2002) and part of the study was reproduced in Musiela and Rutkowski
(2004).

1. Linear risk premia. We stress that everything we can say about interest rates is
deduced from prices of bonds or other interest rate derivatives, and these are priced in so
called Risk Neutral World (RNW). In other words, dealing only with interest rates the
RW (Real World) cannot be observed. Therefore in this case the concept of risk premium
is dim.

If one wants to consider the RW for interest rates, this RW must be taken from assets.
We proceed with the construction of the RW for IR (interest rates) such that in the

RNW the IR follow the CIR model.
For the CIR model in RW, linear risk premia are inadmissible; cf. Cox et al. (1985),

Rogers (1995).
We will clarify what can be done and what cannot in a one dimensional financial

market driven by Brownian motion, and asset prices that in the RW (under the law P )
follow a geometric Brownian motion:

dS(t) = S(t)[σdW (t) + µdt].

Set (discounted prices) Zt = St/βt, where

βt = exp
(∫ t

0

r(s)ds
)
,

and r(s) is the spot IR in the RW. Now,

dZ(t) = Z(t)[σdW (t) + (µ− r(t))dt].

The RNW is defined as the probability law Q (Q ∼ P ), t ≤ T such that under Q

dZ(t) = σZ(t)dW ∗(t),

W ∗ being another Brownian motion. It can be shown that if r(t) is CIR (in real world)
then such a Q does not exist. An easy argument is based on explosion until T = 1 of the
process defined by

dX(t) = dW (t) +X2(t)dt,

cf. Revuz & Yor (1999) p. 384.
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But what we really want is CIR in the RNW. We prove the following:

Theorem 1. If under P

dr(t) = 2σ̃
√
r(t)dW (t) +

[
δ + 2

µ

σ
σ̃
√
r(t)−

(
2β r(t) +

2σ̃
σ
r

3
2 (t)

)]
dt, (1)

then for any T > 0, there exists Q ∼ P , for the process considered until time T such that
under Q the interest rates follow

dr(t) = 2σ̃
√
r(t) dW ∗(t) +

(
δ − 2β r(t)

)
dt, σ̃, δ, β > 0.

Proof. Set σ̃ = 1 = σ. Because, by elementary calculations, the law Q = Qβ is equivalent
to the law Q0 of the corresponding BESQδ process (β = 0), and similarly P = P β ∼ P 0,
it is sufficient to prove the equivalence of P 0 and Q0. To stress that β = 0, we change r
to X.

Applying Itô-Tanaka to f(x) = x
3
2 and occupation time formulas together with the

fact that for BESQδ, the local time Lat is 0 for a ≤ 0 and δ > 0, we have that under Q0

the exponential local martingale

exp
{
−
∫ t

0

X(s)dW ∗(s)− 1
2

∫ t

0

X2(s)ds
}

= exp
{
−X

3
2
t

3
+
X

3
2
0

3
+

1
2
(δ + 1)

∫ t

0

√
X(s)ds− 1

2

∫ t

0

X2(s)ds
}

is bounded by a constant k(T ).
Now it is easy to see that

ηt = E
[ ∫ ·

0

(X(s)− µ)dW (s)
]
t

is a true martingale.
Moreover ηt > 0, P 0 almost everywhere. We conclude that Q0 ∼ P 0, and Q ∼ P

on FT . A similar proof works if in the RW

dS(t) = S(t){[(λ+ 1)r(t) + µ]dt+ σdW (t)} for any λ < 0.

Namely, there exists the corresponding model in RW such that in the RNW the IR
follow the CIR model. We have just proved that in some cases the linear risk premia for
the CIR model are admissible, of course in our formulation of the problem.

2. Longstaff model. In (1989) Longstaff proposed the so-called double square root
model for instantaneous interest rates defined in Risk Neutral World by:

dr(t) = 2
√
r(t) dW (t) + (1− κ

√
r(t)− 2λr(t))dt, κ, λ > 0.

