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Abstract. Mathematical models for financial asset prices which include, for example, stochastic
volatility or jumps are incomplete in that derivative securities are generally not replicable by
trading in the underlying. In earlier work [Proc. R. Soc. London, 2004], the first author provided
a geometric condition under which trading in the underlying and a finite number of vanilla
options completes the market. We complement this result in several ways. First, we show that
the geometric condition is not necessary and a weaker, necessary and sufficient, condition is
presented. While this condition is generally not directly verifiable, we show that it simplifies to
matrix non-degeneracy in a single point when the pricing functions are real analytic functions.
In particular, any stochastic volatility model is then completed with an arbitrary European type
option. Further, we show that adding path-dependent options such as a variance swap to the set
of primary assets, instead of plain vanilla options, also completes the market.

1. Introduction. It is well known that the Black-Scholes financial market model, con-
sisting of a log-normal asset price diffusion and a non-random money market account, is
complete: every contingent claim is replicated by a portfolio formed by dynamic trading
in the two assets. Ultimately this result rests on the martingale representation property
of Brownian motion. As soon as we attempt to correct the empirical deficiencies of the
asset model by including, say, stochastic volatility, completeness is lost if we continue to
regard the original two assets as the only tradables: there are no longer enough assets
to ‘span the market’. However there are traded options markets for many assets such as
single stocks or stock indices, so it is a natural question to ask whether the market be-
comes complete when these are included. An early result in this direction was provided by
Romano and Touzi [17] who showed that a single call option completes the market when
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there is stochastic volatility driven by one extra Brownian motion (under some additional
assumptions; see Section 5 below). But providing a general theory has proved surprisingly
problematic. There are two main approaches, succinctly labelled ‘martingale models’ and
‘market models’ by Schweizer and Wissel [19]. In the former—which is the approach taken
in Davis [4] and in this paper—one starts with a stochastic basis (Ω,F , (F t)T∈R+ ,P). P
is a risk-neutral measure, so all discounted asset prices are P-martingales which can be
constructed by conditional expectation: the price process for an asset that has the inte-
grable FT -measurable value H at some final time T is SHt = E[e−r(T−t)H| F t] for t < T ,
where r is the riskless interest rate. The distinction between an ‘underlying asset’ and a
‘contingent claim’ largely disappears in this approach. A specific model is obtained by
specifying some process whose natural filtration is (F t), for example a diffusion process
as in Section 2 below. In a ‘market model’ one specifies directly the price processes of all
traded assets, be they underlying assets or derivatives. For the latter, say a call option
with strike K and exercise time T on an asset St, it is generally more convenient to model
a proxy such as the implied volatility σ̂t which is related in a one-to-one way to the price
process At of the call by At = BS(St,K, r, σ̂t, T − t), where BS(· · · ) is the Black-Scholes
formula. This is the approach pursued by Schönbucher [18] and, in different variants,
in recent papers by Schweizer and Wissel [19] and Jacod and Protter [10]. This is not
the place to debate the merits of these approaches; suffice it to say that the problem
with martingale models is that the modelling of asset volatilities is too indirect, while
the problem with market models is the extremely awkward set of conditions required for
absence of arbitrage.

The paper is organised as follows. We first describe our market, i.e. we model the factor
process spanning the filtration and write assets prices as conditional expectations. Then
in Section 3 we give a necessary and sufficient condition for completeness of our market.
Section 4 explores the case when the coefficients of the SDE solved by the factor process
and option payoffs are such that the prices are real analytic function of the time and the
factor process. We show that the completeness question reduces from non-degeneracy of
a certain matrix in the whole domain to its non-degeneracy in a single point. The result
is then applied in Section 5 to show completeness of stochastic volatility models. Section
6 explores the use of path dependent derivatives, in particular variance swaps, in place
of European type options and Section 7 concludes.

