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Abstract. We propose a class of discrete-time stochastic models for the pricing of inflation-
linked assets. The paper begins with an axiomatic scheme for asset pricing and interest rate
theory in a discrete-time setting. The first axiom introduces a “risk-free” asset, and the second
axiom determines the intertemporal pricing relations that hold for dividend-paying assets. The
nominal and real pricing kernels, in terms of which the price index can be expressed, are then
modelled by introducing a Sidrauski-type utility function depending on (a) the aggregate rate
of consumption, and (b) the aggregate rate of real liquidity benefit conferred by the money
supply. Consumption and money supply policies are chosen such that the expected joint utility
obtained over a specified time horizon is maximised subject to a budget constraint that takes
into account the “value” of the liquidity benefit associated with the money supply. For any choice
of the bivariate utility function, the resulting model determines a relation between the rate of
consumption, the price level, and the money supply. The model also produces explicit expressions
for the real and nominal pricing kernels, and hence establishes a basis for the valuation of
inflation-linked securities.

I. Introduction. In this paper we apply the information-based asset pricing scheme
proposed in Brody et al. 2007, 2008, and Macrina 2006, to introduce a class of discrete-
time models for interest rates and inflation. The key idea is that market participants
have at any time partial information about the future values of the macro-economic
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factors that determine interest rates and price levels. We present a model for such partial
information, and show how it leads to a novel framework for the arbitrage-free dynamics
of real and nominal interest rates, price-indices, and index-linked securities.

We begin with a general model for discrete-time asset pricing. We take a pricing ker-
nel approach, which builds in the arbitrage-free property and provides the desired link
to economic equilibrium. We require that the pricing kernel should be consistent with a
pair of axioms, one giving the intertemporal relations for dividend-paying assets, and the
other relating to the existence of a money market asset. Instead of directly assuming the
existence of a previsible money-market account, we make a weaker assumption, namely
the existence of an asset that offers a positive rate of return. It can be deduced, how-
ever, that the existence of a positive-return asset is sufficient to imply the existence of
a previsible money-market account, once the intertemporal relations implicit in the first
axiom are taken into account. The main result of Section II is the derivation of a general
expression for the price process of a limited-liability asset. This expression includes two
terms, one being the discounted and risk-adjusted value of the dividend stream, and the
other characterising retained earnings. The vanishing of the latter is shown in Proposi-
tion 1 to be given by a transversality condition, equation (9). In particular, we are able
to show (under the conditions of Axioms A and B) that in the case of a limited-liability
asset with no permanently retained earnings, the general form of the price process is
given by the ratio of a potential and the pricing kernel, as expressed in equation (20). In
Section III we consider the per-period rate of return {r̄i} offered by the positive return
asset, and we show in Proposition 2 that there exists a constant-value asset with lim-
ited liability such that the associated dividend flow is given by {r̄i}. This result is then
used in Proposition 3 to establish that the pricing kernel admits a decomposition of the
form (31). In Proposition 4 we prove a converse to this result, thus giving a procedure for
constructing examples of systems satisfying Axioms A and B. The method involves the
introduction of an increasing sequence that converges to an integrable random variable.
Given the sequence we construct an associated pricing kernel and positive-return asset
satisfying the intertemporal relations.

In Section IV we introduce the nominal discount bond system arising with the specifi-
cation of the pricing kernel, and in Proposition 5 we show that the discount bond system
admits a representation of the Flesaker-Hughston type. In Section V we consider the case
when the positive-return asset has a previsible price process, and hence can be interpreted
(in a standard way) as a money-market account, or “risk-free” asset. The results of the pre-
vious sections do not depend on this additional assumption. A previsible money-market
account has the structure of a series of one-period discount-bond investments. Then in
Proposition 6 we show under the conditions of Axioms A and B that there exists a unique
previsible money-market account. In other words, although we only assume the existence
of a positive-return asset, we can establish the existence of a money-market account.

In Section VI we outline a general approach to interest rate modelling in the informa-
tion-based framework, in a discrete-time setting. In Section VII we then propose a class of
models for the pricing of inflation-linked assets. The nominal and real pricing kernels, in
terms of which the consumer price index can be expressed, are modelled by introducing a
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bivariate utility function depending on (a) consumption, and (b) the real liquidity benefit
conferred by the money supply. Consumption and money supply policies are chosen such
that the expected joint utility obtained over a specified time horizon is maximised, subject
to a budget constraint that takes into account the “value” of the liquidity benefit associ-
ated with the money supply. For any choice of the bivariate utility function, the resulting
model determines a relation between the rate of consumption, the price level, and the
money supply. The model produces explicit expressions for the real and nominal pricing
kernels, and hence establishes a basis for the valuation of inflation-linked securities.

II. Asset pricing in discrete time. The development of asset-pricing theory in dis-
crete time has been pursued by many authors. In the context of interest rate modelling,
it is worth recalling that the first example of a fully developed term-structure model
where the initial discount function is freely specifiable is that of Ho & Lee 1986, in a
discrete-time setting.

For our purposes it will be useful to develop a general discrete-time scheme from first
principles, taking an axiomatic approach in the spirit of Hughston & Rafailidis (2005).
Let {ti}i=0,1,2,... denote a sequence of discrete times, where t0 represents the present and
ti+1 > ti for all i ∈ N0. We assume that the sequence {ti} is unbounded in the sense that
for any given time T there exists a value of i such that ti > T . We do not assume that
the elements of {ti} are equally spaced; for some applications, however, we can consider
the case where tn = nτ for all n ∈ N0 and for some unit of time τ .

Each asset is characterised by a pair of processes {Sti}i≥0 and {Dti}i≥0 which we
refer to as the “value process” and the “dividend process”, respectively. We interpret Dti

as a random cash flow or dividend paid to the owner of the asset at time ti. Then Sti
denotes the “ex-dividend” value of the asset at ti. We can think of Sti as the cash flow
that would result if the owner were to dispose of the asset at time ti.

For simplicity, we shall frequently use an abbreviated notation, and write Si = Sti
and Di = Dti . Thus Si denotes the value of the asset at time ti, and Di denotes the
dividend paid at time ti. Both Si and Di are expressed in nominal terms, i.e. in units
of a fixed base currency. We use the term “asset” in the broad sense here—the scheme is
thus applicable to any liquid financial position for which the values and cash flows are
well defined, and for which the principles of no arbitrage are applicable.

The unfolding of random events in the economy will be represented with the specifi-
cation of a probability space (Ω,F ,P) equipped with a filtration {Fi}i≥0 which we call
the “market filtration”. For the moment we regard the market filtration as given, but later
we shall construct it explicitly. For each asset we assume that the associated value and
dividend processes are adapted to {Fi}. In what follows P is taken to be the “physical” or
“objective” probability measure; all equalities and inequalities between random variables
are to be understood as holding almost surely with respect to P. For convenience we often
write Ei[−] for E[−|Fi].

