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Abstract. The aim of this paper is to introduce a spectral sequence that converges to the
cobordism groups of orbifolds with given isotropy representations. In good cases the E1-term of
this spectral sequence is given by a certain cobordism group of orbibundles over purely ineffective
orbifolds which can be identified with the bordism group of the classifying space of the Weyl
group of a finite subgroup of O(n). We use this spectral sequence to calculate some cobordism
groups of orbifolds for low dimensions, and in particular, we show that every three dimensional
effective oriented orbifold, or even only locally oriented orbifold, bounds. And although every
two dimensional effective oriented orbifold bounds, RP2 is the generator of the second cobordism
group of locally oriented orbifolds.

Introduction. Orbifolds, originally introduced as V -manifolds by Satake, and named
this way by Thurston, are useful generalizations of manifolds, locally they look like the
quotient of euclidean space by the action of a finite group. Orbifolds have been used
for some time in geometry and topology and provide a broad example of objects with
inner symmetry, and therefore, their appearance and usefulness in moduli problems like
Gromov-Witten theory. Recently they have gained more popularity due to their use in
theoretical physics. Their “stringy” properties have just started to be understood and the
purpose of this work is to contribute to the study of orbifolds from the classical realm of
algebraic topology by adapting techniques from equivariant cobordism.

In [5], K. Druschel started the study of the cobordism groups of effective oriented or-
bifolds by introducing a complete set of invariants that determine the oriented cobordism
class up to torsion. These generalized Pontrjagin numbers are used, for example, to prove
that any odd dimensional oriented effective orbifold rationally bounds, and unlike in the
manifold case, there is a 4k+2 dimensional oriented effective orbifold that does not bound
rationally. As in the nonequivariant case, these numbers are used to give generators for
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the rational orbifold cobordism ring as a free algebra over Ω∗ ⊗Q. To study the torsion,
K. Druschel in [6] considers cobordism groups with restrictions on the set of local groups
to show that every two and three dimensional effective oriented orbifold bounds.

Generalizing techniques introduced by Conner and Floyd [3], we construct a spectral
sequence that can be used to calculate cobordism groups of orbifolds. In low dimensions,
the knowledge of the finite groups that can appear as isotropy groups of orbifolds, allow us
to give geometric arguments to calculate some of these cobordism groups, in particular we
can explain K. Druschel’s results on three dimensional oriented orbifolds as the collapse
of a spectral sequence at the E2-level.

A complete description of the cobordism ring of oriented or locally oriented orbifolds
is still unknown, but when we consider orbifolds with only isotropy groups of odd or-
der, there is a complete description of the corresponding ring in terms of usual bordism
theory [1].

This paper is organized as follows. In section one we describe the necessary back-
ground on orbifolds. Section two introduces the main calculational tools, families of local
representations and cobordism groups of orbifolds with restricted local representations.
In the spirit of [3], these cobordism groups with restricted local representations fit into a
long exact sequence. By adding extra conditions on our families, the relative term in this
long exact sequence can be computed in terms of usual bordism theory. By constructing
an exhausting sequence of families, our spectral sequence is introduced.

By analyzing the differentials of this spectral sequence we obtain that in dimension
two and three it collapses at the E2-level. From this, and the fact that every two and three
dimensional oriented manifold bounds, we obtain the corresponding result for effective
oriented orbifolds. Following similar arguments we conclude that every three dimensional
effective locally oriented orbifold bounds, and that RP2 represents the only non-trivial
cobordism class of locally oriented two dimensional effective orbifolds.
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percio for their interest and helpful conversations about this work, the organizers of
the Algebraic Topology: Old and New; M. M. Postnikov Memorial Conference, Będlewo,
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tion of Professor Ralph Cohen to whom the author owes many hours of guidance and
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This paper is dedicated to the memory and family of Hildebrando Urdinola whose
tragic death took us by surprise and who we all remember with love.