2. Market model. Consider a market in which investors can trade in d risky assets
A1, . . . , Ad together with a riskless money market account paying interest at a constant
rate r ≥ 0. We assume there is no arbitrage in the market and we want to investigate
market completeness on [0, T ]. We therefore assume existence of an equivalent martingale
measure and we chose to work under this measure, which we denote P. The market is
spanned by some factor process. More precisely, market factors are modeled with a d-
dimensional diffusion process (ξt)t≥0, solution to an SDE:

dξt = m(t, ξt)dt+ σ(t, ξt)dwt, ξ0 = x0 ∈ Rd, (2.1)
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where wt is a d-dimensional Brownian motion on (Ω,F ,P), w.r.t. its natural filtration,
and where we assume that

(A1)
σ(t, x)σ(t, x)T is strictly positive definite for a.e. (t, x) ∈ (0, T )× Rd,
(2.1) has a unique strong solution.

The assumption of ellipticity above seems natural and corresponds to full factor repre-
sentation. The assumption that the state space of ξ is the whole of Rd is a simplification
which allows us to expose the main ideas without superficial technicalities. In general one
could take a general open connected set D ⊂ Rd as the state space. Behaviour of ξ at the
boundaries would then imply the appropriate boundary conditions for PDE formulation
in (4.2) below.

The semi-group of (ξt) is denoted (Pu,t), i.e. Pu,th(x) = Eu,x[h(ξt)], u ≤ t, and (F t)
is the natural filtration of (ξt), taken completed.

Traded assets are of European type, asset Ai has a given payoff hi(ξTi
) ≥ 0 at maturity

Ti, larger than the time-horizon on which we investigate market completeness, T ≤ Ti. We
assume implicitly E |hi(ξTi

)| <∞. As we choose to work under the risk neutral measure,
the discounted price process of an asset is a martingale. More precisely,

Ait = E[e−r(Ti−t)hi(ξTi
)| F t], 0 ≤ t ≤ Ti. (2.2)

The setup we have in mind in particular is: A1
t = S1

t = exp(ξ1
t ) is the stock price itself,

however for the questions considered here there is no benefit from making this particular
assumption. We could also consider assets with path-dependent payoffs, we will come
back to this in Section 6.

The Markov property of (ξt) implies that

Ait = vi(t, ξt), where vi(t, x) = e−r(Ti−t)Pt,Ti
hi(x) (2.3)

and we assume that

(A2) vi are of class C1,2 on (0, T )× Rd, 1 ≤ i ≤ d.

The latter property follows from the Feynman-Kac formula, or Kolmogorov’s backward
equation, under mild regularity conditions (cf. Friedman [6, Chp. 6] or Øksendal [15,
Chp. 8]). Let G(t, x) be the matrix of partial derivatives,

G(t, x) =
(
∂vi(t, x)
∂xj

)
1≤i,j≤d

= (∇vi(t, x))1≤i≤d. (2.4)

Let (Mt) be the martingale part of (ξt), so that dMt = σ(t, ξt)dwt. Using the Itô formula
together with the fact that discounted prices are martingales, we see that

dÃt = d(e−rtAt) = e−rtG(t, ξt)dMt = e−rtG(t, ξt)σ(t, ξt)dwt, t ≤ T, (2.5)

where At = (A1
t , . . . , A

d
t )

T is a column vector. In what follows, we refer to the above
setup simply as the market.

3. Market completeness: stochastic criterion. A predictable process (αt) in Rd

with

E
∫ T

0

(αit)
2dt <∞, 1 ≤ i ≤ d
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is a (general) trading strategy, where αit represents the number of units of ith asset invested
at time t. It induces a self-financing portfolio (Xα

t ) whose value behaves according to

dXα
t =

d∑
i=1

αitdA
i
t +
(
Xα
t −

d∑
i=1

αitA
i
t

)
rdt,

dX̃α
t = d(e−rtXt) =

d∑
i=1

αitdÃ
i
t .

(3.1)

An FT -measurable claim can be hedged if it is a final value of a self-financing portfolio
with some starting capital, that is if there exists (αt) with

H = EH +Xα
T = EH + erT

d∑
i=1

∫ T

0

αitdÃ
i
t, a.s. (3.2)

We say that the market is complete if any claim can be hedged. More precisely, using the
above, we make the following definition (where we absorb the factor erT in α)

Definition 3.1. We say that the market on [0, T ] is complete if for any FT -measurable
random variable H, EH2 <∞, there exists a predictable process (αt) such that ∀1≤i≤d

E
∫ T

0
(αit)

2d〈Ãi〉t <∞ and H = EH +
∑d
i=1

∫ T
0
αitdÃit.