In order to ensure the absence of arbitrage in the financial markets and to establish
intertemporal pricing relations, we assume the existence of a strictly positive pricing
kernel {πi}i≥0, and make the following assumptions:
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Axiom A. For any asset with associated value process {Si}i≥0 and dividend process
{Di}i≥0, the process {Mi}i≥0 defined by

Mi = πiSi +
i∑

n=0

πnDn (1)

is a martingale, i.e. E[|Mi|] <∞ for all i ∈ N0, and E[Mj |Fi] = Mi for all i ≤ j.

Axiom B. There exists a strictly positive non-dividend-paying asset, with value process
{B̄i}i≥0, that offers a strictly positive return, i.e. such that B̄i+1 > B̄i for all i ∈ N0. We
assume that the process {B̄i} is unbounded in the sense that for any b ∈ R there exists a
time ti such that B̄i > b.

Given this axiomatic scheme, we proceed to explore its consequences. We shall see
that Axioms A and B lead to a relation between the price of an asset and the associ-
ated dividend stream. This relation appears in Proposition 1. The notation {B̄i} is used
in Axiom B to distinguish the positive return asset from the previsible money-market
account asset {Bi} that will be introduced later; in particular, in Proposition 6 it will
be shown that Axioms A and B imply the existence of a unique money-market account
asset. We note that since the positive-return asset is non-dividend paying, it follows from
Axiom A that {πiB̄i} is a martingale. Writing ρ̄i = πiB̄i, we have πi = ρ̄i/B̄i. Since {B̄i}
is assumed to be strictly increasing, we see that {πi} is a supermartingale. In fact, we
have the strict inequality

Ei[πj ] = Ei
[
ρ̄j
B̄j

]
< Ei

[
ρ̄j
B̄i

]
=
Ei[ρ̄j ]
B̄i

= πi. (2)

The significance of {ρ̄i} is that it has the interpretation of being the likelihood ratio
appropriate for a change of measure from the objective measure P to the equivalent
martingale measure Q characterised by the property that non-dividend-paying assets
when expressed in units of the numeraire {B̄i} are martingales.

We recall the definition of a potential. An adapted process {xi}0≤i<∞ on a probabil-
ity space (Ω,F ,P) with filtration {Fi} is said to be a potential if {xi} is a non-negative
supermartingale and limi→∞ E[xi] = 0. It is straightforward to show that {πi} is a poten-
tial. We need to demonstrate that given any ε > 0 we can find a time tj such E[πn] < ε for
all n ≥ j. This follows from the assumption that the positive-return asset price process
{B̄i} is unbounded in the sense specified in Axiom B. Thus given ε let us set b = ρ̄0/ε.
Now given b we can find a time tj such that B̄tn > b for all n ≥ j. But for that value of
tj we have E[πj ] = E[ρ̄j/B̄j ] < E[ρ̄j ]/b = ε, and hence E[πn] < ε for all n ≥ j. It follows
that

lim
i→∞

E[πi] = 0. (3)

Next we recall the Doob decomposition for discrete-time supermartingales (see, e.g.,
Meyer 1966, chapter 7). If {xi} is a supermartingale on a probability space (Ω,F ,P) with
filtration {Fi}, then there exists a martingale {yi} and a previsible increasing process {ai}
such that xi = yi − ai for all i ≥ 0. By previsible, we mean that ai is Fi−1-measurable.
The decomposition is given explicitly by a0 = 0 and ai = ai−1 +xi−1−Ei−1[xi] for i ≥ 1.
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It follows that the pricing kernel admits a decomposition of the form

πi = Yi −Ai, (4)

where A0 = 0 and

Ai =
i−1∑
n=0

(πn − En[πn+1]) (5)

for i ≥ 1; and where Y0 = π0 and

Yi =
i−1∑
n=0

(πn+1 − En[πn+1]) + π0 (6)

for i ≥ 1. The Doob decomposition for {πi} has an interesting expression in terms of
discount bonds, which we shall mention later, in Section V.

In the case of a potential {xi} it can be shown (see Gihman & Skorohod 1979) that
a∞ = limi→∞ ai exists, and that xi = Ei[a∞] − ai. As a consequence, we conclude that
the pricing kernel admits a decomposition of the form

πi = Ei[A∞]−Ai, (7)

where {Ai} is the previsible process defined by (5). With these facts in hand, we shall
establish a useful result concerning the pricing of limited-liability assets. By a limited-
liability asset we mean an asset such that Si ≥ 0 and Di ≥ 0 for all i ∈ N.

Proposition 1. Let {Si}i≥0 and {Di}i≥0 be the value and dividend processes associated
with a limited-liability asset. Then {Si} is of the form

Si =
mi

πi
+

1
πi

Ei
[ ∞∑
n=i+1

πnDn

]
, (8)

where {mi} is a non-negative martingale that vanishes if and only if the following trans-
versality condition holds:

lim
j→∞

E[πjSj ] = 0. (9)

Proof. It follows from Axiom A, as a consequence of the martingale property, that

πiSi +
i∑

n=0

πnDn = Ei
[
πjSj +

j∑
n=0

πnDn

]
(10)

for i ≤ j. Taking the limit j →∞ on the right-hand side of this relation we have

πiSi +
i∑

n=0

πnDn = lim
j→∞

Ei[πjSj ] + lim
j→∞

Ei
[ j∑
n=0

πnDn

]
. (11)

Since πiDi ≥ 0 for i ∈ N0, it follows from the conditional form of the monotone conver-
gence theorem—see, e.g., Steele 2001, Williams 1991—that

lim
j→∞

Ei
[ j∑
n=0

πnDn

]
= Ei

[
lim
j→∞

j∑
n=0

πnDn

]
, (12)
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and hence that

πiSi +
i∑

n=0

πnDn = lim
j→∞

Ei[πjSj ] + Ei
[ ∞∑
n=0

πnDn

]
. (13)

Now let us define
mi = lim

j→∞
Ei[πjSj ]. (14)

Then clearly mi ≥ 0 for all i ∈ N0. We see, moreover, that {mi}i≥0 is a martingale, since
mi = Mi − Ei[F∞], where Mi is defined as in equation (1), and

F∞ =
∞∑
n=0

πnDn. (15)

It is implicit in the axiomatic scheme that the sum
∑∞
n=0 πnDn converges in the case

of a limited-liability asset. This follows as a consequence of the martingale convergence
theorem and Axiom A. Thus, writing equation (13) in the form

πiSi +
i∑

n=0

πnDn = mi + Ei
[ ∞∑
n=0

πnDn

]
, (16)

after some re-arrangement of terms we obtain

πiSi = mi + Ei
[ ∞∑
n=i+1

πnDn

]
, (17)

and hence (8), as required. On the other hand, by the martingale property of {mi} we
have E[mi] = m0 and hence

E[mi] = lim
j→∞

E[πjSj ] (18)

for all i ∈ N. Thus since mi ≥ 0 we see that (9) holds if and only if {mi} = 0.