1. Preliminaries. The building blocks of orbifolds are representations.

Notation 1. Given an n-dimensional orthogonal representation (G, ρ) of a finite
group G, where ρ denotes the corresponding homomorphism G → O(n), we denote by
V (ρ), Rn with the action given by ρ, and by S(ρ) and D(ρ) the corresponding sphere
and disk. The representation determines a conjugation class in O(n) and when the re-
presentation is faithful, i.e. ρ is injective, if no confusion arises, we will identify G with a
subgroup of O(n).
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Let X be a paracompact Hausdorff topological space.

Definition 1.1. An n-dimensional orbifold chart on X is a triple (U,G,U), where U
is a manifold, G is a finite group acting smoothly on U and U is an open subset of X,
homeomorphic to U/G. We call π the natural projection π : U → U/G ∼= U .

Definition 1.2. An embedding of charts

(U,G,U) ↪→ (V ,H, V )

is a differentiable embedding U ↪→ V that is equivariant with respect to a monomorphism
G ↪→ H, that preserves the kernel of the actions.

Definition 1.3. Two charts (U,G,U) ↪→ (V ,H, V ) are compatible if for every point in
U ∩ V , there exists a chart (W,K,W ) with embeddings of charts

(U,G,U) (V ,H, V )

(W,K,W )
3 S
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Definition 1.4. An orbifold atlas on X is a family of charts (Uα, Gα, Uα) that is com-
patible and covers X. An orbifold structure on X is just an equivalence class of orbifold
atlases, where two atlases are equivalent if there is a zig-zag of common refinements1. We
will denote an orbifold structure on X by calligraphic letters, like X , and the topological
space X will be called the underlying space and will be denoted by |X |.

Example 1.5. A manifold M with an action of a finite group G gives rise to an orbifold
that we will denote by [M/G], it has an atlas with only one chart. In a more general
vein, if a compact Lie group acts on a manifold with finite stabilizers, then the quotient
space can be endowed with an orbifold structure. Charts can be constructed with the
slice theorem for differentiable actions.

Around each point we can linearize the actions by using the exponential map, and
therefore any orbifold has an atlas consisting of linear charts, by which we mean, charts of
the form (Rn, G, U), where G acts on Rn via an orthogonal representation ρ : G ↪→ O(n)
and Rn/G ∼= U .

Given a point x ∈ X, take a chart (U,G,U) around x, let x ∈ U be a lift of x. Then
we define the isotropy group of x to be,

Gx = {g ∈ G | gx = x}

Different lifts of x give conjugate subgroups of G and different choices of charts give
isomorphic groups. A point x such that Gx 6= {e} is called a singular point, and an
orbifold without singular points is just a manifold.

Again, by the slice theorem for smooth actions, we have at each point a well de-
fined representation of the isotropy group Gx that gives a chart around x. We call this
representation (Gx, ρx), the local representation at x.

1I would like to thank Yael Karshon for pointing out to me the subtleties of this part of the
definition [8].
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A local orientation of an orbifold is a choice of an orientation of V (ρx) that makes
the action of Gx orientation preserving, this induces orientations on all smaller charts.
This is equivalent to identifying Gx with a subgroup of SO(n). As with manifolds, an
orientation is just a choice of local orientations in such a way that the transition functions
are orientation preserving. For an oriented orbifold, the local representation gives a map
ρ : Gx ↪→ SO(n), well defined up to conjugation by elements of SO(n).

2. Families of local representations. In the early sixties Conner and Floyd showed
the effectiveness of bordism methods in the analysis of transformation groups. In their
monograph [2] and in a later paper [3], they introduced a framework for the study of
actions of finite groups on compact manifolds. The basic idea is to analyze the cobordism
groups by the information provided by fixed points and normal bundles. Their main
calculational tools are families of subgroups and fixed point homomorphisms.

In this section we adapt these techniques and introduce families of local representa-
tions, cobordism groups of orbifolds with restricted local representations and a long exact
sequence relating them. This is much in the spirit of [3] and [9].

Recall that a family of subgroups of G is a collection of subgroups that is closed
under conjugation and subgroups. The analogous notion that we think is the correct
generalization to orbifolds is,

Definition 2.1. A family of local representations F is a collection of finite dimensional
representations of finite groups that satisfies the following conditions:

i) It is closed under isomorphism of representations.
ii) If (G, ρ) ∈ F is a representation of the finite group G, then all the representations

(Gx, ρx) of the isotropy groups for x ∈ [V (ρ)/G] belong to F .
iii) (G, ρ) ∈ F if and only if (G, ρ⊕ id) ∈ F , where ρ⊕ id is the direct sum of ρ with

the trivial representation.