The assumption of integrability on H is natural. General H can still be represented
but we need to authorize trading strategies (αt) such that

∫ T
0
αtdAt is well defined while∫ T

0
αitdAit are not well defined (see Jacod and Shiryaev [11, Ex. III.4.10]) which makes

little sense in market terms.
Let S be the set of zeros of the determinant of G on (0, T )× Rd

S := (detG)−1({0}) ⊂ (0, T )× Rd, (3.3)

which is a well defined Borel set. We can now state the characterization of market com-
pleteness.

Theorem 3.2. Under the assumptions (A1) and (A2), the market is complete, in the
sense of Definition 3.1, if and only if

∫ T
0

1(t,ξt)∈Sdt = 0 a.s.

We can rephrase the above criterion by saying that G(t, ξt) is non-singular dt-a.e. on
(0, T ) a.s. In particular, if the law of ξt admits a density, the market is complete if S is
of (d + 1)-dimensional Lebesgue measure zero. The statement becomes “if and only if”
when the density is a.e. strictly positive.

Proof. “⇐” Let G
−1

(t, x) = G−1(t, x)1(t,x)/∈S and let H be any FT -measurable random
variable with EH2 <∞. Using the representation theorem (cf. Rogers and Williams [16,
V.25.1]) for (ξt) we know there exists a predictable process (χt), E

∫ T
0
|χtσ(t, ξt)|2dt <∞,

where |x|2 = xTx, with H = EH +
∫ T

0
χtσ(t, ξt)dwt. Put αt := ertχtG

−1
(t, ξt) which is

a predictable process with

E
d∑
i=1

∫ T

0

(αit)
2d〈Ãi〉t ≤ E

∫ T

0

|αtG(t, ξt)σ(t, ξt)|2dt ≤ E
∫ T

0

|χtσ(t, ξt)|2dt <∞.
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We have ∫ T

0

αtdÃt =
∫ T

0

χtσ(t, ξt)dwt −
∫ T

0

χtσ(t, ξt)1(t,ξt)∈Sdwt = H − EH,

where we used the assumption of the theorem (and Fatou lemma) to deduce that∫ T
0
|χtσ(t, ξt)|21(t,ξt)∈Sdt = 0 a.s. and thus

∫ T
0
χtσ(t, ξt)1(t,ξt)∈Sdwt = 0 a.s.

“⇒” Suppose that P(
∫ T

0
1(t,ξt)∈Sdt > 0) > 0. Using Lemma A.1 in the Appendix

choose a measurable function β : (0, T )× Rd → Rd such that{
β(t, x) = 0 for (t, x) /∈ S,
G(t, x)σ(t, x)σ(t, x)Tβ(t, x)T = 0, |β(t, x)σ(t, x)|2 = 1 for (t, x) ∈ S,

(3.4)

and let H =
∫ T

0
β(t, ξt)σ(t, ξt)dwt. Naturally H is FT -measurable and

EH2 = E
∫ T

0

|β(t, ξt)σ(t, ξt)|2dt = E
[ ∫ T

0

1(t,ξt)∈Sdt
]
∈ (0, T ].

For any predictable process (αt) with E
∫ T

0
|αtG(t, ξt)σ(t, ξt)|2dt <∞ we have

E
[
H ·

∫ T

0

αtdÃt
]

= E
[ ∫ T

0

e−rtαtG(t, ξt)σ(t, ξt)σ(t, ξt)Tβ(t, ξt)Tdt
]

= 0,

which proves that H is orthogonal to the space generated by the stochastic integrals
w.r.t. Ã and the market is incomplete.

4. Market completeness: PDE approach. In Theorem 3.2 we stated a general nec-
essary and sufficient condition for our market to be complete. So far however, we did
not provide any easy means to verify that the condition holds. This is the purpose of
this section. We exploit the Feynman-Kac formula to rephrase our condition in terms of
PDEs and then use interior regularity of solutions of PDEs.