In this study, for the sake of simplicity, we set σ = 1 in the original model r̃(t) = σr(t).
Clearly:

r(t) = y2(t), where

dy(t) = dW ∗(t)−
(
λy(t) +

κ

2
sgn y(t)

)
dt.
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In 1992 Beaglehole & Tenney showed that Longstaff’s wrong formula for bond prices
in his model gives the correct bond prices in the case of:

r1(t) = y2
1(t) and dy1(t) = dW (t)−

(
λy1(t) +

κ

2

)
dt.

Longstaff in his study uses the Feynman-Kac approach and obtains the formula for bond
prices of the form:

P (t, T ) = exp{m(t, T )− n(t, T )x− p(t, T )
√
x}

for some functions m, n, p, and x = rt. However to apply the Feynman-Kac repre-
sentation, P (t, T ) should be of class C2 with respect to x, Karatzas & Shreve (1991)
theorem 7.6.

Some relaxation of this assumption is imaginable, but there is no possibility to make
adjustments that could work for P (t, T ). The problem is of course at zero.

Theorem 2. Longstaff’s bond prices are correct if we replace r(s) by r1(s).

Note. As we mentioned, this theorem has already been proved by Beaglehole & Tenney.
Our proof is an easy application of exponential martingales.

Proof. We have to calculate
Ex(e−

R t
0 r1(s)ds). (2)

Let f(s) and g(s) be differentiable functions; then, clearly, for any t

E[e
R t
0 f(s)W (s)+g(s)dW (s)− 1

2

R t
0 (f(s)W (s)+g(s))2ds] = 1.

The notation Ex means that the process starts at x. In the sequel we shall use the notation
∝ for equality up to a deterministic factor. This factor is easy to calculate but we will
not reproduce it here. Also for simplicity we choose x = 0 in (3). The general case is
analogous.

By the Girsanov theorem:

(2) ∝ E(e−(λ
2
2 +1)

R t
0 W

2(s)ds−λκ2
R t
0 W (s)ds−λ2W

2(t)−κ2W (t))

∝ E(e
R t
0 (f(s)W (s)+g(s))dW (s)− 1

2

R t
0 (f(s)W (s)+g(s))2ds)

if and only if in (0, t)

f ′(s) + f2(s) = λ2 + 2,

g(s)f(s) + g′(s) =
λκ

2
,

f(t) = −λ,

g(t) = −κ
2
.

Therefore the problem of bond pricing in the Beaglehole & Tenney model is reduced
to entirely elementary calculations giving Longstaff’s result which we do not reproduce
here, cf. Longstaff’s article.

This matching procedure does not work in the original Longstaff model, i.e. for cal-
culations of

P (0, t) = Ex(e−
R t
0 r(s)ds).
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An application of the Girsanov theorem leads to

P (0, t) ∝ Ex[e−(λ
2
2 +1)

R t
0 W

2(s)ds−κλ2
R t
0 |W (s)|ds−λ2W

2(t)−κ2 (|W (t)|−L0
t )].

In Szatzschneider (2004) we have shown how to calculate P (0, T ) where T is an ex-
ponential random variable independent of the process. The main techniques were the
Ray-Knight theorem or excursions, in the case r(0) = 0. If one wants to solve the prob-
lem reducing first the process to zero, one should know the density of the hitting time
of y for the Ornstein-Uhlenbeck process starting at x. This problem does not have an
explicit solution, cf. Göing, Yor (2003a), (2003b).

3. CIR and intensity based approach. Our goal is to calculate

Ex(e−
R t
0 (r(s)+λ(s))ds)

for r(s) and λ(s) dependent CIR processes, cf. Rutkowski, Bielecki (2001) p. 231 for
details.

Assume that one can observe correlations between r(s) (default free rate) and λ(s) (the
intensity of default, defined as f(s)/(1− F (s)) where F (s) = P (τ ≤ s), f(s) = F ′(s)).
We will use very special dependence structure between r(s) and λ(s) that can generate
the correlation one, and this structure will produce explicit formulas.