The interpretation of the transversality condition is as follows. For each j ∈ N0 the
expectation Vj = E[πjSj ] measures the present value of an instrument that pays at tj
an amount equal to the proceeds of a liquidation of the asset with price process {Si}i≥0.
If limj→∞ Vj = 0 then one can say that in the long term all of the value of the asset
will be dispersed in its dividends. On the other hand, if some or all of the dividends are
“retained” indefinitely, then {Vj} will retain some value, even in the limit as tj goes to
infinity. The relation mi = Mi − Ei[F∞] shows that {mi} represents that part of the
martingale {Mi} that is not accounted for by the dividend flow.

The following example may clarify this interpretation. Suppose investors put $100m
of capital into a new company. The management of the company deposit $10m into a
money market account. The remaining $90m is invested in a risky line of business, the
proceeds of which, after costs, are paid to share-holders as dividends. At time ti we have
Si = Bi + Hi, where Bi is a position in the money market account initialised at $10m,
and Hi is the value of the remaining dividend flow. Now {πiBi} is a martingale, and thus
E[πiBi] = $10m for all i ∈ N0, and hence limi→∞ E[πiBi] = $10m. On the other hand
limi→∞ E[πiHi] = 0; this means that given any value h we can find a time T such that
E[πiHi] < h for all ti ≥ T .
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There are other ways of “retaining” funds than putting them into a domestic money
market account. For example, one could put the $10m into a foreign bank account; or
one could invest it in shares in a securities account, with a standing order that dividends
should be immediately re-invested in further shares. If the investment is in a general
“dividend-retaining” asset (such as a foreign bank account), then {mi} can be any non-
negative martingale. The content of Proposition 1 is that a limited-liability investment
can be separated in a unique way into a “pure growth” component and a “pure dividend”
component.

In the case of a “pure dividend” investment, i.e. in an asset for which the transversality
condition is satisfied, the price is directly related to the future dividend flow, and we have

Si =
1
πi

Ei
[ ∞∑
n=i+1

πnDn

]
. (19)

This is the so-called “fundamental equation” which some authors have used directly as
a basis for asset pricing theory—see, e.g., Cochrane 2005. One could in principle take
the point of view that even in the case of a pure growth asset such as a money market
account a dividend is eventually paid (for example, when one closes down the account).
In that case, all assets can be regarded as “pure dividend” assets. But it is convenient
(and standard) to maintain the notion of “pure growth” assets in finance theory, even if
this involves an element of abstraction. An alternative way of writing (19) is in the form

Si =
1
πi

(Ei[F∞]− Fi), (20)

where

Fi =
i∑

n=0

πnDn, and F∞ = lim
i→∞

Fi. (21)

It is straightforward to show that the process {πiSi} is a potential. Clearly, {Ei[F∞] −
Fi} is a positive supermartingale, since {Fi} is increasing; and by the tower property
and the monotone convergence theorem we have limi→∞ E[Ei[F∞] − Fi] = E[F∞] −
limi→∞ E[Fi] = E[F∞] − E[limi→∞ Fi] = 0. On the other hand, {πi} is also a potential,
so we conclude that in the case of a pure dividend asset the price process can be expressed
as a ratio of potentials, thus giving us a discrete-time analogue of a result obtained by
Rogers 1997. Indeed, the role of the concept of a potential as it appears here is consistent
with the continuous-time theories developed by Flesaker & Hughston 1996, Rogers 1997,
Rutkowski 1997, Jin & Glasserman 2001, Hughston & Rafailidis 2005, and others, where
similar structures arise.

III. Nominal pricing kernel and nominal interest rates. To proceed further we
need to say more about the relation between the pricing kernel {πi} and the positive-
return asset {B̄i}. To this end let us write

r̄i =
B̄i − B̄i−1

B̄i−1
(22)

for the rate of return on the positive-return asset realised at time ti on an investment
made at time ti−1. Since the time interval ti − ti−1 is not necessarily small, there is no
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specific reason to presume that the rate of return r̄i is already known at time ti−1. This is
consistent with the fact that we have assumed that {B̄i} is {Fi}-adapted. The notation
r̄i is used here to distinguish the rate of return on the positive-return asset from the rate
of return ri on the money market account, which will be introduced in Section V.

Next we present a simple argument to motivate the idea that there should exist an
asset with constant value unity that pays a dividend stream given by {r̄i}. We consider
the following portfolio strategy. The portfolio consists at any time of a certain number
of units of the positive-return asset. Let φi denote the number of units, so that at time
ti the (ex-dividend) value of the portfolio is given by Vi = φiB̄i. Then in order to have
Vi = 1 for all i ≥ 0 we set φi = 1/B̄i. Let Di denote the dividend paid out by the
portfolio at time ti. Then clearly if the portfolio value is to remain constant we must
have Di = φi−1B̄i − φi−1B̄i−1 for all i ≥ 1. It follows immediately that Di = r̄i, where
r̄i is given by (22).

This shows that we can construct a portfolio with a constant value and with the
desired cash flows. Now we need to show that such a system satisfies Axiom A.

Proposition 2. There exists an asset with constant nominal value Si = 1 for all i ∈ N0,

for which the associated cash flows are given by {r̄i}i≥1.

Proof. We need to verify that the conditions of Axiom A are satisfied in the case for
which Si = 1 and Di = r̄i for i ∈ N0. In other words we need to show that

πi = Ei[πj ] + Ei
[ j∑
n=i+1

πnr̄n

]
(23)

for i ≤ j. The calculation proceeds as follows. We observe that

Ei
[ j∑
n=i+1

πnr̄n

]
= Ei

[
j∑

n=i+1

πn
B̄n − B̄n−1

B̄n−1

]
= Ei

[
j∑

n=i+1

(
ρ̄n
B̄n−1

− ρ̄n
B̄n

)]

= Ei

[
j∑

n=i+1

(
En−1

[
ρ̄n
B̄n−1

]
− ρ̄n
B̄n

)]
, (24)

the last step being achieved by use of the tower property. It follows then by use of the
martingale property of {ρn} that

Ei

[
j∑

n=i+1

πnr̄n

]
= Ei

[
j∑

n=i+1

(
1

B̄n−1
En−1[ρ̄n]− ρ̄n

B̄n

)]

= Ei

[
j∑

n=i+1

(
ρ̄n−1

B̄n−1
− ρ̄n
B̄n

)]

= Ei
[
ρ̄i
B̄i

]
− Ei

[
ρ̄j
B̄j

]
= πi − Ei[πj ]. (25)

But that gives (23).