Let Gt be the generator of (Pt,t+u) acting on regular functions f : Rd → R via

Gt f(x) = ∇f(x)m(t, x) +
1
2

d∑
i,j=1

(
σ(t, x)σ(t, x)T

)
i,j

∂2f

∂xi∂xj
(x). (4.1)

The Feynman-Kac formula, provided we can justify its application, shows that the func-
tions vi in (2.3) satisfy

Gvi :=
∂vi
∂t

+ Gt vi − rvi = 0, (t, x) ∈ (0, Ti)× Rd,

vi(Ti, x) = hi(x), x ∈ Rd .
(4.2)

We need the above for our next result, so we assume explicitly that

(A3)
m,σ, h1, . . . , hd are such that ξt admits a.e. positive density on Rd, t ≤ T , and
vi ∈ C1,2 are the unique (under suitable growth conditions) solutions of (4.2).

One may choose various sets of conditions on m and σ and on the growth of vi and on the
payoffs which grants (A3), we refer the reader to Friedman [6, Sec. 6.4-6.5] for examples.

Theorem 3.2, in the above setting, states that the market is complete if and if only S
is of zero Lebesgue measure. Thus, we can rephrase the question of market completeness
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into an equivalent question about properties of a solution to a system of PDEs. This
seems to be a hard question in general, but we can solve it neatly in the case when vi
are real analytic. The idea of exploiting properties of analytic functions to understand
market completeness goes back to Björk, Kabanov and Runggaldier [2]1. Naturally there
the authors choose the dynamics of the forward rate, which in our setting would be
equivalent to taking entries of the matrix G to be real analytic, while here it is something
we have to derive.

Theorem 4.1. Suppose that (A1) and (A3) hold and that further m,σ, hi are such that
vi : (0, T )×Rd → R, 1 ≤ i ≤ d, are real analytic functions. Then the market is complete
if and only if there exists a point (t0, x0) ∈ (0, T )×Rd such that G(t0, x0) is non-singular.

Proof. Where vi are analytic so are their partial derivatives, which form the entries
of the matrix G. Products and sums of analytic functions are also analytic and thus
detG : (0, T )× Rd → R is real analytic. In consequence, it is either equal to zero on the
whole domain of analyticity or its set of zeros S is Lebesgue negligible (cf. Krantz and
Parks [14, p. 83]). By Theorem 3.2, and since ξt admits a density, the market is complete
if and only if we are in the latter case. This in turn is equivalent to non-degeneracy of G
at least at one point (t0, x0) since then, by continuity of detG, G is non-degenerate in
some neighbourhood of (t0, x0) of positive measure.

The natural question resulting from the Theorem is: when are the solutions to the
parabolic equation (4.2) real analytic? It turns out that in general, assuming the coef-
ficients m,σ are real analytic, the solutions vi are not jointly analytic in (t, x) but are
are analytic in space and of Gevrey class 2 in time (cf. Hörmander [9, Sec. 11.4] and
Eidelman [5, Thm. II.7.2]). Roughly speaking, the existence of non-analytic solutions is
linked to the possibility of very rapid growth. It appears one can guarantee analyticity
of vi’s when they remain bounded, for this we need2:

(A4) The results stated in Remark 4.1 in Takáč et al. [20, Sec. 4] hold true.

Corollary 4.2. Suppose that (A1), (A3) and (A4) hold and that m,σ are real analytic
with

d∑
i,j=1

(σ(t, x)σ(t, x)T)i,jqiqj ≥ c|q|2, ∀q ∈ Rd, (x, t) ∈ Rd×(0, T ), (4.3)

for some c > 0. If hi, 1 ≤ i ≤ d, are bounded then vi : (0, T ) × Rd → R, 1 ≤ i ≤ d,
are real analytic functions. In particular, the market is then complete if and only if there
exists a point (t0, x0) ∈ (0, T )× Rd such that G(t0, x0) is non-singular.

Usingthe stochastic representation in (2.2)-(2.3)wehavevi(t, x)=e−r(Ti−t) Et,x[hi(ξTi
)]

so it is clear that vi are bounded when hi are bounded. Analyticity of vi then follows
from Takáč et al. [20, Sec. 4] and (A4) looking at the time-reversed (adjoint) equation.