A family of local representations comes with a natural partial order (H, τ) ≤ (G, ρ) if
and only if (H, τ) appears among the local representations of the linear orbifold [V (ρ)/G].
In particular H is isomorphic to a subgroup of G, and ρ|H = τ .

Remark 2.2. The intersection of families is a family, and every collection of representa-
tions is contained in a family. Therefore we can talk about the family generated by a set
of representations.

We do not require the families to be closed under restrictions for subgroups, just
under the partial order described above, this is enough for our purposes and makes the
calculations easier.

By property iii) a family F has elements in each dimension, we denote by F(n) the
n-dimensional elements of F .

Cobordism groups of orbifolds with restricted local representations. Now we will introduce
cobordism groups with given local representations. The main theme of this work is to
study the change in the cobordism groups when we increase the allowed local represen-
tations.



COBORDISM OF ORBIFOLDS 145

Definition 2.3. Given two families of local representations F ⊇ F ′, we say that X is
an (F ,F ′)-orbifold if every local representation of X belongs to F , and all local repre-
sentations of points on the boundary belong to F ′.

Condition iii) of definition 2.1 tells us that if X is an F-orbifold, then X × I is also,
and that the boundary of an (F ,F ′)-orbifold is an F ′-orbifold. For example if [V (ρ)/G]
is a F-orbifold then [D(ρ)/G] and [S(ρ)/G] are also F-orbifolds.

Definition 2.4. We say that an (F ,F ′)-orbifold Xn bounds, if there exists Wn+1, an
(F ,F)-orbifold with Xn1 , an embedded, (F ,F ′)-orbifold, such that Xn1 and Xn are orbi-
fold diffeomorphic, and such that for all x ∈ ∂Wn+1\Xn1 , (Gx, ρx) ∈ F ′. If the orbifolds
are oriented we require Xn1 to have the induced orientation from Wn+1.

We say Xn is cobordant to Xn1 if the disjoint union Xn ∪ −Xn1 bounds.

The necessary tools from differential topology, like the existence of collaring neigh-
borhoods, the glueing by orientation reversing diffeomorphisms of open sets and the
straightening angles, are available, and as in the equivariant case, we have that cobor-
dism defines an equivalence relation on the class of (F ,F ′)-orbifolds.

Definition 2.5. We define On(F ,F ′) to be the group of cobordism classes of n dimen-
sional oriented and effective (F ,F ′)-orbifolds under the operation of disjoint union.

If F ′ is empty, On(F ,F ′) is the group of cobordism classes of closed orbifolds where
all local representations are in F , we denote this group by On(F), the F-orbifolds. In
particular if F is the trivial group, we have the cobordism classes of all manifolds.

Every F ′-orbifold is an F-orbifold, and similarly every F-orbifold is an (F ,F ′)-
orbifold. Together with taking boundary we have the natural maps,

I : On(F ′)→ On(F),

L : On(F)→ On(F ,F ′),
∂ : On(F ,F ′)→ On−1(F ′),

which fit in a long exact sequence,

· · · → On(F ′)→ On(F)→ On(F ,F ′)→ On−1(F ′)→ · · · (*)

The point of this construction is that in good cases it is possible to identify the relative
term of this long exact sequence with some cobordism group of orbibundles.

An element X ∈ On(F ,F ′) is zero if and only if it is an F-orbifold and there is an
F ′-orbifold, with the same boundary, in such a way that when you glue them along the
common boundary they form the boundary of an F-orbifold. In particular if X does not
have boundary, then it is zero if and only if it is cobordant to an F ′-orbifold with a
cobordism that uses only elements in F . For example,

Lemma 2.6. Let Xn be an (F ,F ′)-orbifold, let Xn1 be a compact orbifold, regularly em-
bedded in the interior of Xn. Suppose that all the isotropy groups of points x ∈ Xn\Xn1
belong to F ′. Then Xn = Xn1 in On(F ,F ′).
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Reduction to the singular set. Now suppose that (H, ρ) is an element of F , we denote
by X ρ, the ρ-singular set of X ,