The existence of the constant-value asset leads to an alternative decomposition of the
pricing kernel, which can be described as follows.
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Proposition 3. Let {B̄i} be a positive-return asset satisfying the conditions of Axiom
B, and let {r̄i} be its rate-of-return process. Then the pricing kernel can be expressed in
the form πi = Ei[G∞]−Gi, where Gi =

∑i
n=1 πnr̄n and G∞ = limi→∞Gi.

Proof. First we remark that if an asset has constant value then it satisfies the transversal-
ity condition (9). In particular, letting the constant be unity, we see that the transversality
condition reduces to

lim
i→∞

E[πi] = 0, (26)

which is satisfied since {πi} is a potential. Next we show that

lim
j→∞

Ei[πj ] = 0 (27)

for all i ∈ N0. In particular, fixing i, we have E[Ei[πj ]] = E[πj ] by the tower property,
and thus

lim
j→∞

E[Ei[πj ]] = 0 (28)

by virtue of (26). But Ei[πj ] < πi for all j > i, and E[πi] < ∞; hence by the dominated
convergence theorem we have

lim
j→∞

E[Ei[πj ]] = E[ lim
j→∞

Ei[πj ]], (29)

from which we obtain (27), since the argument of the expectation is non-negative. As a
consequence of (27) it follows from (23) that

πi = lim
j→∞

Ei
[ j∑
n=i+1

πnr̄n

]
, (30)

and thus by the monotone convergence theorem we have

πi = Ei
[ ∞∑
n=i+1

πnr̄n

]
= Ei

[ ∞∑
n=1

πnr̄n

]
−

i∑
n=1

πnr̄n = Ei[G∞]−Gi, (31)

and that gives us the result of the proposition.

We shall establish a converse to this result, which allows us to construct a system
satisfying Axioms A and B from any strictly-increasing non-negative adapted process
that converges, providing a certain integrability condition holds.

Proposition 4. Let {Gi}i≥0 be a strictly increasing adapted process satisfying G0 = 0,
and E[G∞] < ∞, where G∞ = limi→∞Gi. Let the processes {πi}, {r̄i}, and {B̄i}, be
defined by πi = Ei[G∞]−Gi for i ≥ 0; r̄i = (Gi−Gi−1)/πi for i ≥ 1; B̄i =

∏i
n=1(1 + r̄n)

for i ≥ 1, with B̄0 = 1. Let the process {ρ̄i} be defined by ρ̄i = πiB̄i for i ≥ 0. Then
{ρ̄i} is a martingale, and limj→∞ B̄j = ∞. Thus {πi} and {B̄i}, as constructed, satisfy
Axioms A and B.

Proof. Writing gi = Gi −Gi−1 for i ≥ 1 we have

πi = Ei[G∞]−Gi = Ei
[ ∞∑
n=i+1

gn

]
, (32)
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and

B̄i =
i∏

n=1

(1 + r̄n) =
i∏

n=1

(
1 +

gn
πn

)
=

i∏
n=1

(
πn + gn
πn

)
. (33)

Hence, writing ρ̄i = πiB̄i, we have

ρ̄i = πi

i∏
n=1

(
πn + gn
πn

)
= (πi + gi)

i−1∏
n=1

(
πn + gn
πn

)
, (34)

and thus
ρ̄i = (πi + gi)B̄i−1 =

πi + gi
πi−1

ρ̄i−1. (35)

To show that {ρ̄i} is a martingale it suffices to verify for all i ≥ 1 that E[ρ̄i] < ∞ and
that Ei−1[ρ̄i] = ρ̄i−1. In particular, if E[ρ̄i] < ∞ then the “take out what is known rule”
applies, and by (32) and (34) we have

Ei−1[ρ̄i] = Ei−1

[
πi + gi
πi−1

ρ̄i−1

]
=
ρ̄i−1

πi−1
Ei−1[πi + gi] =

ρ̄i−1

πi−1
Ei−1

[ ∞∑
n=i

gn

]
=
ρ̄i−1

πi−1
(Ei−1[G∞]−Gi−1) = ρ̄i−1. (36)

Here, in going from the first to the second line we have used the fact that E[πi+gi] <∞,
together with the assumption that E[ρ̄i] <∞. To verify that E[ρ̄i] <∞ let us write

Jαi−1 = min
[
ρ̄i−1

πi−1
, α

]
(37)

for α ∈ N0. Then by use of monotone convergence and the tower property we have

E[ρ̄i] = E
[
(πi + gi) lim

α→∞
Jαi−1

]
= lim
α→∞

E
[
(πi + gi)Jαi−1

]
= lim
α→∞

E
[
Ei−1

[
(πi + gi)Jαi−1

]]
= lim
α→∞

E
[
Jαi−1Ei−1 [(πi + gi)]

]
≤ E

[
ρ̄i−1

πi−1
Ei−1[πi + gi]

]
= E[ρ̄i−1], (38)

since
Jαi−1 ≤

ρ̄i−1

πi−1
. (39)

Thus we see for all i ≥ 1 that if E[ρ̄i−1] <∞ then E[ρ̄i] <∞. But ρ̄0 <∞ by construction;
hence by induction we deduce that E[ρ̄i] <∞ for all i ≥ 0.

To show that limj→∞{B̄j} =∞ let us assume the contrary and show that this leads
to a contradiction. Suppose, in particular, that there were to exist a number b such that
B̄i < b for all i ∈ N0. Then for all i ∈ N0 we would have

E
[
ρ̄i
B̄i

]
>

1
b
E[ρ̄i] =

ρ̄0

b
. (40)

But by construction we know that limi→∞ E[πi] = 0 and hence

lim
i→∞

E
[
ρ̄i
B̄i

]
= 0. (41)
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Thus given any ε > 0 we can find a time ti such that

E
[
ρ̄i
B̄i

]
< ε. (42)

But this is inconsistent with (40); and thus we conclude that limj→∞ B̄j = ∞. That
completes the proof of Proposition 4.

IV. Nominal discount bonds. Now we proceed to consider the properties of nominal
discount bonds. By such an instrument we mean an asset that pays a single dividend
consisting of one unit of domestic currency at some designated time tj . For the price Pij
at time ti (i < j) of a discount bond that matures at time tj we thus have

Pij =
1
πi

Ei[πj ]. (43)

Since πi > 0 for all i ∈ N, and Ei[πj ] < πi for all i < j, it follows that 0 < Pij < 1 for all
i < j. We observe, in particular, that the associated interest rate Rij defined by

Pij =
1

1 +Rij
(44)

is strictly positive. In our theory we regard a discount bond as a “dividend-paying” asset.
Thus in the case of a discount bond with maturity tj we have Pjj = 0 and Dj = 1. Usually
discount bonds are defined by setting Pjj = 1 at maturity, with Dj = 0; but it is more
logical to regard the bonds as giving rise to a unit cash flow at maturity. The definition
of the discount bond system does not involve the specific choice of the positive-return
asset.