1We want to thank Sara Biagini for bringing this to our attention.
2Results referred to in (A4) are stated in [20] without a proof as a straightforward generali-

sation of the main theorems therein. However after a discussion with the authors it appears the
proof might be more involved then they suggest.
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The Corollary is useful since bounded payoffs are naturally encountered in financial
market, a prime example being put options. Furthermore, from analyticity of prices of
put options we can deduce analyticity of prices of call options via call-put parity. We will
exploit this when examining stochastic volatility models in Proposition 5.1 below.

However, the condition that the payoffs are bounded seems to be unnatural in our
setup. We feel that to exclude the possibility of rapid growth of vi it should be sufficient
to make assumptions about the integrability of hi(ξT ). Much to our surprise, we have
not found any works discussing it. The question of time-space analyticity of solutions to
parabolic PDEs with terminal condition seems to be an open and, in the light of our
present study, interesting question. However, this is a PDE theoretical question which
goes well beyond the scope of this paper.

4.1. Example: correlated Brownian motion. We propose to look at the simple example
of Brownian motion (i.e. of the heat equation). It is known that the heat equation admits
non-analytic solutions – this was already discussed by Holmgren [8] (see Bilodeau [1]).
However, these can be excluded by imposing growth restrictions on the solutions.

Consider ξt = σwt a correlated Brownian motion and assume hi have at most poly-
nomial growth. In this simple case we know the semi-group so that we can write function
vi explicitly. Assume for simplicity that all options mature at time T and set r = 0. If
we set ṽi(t, x) = Ex h̃i(wT−t) with h̃i(x) = hi(σx) then vi(t, x) = ṽi(t, σ−1x). Therefore,
with no loss of generality we can take σ = Id, the identity matrix. We then have

vi(t, x) = Ex[hi(ξT−t)] =
1

(2π(T − t))d/2

∫
Rd

hi(y)e−
|u−x|2
2(T−t) du. (4.4)

We can extend vi via (4.4) to all points

(t,x) ∈ {(t+ iτ, x+ iy) : 0 < t < T, x ∈ Rd, |τ | < T − t, |y| <
√
T − t} ⊂ Cd+1. (4.5)

Indeed, for (t,x) as in (4.5) one can verify that∣∣∣∣ exp
(
−|u− x|2

2t

)∣∣∣∣ ≤ C exp
(
−δ |u− x|

2

2t

)
, u ∈ Rd,

for some universal constants C, δ. Differentiating under the integral, using the growth
restriction on hi, we see that vi(t,x) is continuously differentiable, and thus analytic,
with respect to t and all xi, 1 ≤ i ≤ d (see John [12, Sec. III.10] for a one-dimensional
version of the argument). Application of Hartogs’ theorem (cf. Cartan [3, IV.5.2]) yields
joint analyticity of vi in (t,x) and in particular real analyticity on (0, T )× Rd.

We observe that alternatively one can obtain analyticity of vi by direct, albeit tedious,
computation. In fact (4.4) implies that vi have polynomial growth in (T − t)x. More
precisely, if hi(x) ≤ a|x|2k then we have vi(t, x) ≤ 4kaE[|w1|2k]·(T−t)k|x|2k. One can then
differentiate under the integral in (4.4) and obtain analogous bounds for all the derivatives
of vi which then implies vi is real analytic (cf. Krantz and Parks [14, Prop. 2.2.10]). We
note again that it is not true that any solution to the heat equation is real analytic in
(t, x) and here we rely strongly on the growth assumptions of vi(T, x) = hi(x). However
it is clear that the assumption of polynomial growth of hi could be weakened to, say,
hi(x) ≤ α1 exp(α2|x|).



56 M. DAVIS AND J. OBŁÓJ

We want to stress that the condition of non-degeneracy at least at one point is im-
portant in Theorem 4.1. As a counterexample, consider the situation when our assets
are call options with different strikes. More generally, take σ to be non-trivial and sup-
pose that the payoffs depend only on the stock, i.e. hi(x) = hi(x1). We can represent
ξjT−t = q̃jξ

1
T−t + c̃jN , with N independent of ξ1 which gives

E0[hi(x+ ξ1
T−t)ξ

j
T−t] = q̃j E0[hi(x+ ξ1

T−t)ξ
1
T−t]. (4.6)

Working out the derivatives matrix we get

G(t, x) =
1

T − t
(Ex[hi(ξT−t)(ξ

j
T−t − xj)])i,j≤d ·Q, (4.7)

where Q = (σ−1)Tσ−1, and (4.6) readily implies that detG ≡ 0. In fact, in this setup
whenever the payoffs depend only on (d− 2) or fewer factors G is degenerate and market
is incomplete. This is still true even if we consider options with different maturities.