Theorem 3. Assume that

Cov(r(t), λ(t)) =
n∑
i=1

Ai(e−κis − e−2κis) +Bi(1− e−κis)2 Ai, Bi, κi > 0

In this case, using standard valuation of bonds in CIR setting (cf. Musiela & Rutkowski
2004) the default bond prices are explicit.

Proof. For simplicity, set n = 1. Our modelling is as follows. Set

r(t) = r1(t)⊕ r2(t),
λ(t) = λ1(t)⊕ λ2(t),

with independent r1 and r2, λ1 and λ2. Also r1 is independent of λ1. Now set λ2(t) =
εr2(t) for some ε > 0. Then

dr2(t) = 2σ
√
r2(t)dW1(t) + κ(θ2 − r2(t))dt,

consequently
dλ2(t) = 2σ

√
ε
√
λ2(t)dW1(t) + κ(θ2ε− λ2(t))dt.

With the use of the Pythagoras theorem define:

λ(t) = 2σ
√
ε
√
λ(t)dW2(t) + κ(θ − λ(t))dt,

r(t) = 2σ
√
r(t)dW3(t) + κ(θ̃ − r(t))dt,

with the restriction that:
θ > εθ2, θ̃ > θ2

In our setting
Cov(λ(t), r(t)) = εV ar(r2(t)).
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Using the well known formula for the variance of the CIR we can write:

Cov(r(t), λ(t)) = A(e−κs − e−2κs) +B(1− e−κs)2

for some positive constants A and B. Now r(t)+λ(t) = r1⊕λ1(t)⊕(1+ε)r2(t) is the sum
of independent standard CIR models. We believe that this method is the most explicit
one to calculate prices of defaultable bonds in CIR setting.

4. Negative correlations. In this section we will explain briefly how to obtain negative
correlations between factors in CIR framework.

The problem is extremely important and could lead toward future applications. In
this first approach we will consider only two factors. As mentioned in Dai & Singleton
(2000), “The data on U.S. interest rates seems to call for negative correlations among the
risk factors. Because CSR (Correlated Square Root) models are theoretically incapable
of generating negative correlations, we conclude that they are not consistent with the
historical behaviour of U.S. interest rates”. Of course CIR models driven by the same
Brownian motion cannot be negatively correlated. Therefore we have to relax the as-
sumption “driven by the same Brownian motion”.

A natural form to obtain a negative correlation could be by setting:

r1(t)→ CIR driven byW (t),

r2(t)→ CIR driven by −W (t).

The problem is that there is no easy approach to calculate

E

(
exp−

∫ t

0

(r1(s) + r2(s))ds
)
.

A similar comment was made by Schönbucher (2003), p. 175. Further we read “Alterna-
tively one could restrict the specification to a squared Gaussian model”. Our construction
below represents the easiest and most explicit way to generate negative correlation.

Theorem 4. Elementary valuation of prices of bonds can be performed if

Cov(r1(t), r2(t)) = 2αβt(t− 2AB),

which clearly can take negative values.

Proof. We restrict our attention, for simplicity, to two factors. Set

r1(t) = r̂1(t)⊕ α(W (t) +A)2,

r2(t) = r̂2(t)⊕ β(W (t)−B)2,

for α, β > 0. Here r̂1(t), r̂2(t) are CIR models, and r̂1, r̂2, W are independent processes
(W (t) is Brownian motion).

Note that (W (t)+A)2 and (W (t)−B)2 are one dimensional squared Bessel processes
driven by

B1(t) =
∫ t

0

sgn(W (s) +A)dW (s),

B2(t) =
∫ t

0

sgn(W (s)−B)dW (s).
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E(exp−
∫ t
0
ri(s)ds) for i = 1, 2 and E(exp−

∫ t
0
(r1(s) + r2(s))ds can be calculated once

again by the standard martingale method.
Finally, one could be tempted to set:

r1(s) = r̂1(s) + αW 2(s)1(W (s) > 0),

r2(s) = r̂2(s) + αW 2(s)1(W (s) < 0).

However, calculations of E exp−
∫ t
0
r1(s)ds are similar to pricing bonds in the Longstaff

model, as explained in Pitman & Yor (1982).
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