It is important to point out that in the present framework there is no reason or need to
model the dynamics of {Pij}, or to model the volatility structure of the discount bonds.
Indeed, from the present point of view this would be a little artificial. The important
issue, rather, is how to model the pricing kernel. Thus, our scheme differs somewhat in
spirit from the discrete-time models discussed, e.g., in Heath et al. 1990, and Filipović &
Zabczyk 2002.

As a simple example of a family of discrete-time interest rate models admitting
tractable formulae for the associated discount bond price processes, suppose we set

πi = αi + βiNi (45)

where {αi} and {βi} are strictly-positive, strictly-decreasing deterministic sequences,
satisfying limi→∞ αi = 0 and limi→∞ βi = 0, and where {Ni} is a strictly positive
martingale. Then by (43) we have

Pij =
αj + βjNi
αi + βiNi

, (46)

thus giving a family of “rational” interest rate models. Note that in a discrete-time setting
we can produce classes of models that have no immediate analogues in continuous time—
for example, we can let {Ni} be the natural martingale associated with a branching
process.

Now we shall demonstrate that any discount bond system consistent with our gen-
eral scheme admits a representation of the Flesaker-Hughston type. For accounts of the
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Flesaker-Hughston theory see, e.g., Flesaker & Hughston 1996, Rutkowski 1997, Hunt &
Kennedy 2000, or Jin & Glasserman 2001.

Proposition 5. Let {πi}, {B̄i}, {Pij} satisfy the conditions of Axioms A and B. Then
there exists a family of positive martingales {min}0≤i≤n indexed by n ∈ N such that

Pij =

∑∞
n=j+1min∑∞
n=i+1min

. (47)

Proof. We shall use the fact that πi can be written in the form

πi = Ei[G∞]−Gi = Ei
[ ∞∑
n=1

gn

]
−

i∑
n=1

gn = Ei
[ ∞∑
n=i+1

gn

]
, (48)

where gi = Gi − Gi−1 for each i ≥ 1. Then gi > 0 for all i ≥ 1 since {Gi} is a strictly
increasing sequence. By the monotone convergence theorem we have

πi =
∞∑

n=i+1

Ei[gn] (49)

and

Ei[πj ] =
∞∑

n=j+1

Ei[gn]. (50)

For each n ≥ 1 we define min = Ei[Xn]. Then for each n ∈ N we see that {min}0≤i≤n is
a strictly positive martingale, and (47) follows immediately.

V. Nominal money-market account. In the analysis presented so far we have as-
sumed that the positive-return process {B̄i} is {Fi}-adapted, but is not necessarily pre-
visible. Many of our conclusions are valid under the weaker hypothesis of adaptedness,
as we have seen. There are also economic motivations behind the use of the more general
assumption. One can imagine that the time sequence {ti} is in reality a “course grain-
ing” of a finer time sequence that includes the original sequence as a sub-sequence. Then
likewise one can imagine that {B̄i} is a sub-sequence of a finer process that assigns a
value to the positive-return asset at each time in the finer time sequence. Finally, we can
imagine that {Fi} is a sub-filtration of a finer filtration based on the finer sequence. In
the case of a money market account, where the rate of interest is set at the beginning
of each short deposit period, we would like to regard the relevant value process as being
previsible with respect to the finer filtration, but merely adapted with respect to the
course-grained filtration.

Do positive-return assets, other than the standard previsible money market account,
actually exist in a discrete-time setting? The following example gives an affirmative an-
swer. In the setting of the standard binomial model, in the case of a single period, let S0

denote the value at time 0 of a risky asset, and let {U,D} denote its possible values at
time 1. Let B0 and B1 denote the values at times 0 and 1 of a deterministic money-market
account. We assume that B1 > B0 and U > S0B1/B0 > D. A standard calculation shows
that the risk-neutral probabilities for S0 → U and S0 → D are given by p∗ and 1 − p∗,
where p∗ = (S0B1/B0 −D)/(U −D). We shall now construct a “positive-return” asset,
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i.e. an asset with initial value S̄0 and with possible values {Ū , D̄} at time 1 such that
Ū > S̄0 and D̄ > S̄0. Risk-neutral valuation implies that S̄0 = (B0/B1)[p∗Ū +(1−p∗)D̄].
Thus, given S̄0, we can determine Ū in terms of D̄. A calculation then shows that if
(B1/B0 − p∗)/(1 − p∗) > D̄/S̄0 > 1, then Ū > S̄0 and D̄ > S̄0, as desired. Thus, in
the one-period binomial model, for the given initial value S̄0, we obtain a one-parameter
family of positive-return assets.

Let us consider now the special case where the positive-return asset is previsible. Thus
for i ≥ 1 we assume that Bi is Fi−1-measurable and we drop the “bar” over Bi to signify
the fact that we are now considering a money-market account. In that case we have

Pi−1,i =
1

πi−1
Ei−1[πi] =

Bi−1

ρi−1
Ei−1

[
ρi
Bi

]
=
Bi−1

Bi
, (51)

by virtue of the martingale property of {ρi}. Thus, in the case of a money-market account
we see that

Pi−1,i =
1

1 + ri
. (52)

where ri = Ri−1,i. In other words, the rate of return on the money-market account
is previsible, and is given by the one-period simple discount factor associated with the
discount bond that matures at time ti.

Reverting to the general situation, it follows that if we are given a pricing kernel {πi}
on a probability space (Ω,F ,P) with filtration {Fi}, and a system of assets satisfying
Axioms A and B, then we can construct a plausible candidate for an associated previsible
money market account by setting B0 = 1 and defining

Bi = (1 + ri)(1 + ri−1) · · · (1 + r1), (53)

for i ≥ 1, where
ri =

πi−1

Ei−1[πi]
− 1. (54)

We shall refer to the process {Bi} thus constructed as the “natural” money market account
associated with the pricing kernel {πi}.