A simple example when the market is complete is obtained taking σ = Id and hi(x) =
x2
i . Then G is a diagonal matrix with G(t, x)ij = 2xi1i=j . The set of singularities S =

(0, T ) × {x : x1 · . . . · xd = 0} has (d + 1)-dimensional Lebesgue measure zero and the
market is complete by Theorem 3.2.

5. Complete stochastic volatility models. We specialize now to the case d = 2
which corresponds to stochastic volatility models. We use the conventional notation so
that A1

t = St = exp(ξ1
t ) is the stock price process and ξ2

t = Yt is the process driving the
volatility. The process (St, Yt) under the risk-neutral measure P satisfies{

dSt = rStdt+ σ(t, St, Yt)Stdw1
t , S0 = s0 > 0,

dYt = η(t, St, Yt)dt+ γ(t, St, Yt)dw̃t, Y0 = y0,
(5.1)

where w̃t = ρ(t, St, Yt)w1
t +
√

1− ρ(t, St, Yt)2 w2
t . We assume the coefficients are such that

(St, Yt) is well defined as the unique strong solution of (5.1) with St > 0. The process
ξ1
t = log(St) is then well defined and Itô’s formula shows it satisfies

dξ1
t =

(
r − σ(t, exp(ξ1

t ), ξ2
t )2

2

)
dt+ σ(t, exp(ξ1

t ), ξ2
t )dw1

t ,

so that ξ = (ξ1, ξ2) solves equation of the type (2.1). Romano and Touzi [17] were able
to show that the above market is completed with a European call under the additional
assumptions that σ, η, γ, ρ do not depend on St. We replace these assumptions with the
analyticity assumption.

Proposition 5.1. Consider assets A1
t = St and A2

t = v2(t, St, Yt) a European option
with a payoff h(ST ) ≥ 0, where h is an arbitrary not-affine function. Under (A1) and
(A3), if v2 is real analytic then the market is complete. In particular, if m,σ are analytic
and (4.3), (A4) hold then the market is completed by trading in a European call or put
option.

We note that when m,σ are real analytic and (4.3) holds then (A1) and (A2) amount
to growth restrictions in x on m,σ. When (5.1) has a unique strong solutions and vi
are the unique solutions of (4.2) then also (ξt) admits density which is the fundamental
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solution of Gt+∂/∂t (cf. Friedman [6, Thm. 5.4]). The density is then real analytic in the
space variables x and it follows that it is a.e. positive as it is non-negative and integrates
to 1.

Proof. We use s for values of St and x for values of ξ1
t so that we always have s = exp(x)

and we use s, x interchangeably. We choose to write v2 as a function of St, as this is more
natural, and transcribe the equation for v2 into (t, s, y) coordinates.

First note that if σ does not depend on Y , i.e. ∀t ≤ T, s > 0, y1, y2, σ(t, s, y1) =
σ(t, s, y2), then the market is complete just by trading in the stock (we have in fact
a local volatility model driven by one Brownian motion). We fix a non-affine payoff
function h ≥ 0 and we assume that σ depends on y. Recall that σ is real analytic and
so are its partial derivatives and the set of zeros of an analytic function is either equal
to the whole domain or is negligible. As σ depends on y we deduce that the set of
zeros of ∂σ

∂y is negligible. More precisely, for a.e. (t, s) ∈ (0, T ) × R+ the set of zeros of
∂σ(t, s, y)/∂y is negligible and in particular there exist y1, y2 in the support of Yt, such
that σ(t, s, y1) 6= σ(t, s, y2).