X ρ = {x ∈ X | (H, ρ) ≤ (Gx, ρx)}

This is the analogue of fixed points, but in general X ρ is not necessarily an orbifold,
due to the fact that there could be different subgroups of Gx isomorphic to H that are
conjugate in O(n). Therefore X ρ is only a union of suborbifolds. But when ρ is maximal
in the local representations of X ,

X ρ = {x ∈ X | (H, ρ) ' (Gx, ρx)}

is an orbifold. Charts can be given in the following way: for x ∈ X ρ and linear chart
(Ux, Gx) of X compatible with the orientation, take charts, ((Ux)Gx , Gx) with Gx acting
trivially. Where (Ux)Gx is the fixed point subspace of Gx. The change of coordinate maps
for X ρ is given by restricting the overlap maps for X .

If X is compact, the maximality of ρ implies that X ρ is also compact. Now we will
define the normal orbivector bundle νρ → X ρ. Given x ∈ X ρ, and a linear chart (Ux, Gx)
of X around x, then

TUx |(Ux)Gx = T (Ux)Gx ⊕ Vx

where Vx is the normal bundle of (Ux)Gx in Ux, since we are using linear charts we can
identify Vx with the trivial bundle (Ux)Gx×(Ux)Gx

⊥
. Note that this bundle has an action

of Gx that covers the trivial action on (Ux)Gx . We can patch these bundles using the
overlap maps from X to get the normal orbivector bundle νρ → X ρ.

As representations, ρ decomposes into a sum ρ̂⊕ id⊕ · · · ⊕ id︸ ︷︷ ︸
k

, where ρ̂ has no trivial

summands and k is the multiplicity of the trivial representation, i.e. the dimension of
the subspace fixed under the action of G, k is called the degree of the representation and
therefore the rank of the orbivector bundle νρ is n− k.

The decomposition ρ ∼= ρ̂⊕ id⊕ · · · ⊕ id︸ ︷︷ ︸
k

induces a factorization

G
ρ̂ //

ρ

##GGGGGGGGG O(n− k)
_�

��
O(n)

where O(n− k)→ O(n) is the natural inclusion.
Now, a calculation shows that the structure group of the normal orbibundle νρ re-

duces to NO(n−k)ρ̂(H), the normalizer in O(n − k) of the image of ρ̂ : G → O(n − k).
Summarizing

Theorem 2.7. Given an n-dimensional compact orbifold X , and a maximal element,
(H, ρ) of the local representations, the ρ-singular set, X ρ is a compact suborbifold of X
and the normal bundle νρ → X ρ is an orbivector bundle with structural group NO(n−k)H,
where k is the dimension of the fixed points subspace of Rn under the action of H. Even
more, X ρ, is a purely ineffective orbifold [7] with trivial stabilizer H.
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The following theorem follows from the previous theorem, the existence of tubular
neighborhoods and lemma 2.6. It is the key result of this section.

Theorem 2.8. Suppose that F ⊃ F ′ are families which differ at dimension n by the
representation (H, ρ), i.e. F(n) − (H, ρ) = F ′(n). Then the oriented cobordism group
On(F ,F ′) is isomorphic to the cobordism group of orbibundles over purely ineffective
orbifolds, where the orbibundles have an oriented total space, the fiber representation is
the non-trivial summand of ρ and the ρ-singular set is the zero section.

For a local represenation (H, ρ) not necessarily maximal, we can still define

X ρ = {x ∈ X | (H, ρ) ' (Gx, ρx)}

and we have a similar statement, but due to the lack of maximality we do not have
compactness.

Since X ρ is purely ineffective orbifold, the underlying space is a manifold. The tran-
sition functions of the orbivector bundle νρ are elements of NO(n−k)ρ̂(H) defined up to
elements of H, now NO(n−k)ρ̂(H) acts on Rn−k and NO(n−k)ρ̂(H)/ρ̂(H) acts effectively
on Rn−k/H, therefore, we can use the same set of transition functions, seen as elements
of NO(n−k)ρ̂(H)/ρ̂(H), to construct an NO(n−k)ρ̂(H)/ρ̂(H)-principal bundle over the un-
derlying space, which is a manifold.