To justify this nomenclature, we need to verify that {Bi}, so constructed, satisfies
the conditions of Axioms A and B. To this end, we make note of the following decom-
position. Let {πi} be a positive supermartingale satisfying Ei[πj ] < πi for all i < j and
limj→∞[πj ] = 0. Then as an identity we can write

πi =
ρi
Bi
, (55)

where
ρi =

πi
Ei−1[πi]

πi−1

Ei−2[πi−1]
· · · π1

E0[π1]
π0 (56)

for i ≥ 0, and
Bi =

πi−1

Ei−1[πi]
πi−2

Ei−2[πi−1]
· · · π1

E1[π2]
π0

E0[π1]
(57)

for i ≥ 1, with B0 = 1. Thus, in this scheme we have

ρi =
πi

Ei−1[πi]
ρi−1, (58)
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with the initial condition ρ0 = π0; and

Bi =
πi−1

Ei−1[πi]
Bi−1, (59)

with the initial condition B0 = 1. It is evident that {ρi} as thus defined is {Fi}-adapted,
and that {Bi} is previsible and strictly increasing. Making use of the identity (59) we are
in a position to establish the following:

Proposition 6. Let {πi} be a non-negative supermartingale satisfying Ei[πj ] < πi for all
i < j ∈ N0, and limi→∞ E[πi] = 0. Let {Bi} be defined by B0 = 1 and Bi =

∏i
n=1(1 + rn)

for i ≥ 1, where 1 + ri = πi−1/Ei−1[πi], and set ρi = πiBi for i ≥ 0. Then {ρi} is
a martingale, and the interest rate system defined by {πi}, {Bi}, and {Pij} satisfies
Axioms A and B.

Proof. To show that {ρi} is a martingale it suffices to verify for all i ≥ 1 that E[ρi] <∞
and that Ei−1[ρi] = ρi−1. In particular, if E[ρi] < ∞ then the “take out what is known
rule” is applicable, and by (58) we have

Ei−1[ρi] = Ei−1

[
πi

Ei−1[πi]
ρi−1

]
= ρi−1. (60)

Thus to show that {ρi} is a martingale it remains to verify that E[ρi] <∞. Let us write

Jαi−1 = min
[

ρi−1

Ei−1[πi]
, α

]
(61)

for α ∈ N0. Then by monotone convergence and the tower property we have

E[ρi] = E
[
πi lim

α→∞
Jαi−1

]
= lim
α→∞

E
[
πiJ

α
i−1

]
= lim
α→∞

E
[
Ei−1[πiJαi−1]

]
. (62)

But since the variable Jαi−1 is bounded we can move it outside the inner conditional
expectation to give

E[ρi] = lim
α→∞

E[Jαi−1E1−i[πi]] ≤ E[ρi−1], (63)

since
Jαi−1 ≤

ρi−1

Ei−1[πi]
. (64)

Thus we see for all i ≥ 1 that if E[ρi−1] <∞ then E[ρi] <∞. But ρ0 <∞ by construction,
and hence by induction we deduce that E[ρi] <∞ for all i ≥ 0.

The martingale {ρi} is the likelihood ratio process appropriate for a change of measure
from the objective measure P to the equivalent martingale measure Q characterised by
the property that non-dividend-paying assets are martingales when expressed in units of
the money-market account. An interesting feature of Proposition 6 is that no integrability
condition is required on {ρi}. In other words, the natural previsible money market account
defined by (57) “automatically” satisfies the conditions of Axiom A. For some purposes it
may therefore be advantageous to incorporate the existence of the natural money market
account directly into the axioms. Then instead of Axiom B we would have:

Axiom B∗. There exists a strictly-positive non-dividend paying asset, the money-market
account, with value process {Bi}i≥0, having the properties that Bi+1 > Bi for all i ∈ N0
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and that Bi is Fi−1-measurable for all i ∈ N. We assume that {Bi} is unbounded in the
sense that for any b ∈ R there exists a time ti such that Bi > b.

The content of Proposition 6 is that Axioms A and B together imply Axiom B∗. As
an exercise we shall establish that the class of interest rate models satisfying Axioms A
and B∗ is non-vacuus. In particular, suppose we consider the “rational” models defined
by equations (45) and (46) for some choice of the martingale {Ni}. It is straightforward
to see that the unique previsible money market account in this model is given by B0 = 1
and

Bi =
i∏

n=1

αn−1 + βn−1Nn−1

αn + βnNn−1
(65)

for i ≥ 1. For {ρi} we then have

ρi = ρ0

i∏
n=1

αn + βnNn
αn + βnNn−1

, (66)

where ρ0 = α0 + β0N0. But it is easy to check that for each i ≥ 0 the random variable ρi
is bounded; therefore {ρi} is a martingale, and the money market account process {Bi}
satisfies the conditions of Axioms A and B∗.

Now let us return to the Doob decomposition for {πi} given in formula (4). Evidently,
we have πi = Ei[A∞]−Ai, with

Ai =
i−1∑
n=0

(πn − En[πn+1]) =
i−1∑
n=0

πn

(
1− En[πn+1]

πn

)
=

i−1∑
n=0

πnrn+1Pn,n+1, (67)

where {ri} is the previsible short rate process defined by (52). The pricing kernel can
therefore be put in the form

πi = Ei
[ ∞∑
n=i

πnrn+1Pn,n+1

]
. (68)

Comparing the Doob decomposition (68) with the alternative decomposition given by
(31), we deduce that if we set

r̄i =
riπi−1Pi−1,i

πi
(69)

then we obtain a positive-return asset for which the corresponding decomposition of the
pricing kernel, as given by (31), is the Doob decomposition. On the other hand, since the
money-market account is a positive-return asset, by Proposition 3 we can also write

πi = Ei
[ ∞∑
n=i+1

πnrn

]
. (70)

As a consequence, we see that the price process of a pure dividend asset can be written
in the symmetrical form

Si =
Ei
[∑∞

n=i+1 πnDn

]
Ei
[∑∞

n=i+1 πnrn
] , (71)

where {Dn} is the dividend process, and {rn} is the short rate process.
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VI. Information-based interest rate models. So far in the discussion we have re-
garded the pricing kernel {πi} and the filtration {Fi} as being exogenously specified. To
develop the framework further we need to make a more specific indication of how the
pricing kernel is determined, and how information is made available to market partici-
pants. To obtain a realistic model for {πi} we need to develop the model in conjunction
with a theory of consumption, money supply, price level, inflation, real interest rates, and
information. We shall proceed in two steps. First we consider a general “reduced-form”
model for nominal interest rates, in which we model the filtration explicitly; then in the
next section we consider a more general “structural” model in which both the nominal
and the real interest rate systems are determined.