As our first asset is the first factor, we have v1(t, s, y) = s = exp(x) and the first row
of G(t, x, y) is simply (exp(x), 0). By Theorem 4.1 the market is complete if and only if G
is non-degenerate at least at one point, which is in turn equivalent to showing that there
exist (t, s, y) such that ∂

∂yv2(t, s, y) 6= 0. Suppose to the contrary that v2(t, s, y) = v2(t, s)
is independent of y. It follows from (4.2), written in (t, s, y) and not (t, x, y) coordinates,
that v2 satisfies

∂v2

∂t
+ rs

∂v2

∂s
+
σ2(t, s, y)s2

2
∂2v2

∂s2
− rv2 = 0. (5.2)

The only term in (5.2) which depends on y is σ. The dependence of σ on y, as discussed
above, then implies that ∂2v2

∂s2 ≡ 0 a.e. for (t, s) ∈ (0, T ) × R+, so that v2(t, s) is linear
in s. Writing v2(t, s) = α(t) + sβ(t) and plugging in (5.2) we see that β′(t) = 0 and
α′(t) = rα(t). It follows that h is an affine function which gives a contradiction.

It follows from Corollary 4.2 and (A4) that if m,σ are analytic and (4.3) holds then
v2 is real analytic when h(x) = (K − x)+ is a put payoff. Analyticity of the price of a
call option then follows from put-call parity (cf. Karatzas and Shreve [13, p. 50]).

6. On the choice of assets completing the market. We introduced in Section
2 the general setup of market driven by d-dimensional factor process (ξt) in which
we can trade in d assets (A1

t , . . . , A
d
t ). As we work under risk-neutral measure, assets

prices are specified uniquely via the corresponding maturities Ti and payoffs hi(x), Ait =
E[e−r(Ti−t)hi(ξT )| F t], where we assume T i ≥ T . In the basic setting A1 = S = exp(ξ1)
is the stock price itself and other option payoffs depend on the first coordinate only:
hi(x) = hi(x1). More generally, we can think of having n stocks, Ai = Si, 1 ≤ i ≤ n.
Other assets then could include some basket options with payoffs h(x) = h(x1, . . . , xn).
However so far we have allowed only European style options. In various markets some
path-dependent options, such as variance swaps, are liquid and it may be natural to use
them to complete the market. We show now how this can be incorporated in our setup.
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LetXt = log(St/S0), where St = A1
t is the stock price process. The variance swap pays

the quadratic variation VT = 〈X〉T at maturity T (cf. Gatheral [7, Chp. 11]). The process
Xt = Xt−rt = log(S̃t/S0) differs fromX by a finite variation term, so that 〈X〉T = 〈X〉T .
The price of a variance swap at time t is given by Vt = E[e−r(T−t)〈X〉T | F t] = vV (t, ξt).
The following derivation is well known:

XT =
∫ T

0

dS̃t
S̃t
− 1

2

∫ T

0

d〈S̃〉t
S̃2
t

=
∫ T

0

dS̃t
S̃t
− 1

2
〈X〉T , and thus

Vt = 2e−r(T−t)
∫ t

0

dS̃u
S̃u
− 2 E[e−r(T−t) log(S̃T /S0) | F t].

(6.1)

Suppose dth asset’s payoff is given as hd(x) = log(x1/S0). It follows from (6.1) that

dṼt = d(e−rtVt) = 2e−rT
dÃ1

t

Ã1
t

− 2dÃdt , or equivalently

∇vV (t, x) =
2e−r(T−t)

v1(t, x)
∇v1(t, x)− 2∇vd(t, x).

(6.2)

In consequence, the rank of a matrix G, whose first row is ∇v1, remains unchanged when
we replace the row ∇vd by ∇vV . We state this as a proposition.

Proposition 6.1. Consider a market model of Section 2 with assets A = (A1
t , . . . , A

d
t ),

where A1 = S is the stock price and Ad has payoff logST at maturity T . Trading in A

completes the market if and only if trading in A completes the market, where A
i

= Ai,
i < d and A

d

t = Vt.

The method presented above allows to investigate other path-dependent options, as
long as we can write them as sum of trades in the remaining assets plus a different asset
with a European payoff. We could for example consider an option paying 〈S〉T .