Remark 2.9. For X , an effective orbifold, the orbibundle νρ → X ρ is determined by the
associated principal NO(n−k)ρ̂(H)/ρ̂(H)-bundle over the underlying space |X ρ| and the
principal H-bundle NO(n−k)ρ̂(H)→ NO(n−k)ρ̂(H)/ρ̂(H).

If the original orbifold is oriented, then we do not necessarily have that the singular
set is oriented, or that the normal bundle is oriented, we only have that TX ρ ⊕ νρ is
oriented. The transition functions for the normal bundle and the overlap maps for the
singular set come from the restriction of these transition functions to subspaces and that
is were the orientability can be lost. However, in the case when the representations have
degree zero, the total space of the normal bundle is oriented, and the structure group is
trivial.

Now we come to the main results of this section. When the families are close enough,
the relative term in the long exact sequence becomes computable in terms of the bordism
group of the classifying space of the Weyl groups of the representations in F − F ′.

Theorem 2.10. Suppose that F ⊃ F ′ are families which differ at dimension n by
the representation (H, ρ), i.e. F(n) − (H, ρ) = F ′(n). Then the oriented cobordism
group On(F ,F ′) is isomorphic to the twisted cobordism group Ωk,t(BNO(n−k)ρ̂(H)/ρ̂(H))
of pairs (M,f), where M is a closed compact k-dimensional manifold and f : M →
BNO(n−k)ρ̂(H)/ρ̂(H) is a map such that TM ⊕ f∗Γ is oriented. Γ is the universal
NO(n−k)ρ̂(H)/ρ̂(H) bundle over BNO(n−k)ρ̂(H)/ρ̂(H).

Proof. By theorem 2.8, the relative group On(F ,F ′) can be identified with a cobor-
dism group of orbibundles over purely ineffective orbifolds, where the orbibundles have
an oriented total space, the fiber representation is the non-trivial summand of ρ and
the ρ-singular set is the zero section. Moreover these orbibundles have structural group
NO(n−k)ρ̂(H), and we can consider an associated principal NO(n−k)ρ̂(H)/ρ̂(H)-bundle
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over the underlying space. Since the underlying space of a purely ineffective orbifold is a
manifold, by classifying this principal bundle we get an element of

Ωk,t(BNO(n−k)ρ̂(H)/ρ̂(H))

where the twisting comes from the fact that we are only requiring the total space of the
orbibundle to be oriented.

If NO(n−k)ρ̂(H) ≤ SO(n− k) then, νρ is an oriented orbivector bundle and from the
orientation of X we get an orientation of X ρ thus

On(F ,F ′) ' Ωk(BNO(n−k)ρ̂(H)/ρ̂(H))

and we get the usual cobordism group with oriented manifolds.
By the Thom-Pontrjagin theorem we have that in this case

On(F ,F ′) ' Ωk(BNO(n−k)ρ̂(H)/ρ̂(H)) ' πk(MSO ∧BNO(n−k)ρ̂(H)/ρ̂(H)+),

the stable homotopy groups of the smash product of the Thom spectrum MSO and
BNO(n−k)ρ̂(H)/ρ̂(H)+.

We call two non-empty families F ′ ⊆ F adjacent if they differ by at most one re-
presentation in each dimension and quasi-adjacent if every element in F −F ′ is maximal
in F . In a more general way, since for different maximal representations the singular sets
are closed disjoint sets, we can find disjoint tubular neighborhoods, and as before, identify
the relative cobordism group as a sum of usual bordism groups of classifying spaces.

Theorem 2.11. Suppose that F ⊃ F ′ are quasi-adjacent. Then

On(F ,F ′) '
∑

Ωkj ,t(BNO(n−kj)ρ̂(Hj)/ρ̂(Hj))

where kj is the multiplicity of the trivial representation in ρj and the sum is over all
isomorphism classes of elements (Hj , ρj) of F(n) not in F ′(n).