Our reduced-form model for interest rates is based on the theory of X-factors, fol-
lowing Brody et al. 2008 and Macrina 2006. Associated with each ti we introduce a
collection of random variables Xα

i (α = 1, . . . ,mi), where mi denotes the number of
random variables associated with ti. For each n, we assume that the random variables
Xα

1 , X
α
2 , . . . , X

α
n are independent. We regardXα

n as being “revealed” at time tn, and hence
Fn-measurable. More precisely, we shall construct the filtration {Fi} in such a way that
this property holds. Intuitively, we can think of Xα

1 , X
α
2 , . . . , X

α
n as being the independent

macroeconomic “market factors” that determine cash flows at tn.
Let us consider how the filtration will be modelled. For each j ∈ N0, at any time ti

before tj only partial information about the market factors Xα
j will be available to market

participants. We model this partial information for each market factor Xα
j by defining a

discrete-time information process {ξαtitj}0≤ti≤tj , setting

ξαtitj = σtiX
α
j + βαtitj . (72)

Here {βαtitj}0≤ti≤tj can, for each value of α, be thought of as an independent discretised
Brownian bridge. Thus, we consider a standard Brownian motion starting at time zero
and ending at time tj , and sample its values at the times {ti}i=0,...,j . Let us write ξαij =
ξαtitj and βαij = βαtitj , in keeping with our usual shorthand conventions for discrete-time
modelling. For each value of α we have E[βαij ] = 0 and

Cov[βαik, β
α
jk] =

ti(tk − tj)
tk

(73)

for i ≤ j ≤ k. We assume that the bridge processes are independent of the X-factors (i.e.,
the macroeconomic factors); and hence that the information processes are independent
of one another. Finally, we assume that the market filtration is generated collectively by
the information processes. For each value of k the sigma-algebra Fk is generated by the
random variables {ξαij}0≤i≤j≤k.

Thus, the filtration is not simply “given”, but rather is modelled explicitly. It is
straightforward to verify that for each value of α the process {ξαij} has the Markov
property. The proof follows the pattern of the continuous-time argument. This has the
implication that the conditional expectation of a function of the market factors Xα

j ,
taken with respect to Fi, can be reduced to a conditional expectation with respect to the
sigma-algebra σ(ξαij). Thus, the history of the process {ξαnj}n=0,1,...,i can be neglected,
and only the most “recent” information, ξαij , needs to be considered in taking the con-
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ditional expectation. For example, in the case of a function of a single Fj-measurable
market factor Xj , with the associated information process {ξnj}n=0,1,...,j , we obtain:

E[f(Xj)|Fi] =

∫∞
0
p(x)f(x) exp

[ tj
tj−ti

(
σxξij − 1

2σ
2x2ti

)]
dx∫∞

0
p(x) exp

[ tj
tj−ti

(
σxξij − 1

2σ
2x2ti

)]
dx

, (74)

for i ≤ j, where p(x) denotes the a priori density for Xj . In the formula above we
have presented the case of a continuous random variable taking non-negative values; the
extension to other classes of random variables is straightforward.

Now we are in a position to state how we propose to model the pricing kernel. First,
we shall assume that {πi} is adapted to the market filtration {Fi}. This is clearly a
natural assumption from an economic point of view, and is necessary for the general
consistency of the theory. This means that the random variable πj , for any fixed value of
j, can be expressed as a function of the totality of the available market information at
time j. In other words, πj is a function of the values taken, between times 0 and j, of the
information processes associated with the various market factors.

Next we make the assumption that πj (for any fixed j) depends on the values of only
a finite number of information processes. This corresponds to the intuitive idea that when
we price a contingent claim, there is a limit to the amount of information we can consider.

But this implies that expectations of the form Ei[πj ], for i ≤ j, can be computed
explicitly. Since πj can be expressed as a function of a collection of intertemporal in-
formation variables, the relevant conditional expectations can be worked out in closed
form. As a consequence, we are led to a system of tractable expressions for the discount
bond prices and the previsible money market account. We are left only with the question
of what is the correct functional form for {πi}, given the relevant market factors. If we
simply “postulate” a form for {πi}, then we say that we have a “reduced-form” model. If
we provide an economic argument that leads to a specific form for {πi}, then we say that
we have a “structural” model.

VII. Models for inflation and index-linked securities. For a more complete picture
we must regard the nominal interest rate system as embedded in a larger system that takes
into account the macroeconomic factors that inter-relate the money supply, aggregate
consumption, and the price level. We shall present a simple model in this spirit that is
consistent with the information-based approach.

To this end we introduce the following quantities. We envisage a closed economy
with aggregate consumption {ki}i≥1. Consumption takes place at discrete times, and
ki denotes the aggregate level of consumption, in units of goods and services, taking
place at time ti. We write {Mi}i≥0 for the process corresponding to the nominal money
supply, and {Ci}i≥0 for the process of the consumer price index (the “price level”). For
convenience we can regard {ki} and {Mi} as being expressed on a per capita basis. Hence
these quantities can be regarded, respectively, as the consumption and money balance
associated with a representative agent.

We assume that at each ti the agent receives a benefit from the money balance main-
tained in the economy; this is given in nominal terms by λiMi, where λi is the nominal
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liquidity benefit received by the agent per unit of money “carried” by the agent, and Mi

is the money supply, expressed on a per capita basis, at that time. The corresponding
“real” benefit (in units of goods and services) provided to the agent by the money supply
at time ti is defined by the expression

li =
λiMi

Ci
. (75)

It follows that we can think of {λi} as a kind of “convenience yield” process associated
with the money supply. Rather in the way a country will obtain a convenience yield (per
barrel) from its oil reserves, which can be expressed on a per capita basis, likewise an
economy derives a convenience yield (per unit of money) from its money supply. It is
important to note that what matters is the real benefit of the money supply, which can
be thought of effectively as a flow of goods and services emanating from the presence of
the money supply. It is possible that the “wealth” attributable to the face value of the
money may in totality be insignificant. For example, if the money supply consists of notes
issued by the government, and hence takes the form of government debt, then the per
capita wealth associated with the face value of the notes is null, since the representative
agent is also responsible (ultimately) for a share of the government debt. Nevertheless,
the presence of the money supply confers an overall positive flow of benefit to the agent. If
the money supply consists, say, of gold coins, or units of some other valuable commodity,
then the face value of the money supply will make a positive contribution to overall
wealth, as well as providing a liquidity benefit.