7. Conclusions. To model realistically the dynamics of the stock price process one typ-
ically needs to consider models driven by more factors than just one Brownian motion.
This naturally leads to market incompleteness when only trading in the stock is consid-
ered. Pricing of derivatives is no longer unique. It is in fact a challenging problem which
has been extensively studied. However, in present markets one does not need to price all
derivatives. Indeed, some options are so liquid that they should be treated as inputs of
the model. This was the starting point of our work.

The basic rule of thumb is naturally: in order to have a complete market take as many
assets (including the stock itself) as you have random processes spanning the filtration
(see for example Karatzas and Shreve [13, Thm. 1.6.6]). The question is then: when is
this intuition actually correct? Theorem 4.1 shows that in the most regular case it is
essentially always correct. More precisely, we consider market model written as an SDE
with coefficients and payoffs such that pricing functions vi in (2.3) are real analytic. Then
it suffices to check that the matrix governing the evolution of asset prices is non-singular
in one point to deduce that the set of assets completes the market. In particular, in
Proposition 5.1 we show that then a stochastic volatility model is always completed by a
single European option.
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It seems there are two main open questions resulting from the present work. An
analogue of Proposition 5.1 for higher-dimensional models would complement Theorem
4.1 and provide a full understanding of market completeness with options. Throughout,
we considered the SDE (2.1) which is driven by a d-dimensional Brownian motion. The
second remaining challenge is to extend this to the discontinuous setup. This is the subject
of our further research.

Finally, in view of our results it is crucial to understand when a solution to (4.2) is real
analytic and in particular to give a complete proof of (A4). We hope this will motivate
further study in the theory of PDEs.

Appendix. For completeness, we give the proof of the following measurable selection
lemma used in the proof of Theorem 3.2.

Lemma A.1. Let G be defined via (2.4). There exists a measurable function β : (0, T )×
Rd → Rd satisfying (3.4).

Proof. Let Z = (0, T )× Rd and define Γ(z) = Γ(t, x) = G(t, x)σ(t, x)σ(t, x)T, z = (t, x).
Matrix Γ(z) induces a linear map on Rd and Γ : Z ×Rd → Rd given by (z, y)→ Γ(z)y is
a continuous function. For z ∈ Z define

F (z) =
{
{0} if det Γ(z) 6= 0
Ker(Γ(z)) ∩ {y : |y|2 = 1} otherwise.

(A.1)

F (z) is a non-empty closed set in Rd for any z ∈ Z. Let U ⊂ Rd and put F−(U) = {z ∈
Z : F (z) ∩ U 6= ∅}. We will now argue that F−(U) is a measurable set for any closed U .
Let Ũ = U ∩ ({y : |y| = 1} ∪ {0}) and observe that

F−(U) = pz(Γ−1({0}) ∩ (Z × Ũ)), (A.2)

where pz : Z × Rd → Z is the projection, pz(z, u) = z. Consider the set

Ũn =
{
y ∈ Rd : inf

u∈U
|y − u| < 1

n

}
∩
{
y : ||y| − 1| < 1

n

}
.

Naturally, Ũn is open and
⋂
n≥1 Ũn = U . Finally, let B(0, 1/n) = {y ∈ Rd : |y| < 1/n}.

The set Υn = Γ−1(B(0, 1/n))∩ (Z × Ũn) is open and thus its image by the projection pz
is a measurable set. Furthermore, we have⋂

n≥1

pz(Υn) ={z ∈ Z : ∀n Γ(z)−1(B(0, 1/n)) ∩ Ũn 6= ∅}

=
{
z ∈ Z : ∀n ∃βn∈Γ(z)−1(B(0,1/n))∩Ũn

|Γ(z)βn| <
1
n

}
={z ∈ Z : ∃β∈Ũ Γ(z)β = 0} = pz(Γ−1({0}) ∩ (Z × Ũ)),

(A.3)

where the last equalities follow by choosing a converging subsequence βnk
→ β and

observing that β ∈ Ker(Γ(z))∩Ũ . In consequence, F−(U) is an intersection of measurable
sets and F is measurable. As we work in metric spaces, F is also weakly measurable and
an application of the Measurable Selection Theorem of Kuratowski and Ryll-Nardzewski
(cf. Wagner [21, Thm 4.1]) completes the proof.
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