A spectral sequence. If {e} = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F is a sequence of families,
the corresponding long exact sequences can be interpreted as an exact couple, giving a
spectral sequence converging to O∗(F) with the E1 term given by

E1
p,q = Op+q(Fp,Fp−1).

The filtration of O∗(F) is given,

FpOn(F) := im (On(Fp)→ On(F))

and the differentials can be identified with the boundary map. The E1
p,q terms are com-

putable (at least now it is a nonequivariant problem) if the families are quasi-adjacent.
The easiest way to construct these kind of filtrations is by adding at each step a

representation of a new fixed group or use the canonical filtration given by the order ≤.

3. Orbifold cobordism in dimension 2 and 3. In this section we will use the ma-
chinery developed so far to calculate two and three dimensional cobordism groups of
oriented and locally oriented orbifolds. By carefully choosing our families we will prove
that the associated spectral sequences collapse at the E2 term. In our spectral sequence
the E1-differentials are given by the boundary map and the following is the key geometric
argument to show that it collapses.
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Lemma 3.1. If an oriented orbifold X admits an orientation reversing involution, then
it bounds.

Proof. Consider the action of Z2 on X × I given by the product of the orientation re-
versing involutions on each term. [X × I/Z2] is an oriented orbifold and the boundary is
precisely X .

To see that the spectral sequence collapses at the E2-level we will use a local version
of this idea.

Lemma 3.2. Suppose (H, ρ) is a representation of maximal degree. Also assume that there
is an α ∈ NO(n)ρ(H) that is an orientation reversing involution. Consider the action of
H o Z2 on D(ρ)× I given by

(h, α)(z, t) = (hαz, αt)

where α acts on I as multiplication by −1.
Then the boundary of [D(ρ) × I/H o Z2] contains a copy of [D(ρ)/H] and the com-

plement has the local representations of the orbifold [S(ρ)× I/H o Z2].

An easy calculation shows that the local groups of [S(ρ)×I/HoZ2] are just the local
groups of the action of the semidirect product H o Z2 on S(ρ).

Fig. 1. Fixed sets of the action of Zn o Z2 on D2 × I

In terms of our cobordism groups with restricted local representations, the previous
lemma can be rephrased in the following way:

Remark 3.3. InO({[D(ρ)×I/HoZ2]}, {[S(ρ)×I/HoZ2]}), [D(ρ)/H] and the boundary
of [D(ρ)× I/H o Z2] represent the same element.

Two dimensional oriented orbifolds. Now we will construct a sequence of families of local
representations to calculate the cobordism groups of two dimensional oriented orbifolds.
For this, we need to know the possible local representations of oriented orbifolds. These
are given by representations of cyclic groups. These representations have orientation
reversing involutions given by complex conjugation, and the action of the semidirect
product Zn o Z2 on S1 × I has two singular points with isotropy Z2.

This suggests one should take the families generated by the following representations.
F0 = {e} the trivial family. The family F1 is generated by Z2 acting on R2 by the
antipodal map. F2 the family generated by Z2 o Z2 acting on D2 × I as in lemma 3.2.

Since, in general, the action of Zn o Z2 on ∂(D2 × I) has one singular point labelled
Zn with local representation given by the rotation action, then we have F1 ⊆ F2. But
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also note that the local representations of the points of ∂(D2 × I) labeled Z2 are not
orientation preserving.

The family F3 is generated by Z2 o Z2 acting on D2 × I as in lemma 3.2 and the
representations of Zn acting on R2 by rotations. Finally, take F4 to be the family gene-
rated by the representations of Zn o Z2 acting on D2 × I as in lemma 3.2, and as before
F3 ⊆ F4.

Then the adjacency conditions are satisfied, and we will see that the associated spec-
tral sequence collapses at the E2-level. Recall that the E1-terms are given by E1

p,q =
Op+q(Fp,Fp−1) and that since the representations have degree zero, then every element
of Op+q(Fp,Fp−1) is a disk bundle over a finite set of points, i.e. a finite number of disks.