Our goal is to obtain a consistent structural model for the pricing kernel {πi}i≥0. We
assume that the representative agent gets utility both from consumption and from the
real benefit of the money supply in the spirit of Sidrauski 1969. Let U(x, y) be a standard
bivariate utility function U : R+×R+ → R, satisfying Ux > 0, Uy > 0, Uxx < 0, Uyy < 0,
and UxxUyy > (Uxy)2. Then the objective of the representative agent is to maximise an
expression of the form

J = E
[ N∑
n=0

e−γtnU(kn, ln)
]

(76)

over the time horizon [t0, t1, . . . , tN ], where γ is the appropriate discount rate applicable
to delayed gains in utility. For simplicity of exposition we assume a constant discount
rate. The optimisation problem faced by the agent is subject to the budget constraint

W = E
[ N∑
n=0

πn(Cnkn + λnMn)
]
. (77)

HereW represents the total per capita wealth, in nominal terms, available for consumption
related expenditure over the given time horizon. The agent can maintain a position in
money, and “consume” the benefit of the money; or the money position can be liquidated
(in part, or in whole) to purchase consumption goods. In any case, we must include the
value of the benefit of the money supply in the budget. Since the presence of the money
supply “adds value”, we need to recognise this value as a constituent of the budget. The
budget includes also any net initial funds available, together with the value of expected
income (e.g., derivable from labour or natural resources) over the relevant period.
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The fact that the utility depends on the real benefit of the money supply, whereas
the budget depends on the nominal value of the money supply, leads to a fundamental
relationship between the processes {ki}, {Mi}, {Ci}, and {λi}. Introducing a Lagrange
multiplier µ, after some re-arrangement we obtain the associated unconstrained optimi-
sation problem, for which the objective is to maximise the following expression:

E
[ N∑
n=0

e−γtnU(kn, ln)− µ
N∑
n=0

πnCn(kn + ln)
]
. (78)

A straightforward argument then shows that the solution for the optimal policy (if it
exists) satisfies the first order conditions

Ux(kn, ln) = µeγtnπnCn, (79)

and
Uy(kn, ln) = µeγtnπnCn, (80)

for each value of n in the relevant time frame, where µ is determined by the budget
constraint. As a consequence we obtain the fundamental relation

Ux(kn, λnMn/Cn) = Uy(kn, λnMn/Cn), (81)

which allows us to eliminate any one of the variables kn, Mn, λn, and Cn in terms
of the other three. In this way, for a given level of consumption, money supply, and
liquidity benefit, we can work out the associated price level. Then by use of (79), or
equivalently (80), we can deduce the form taken by the nominal pricing kernel, and hence
the corresponding interest rate system. We also obtain thereby an expression for the
“real” pricing kernel {πiCi}.

We shall take the view that aggregate consumption, the liquidity benefit rate, and
the money supply level are all determined exogenously. In particular, in the information-
based framework we take these processes to be adapted to the market filtration, and
hence determined, at any given time, by the values of the information variables upon
which they depend. The theory outlined above then shows how the values of the real
and nominal pricing kernels can be obtained, at each time, as functions of the relevant
information variables.

It will be useful to have an explicit example in mind, so let us consider a standard
“log-separable” utility function of the form

U(x, y) = A ln(x) +B ln(y), (82)

where A and B are non-negative constants. From the fundamental relation (81) we im-
mediately obtain

A

kn
=
B

ln
, (83)

and hence the equality

knCn =
A

B
λnMn. (84)

Thus, in the case of log-separable utility we see that the level of consumption, in nominal
terms, is always given by a fixed proportion of the nominal liquidity benefit obtained
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from the money supply. For fixed values of λn and kn, we note, for example, that an
increase in the money supply leads to an increase in the price level.

One observes that in the present framework we derive an expression for the consumer
price index process. This contrasts with current well-known methodologies for pricing
inflation-linked securities (see, e.g., Hughston 1998, Jarrow & Yildirim 2003) where the
form of the consumer price index is specified on an exogenous basis.

The quantity knCn/Mn is commonly referred to as the “velocity” of money. It mea-
sures, roughly speaking, the rate at which money changes hands, as a percentage of
the total money supply, as a consequence of consumption. Evidently, in the case of a
log-separable utility (82), the velocity has a fixed ratio to the liquidity benefit. This is a
satisfying conclusion, which shows that even with a relatively simple assumption about
the nature of the utility we are able to obtain an intuitively natural relation between the
velocity of money and the liquidity benefit. In particular, if liquidity is increased, then a
lower money supply will be required to sustain a given level of nominal consumption, and
hence the velocity will be increased as well. The situation when the velocity is constant
leads to the so-called “quantity” theory of money, which in the present approach arises
in the case of a representative agent with log-separable utility and a constant liquidity
benefit.

It is interesting to note that the results mentioned so far, in connection with log-
separable utility, are not too sensitive to the choice of the discount rate γ, which does
not enter into the fundamental relation (81). On the other hand, γ does enter into the
expression for the nominal pricing kernel; in particular, in the log-separable case we obtain
the following expression for the pricing kernel:

πn =
Be−γtn

µλnMn
. (85)

Hence, in the log-separable utility theory we can see explicitly the relation between the
nominal money supply and the term structure of interest rates.

Consider now a contingent claim with the random nominal payoff Hj at tj . The value
of the claim at t0 in the log-separable utility model is given by the following formula:

H0 = λ0M0e−γtj E
[
Hj

λjMj

]
. (86)

One sees two different influences on the value of H0. First one has the discount factor; but
equally one sees the effect of the money supply. For a given level of the liquidity benefit
(i.e., for constant λj), an increase in the likely money supply at time tj will reduce the
value of H0. This example illustrates how market perceptions of the direction of future
monetary policy can affect the valuation of contingent claims. In particular, the value of
the money supply Mj at tj will be given as a function of the best available information
at that time concerning future random factors affecting the economy. The question of
how best to model the money supply process {Mi} takes us outside of the realm of pure
mathematical finance, and into the territory of macroeconomics and, ultimately, political
economics. It is interesting to note therefore that an increase in the liquidity benefit rate
has the same practical effect on present valuations as an increase in the money supply
itself.
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A striking feature of the separable log-utility example is that the consumption process
does not enter into the valuation formulae for financial claims. In that case, therefore,
one can argue that inflation is a purely monetary phenomenon, insofar as expectations
affect present valuations. But for more general utility functions this is not the case. Let
us consider, for example, the case of a separable power utility function, writing

U(x, y) =
A

p
xp +

B

q
yq, (87)

where p, q ∈ (−∞, 1) \ {0}. Then a calculation analogous to the previous one shows that
the consumer price index is given in this situation by

Cn =
(
A

B

)1/(1−q)
λnMn

k
(1−p)/(1−q)
n

. (88)

Thus in the case of power utility the dependence of the price index on consumption,
although always an inverse relation, depends, on the ratio of the coefficients of relative
risk aversion associated with real consumption and the money supply benefit. The cor-
responding expression for the nominal pricing kernel is

πn =
B

1
1−q

A
q

1−q

e−γtn k
q

1−q (1−p)
n

µλnMn
. (89)

It follows that the value H0 at time t0 of a contingent claim with the random payoff Hj

at time tj is given by the following formula:

H0 =
λ0M0

k
q(1−p)/(1−q)
0

e−γtj E

[
Hj k

q(1−p)/(1−q)
j

λjMj

]
. (90)

In this situation we see that the valuation depends not only on expectations concerning
the money supply, but also on the level of consumption.
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