E1
4,−2 = O2(F4,F3) is zero, because the two dimensional parts of the families F3 and

F4 are the same. To see that E2
3,−1 = 0, note that every element of O2(F3,F2) is just a

finite union of disks of representations of Zn, the differential

d1 : E1
4,−1 = O3(F4,F3)→ E1

3,−1 = O2(F3,F2)

is surjective by the choice of the family F4, this is precisely the content of remark 3.3.
The two dimensional parts of the families F2 and F1 have the same orientation pre-

serving representations, and therefore E1
2,0 = O2(F2,F1) is zero. To see that E2

1,1 = 0, we
need slightly more care, as before E1

1,1 = O2(F1,F0) is generated by a disk representation
of Z2. Now attach to the orbifold [D2×I/Z2oZ2], which has three singular points labeled
Z2, a handle cylinder [D2/Z2] × I to get a three dimensional orbifold with boundary a
manifold with only one singularity labeled Z2. This orbifold is an element of O3(F2,F1)
which is sent by the differential d1 to the generator of O2(F1,F0). Therefore E2

1,1 = 0
as before. Since every two dimensional oriented manifold bounds, i.e. F0O2 = 0, and we
have seen that all FpO2/Fp−1O2

∼= E∞p,2−p = 0, we have that,

Theorem 3.4. Every two dimensional effective oriented orbifold bounds.

The proof also gives a procedure to construct the cobordism, take X × I and to each
point of singularity attach the orbifold [D2× I/Zn o Z2], this gives a cobordism between
X and an orbifold with an even number of points labeled Z2. Now these types of orbifolds
are cobordant to manifolds by attaching orbifolds of the form [D2/Z2]× I, where Z2 acts
only in the first factor as the antipodal map.

Three dimensional oriented orbifolds. Now we want to do the same in the three dimen-
sional case. This is possible because we know the local structure of a three dimensional
oriented effective orbifold. The finite subgroups of SO(3) are given by cyclic, dihedral
or the symmetries of a regular solid and the quotient orbifolds [S2/G] have underlying
space S2 with 2 or 3 cone points and are of the following form.

Theorem 3.5 (Local structure in dimension three). A three dimensional locally oriented
orbifold locally is a cone on one of the following local models.

• S2(n, n) if G is cyclic of order n.
• S2(2, 2, n) if G = Zn o Z2 is Dn, the dihedral of order 2n.
• S2(2, 3, 3) if G = T , are the symmetries of regular tetrahedron.
• S2(2, 3, 4) if G = O are the symmetries of regular cube or octahedron.
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• S2(2, 3, 5) if G = I are the symmetries of regular icosahedron or dodecahedron.

Fig. 2. Underlying spaces of the local models of three dimensional oriented orbifolds

See [4] or [10].
Note that since the dimension is odd, multiplication by −1 is an orientation reversing

involution that commutes with any element of SO(3), therefore we can consider

[D3 × I/G× Z2]

where the action is given by

(h, α)(v, t) = (hαv, αt).

The boundary of this orbifold has local representations the old ones and the ones as
in lemma 3.2. These isotropy groups are given by the semidirect products

Gv o Z2

with Gv the isotropy of an element of [S2/G]. But note that these groups are just cyclic
groups. Therefore the isotropy groups of these actions on S2 × I are given by dihedral
groups.

Fig. 3. Some fixed sets of the action of I on D3 and of I × Z2 on D3 × I

This suggests one should take the families generated by the following representations.
F0 = {e} the trivial family. The family F1, generated by the representations of Zn acting
on R3 by rotations. The family F2, generated by ZnoZ2 acting on D2×I as in lemma 3.2.

The family F3 is generated by Zn o Z2 acting on D2 × I as in lemma 3.2 and the
representations of the symmetries of the tetrahedron, octahedron and icosahedron acting
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on R3. F4 to be the family generated by the representations of the semidirect products
I × Z2, T × Z2, O × Z2 on D3 × I as in lemma 3.2.

As in the two-dimensional case, this gives an increasing sequence of families of local
representations and the adjacency conditions are satisfied. As before, we will see that the
associated spectral sequence collapses at the E2-level. E1

4,−1 = O3(F4,F3) = 0 because
F4,F3 agree on dimension 3. F4 was chosen to make the differential

d1 : E1
4,0 = O4(F4,F3)→ E1

3,0 = O3(F3,F2)

surjective, therefore E2
3,0 = 0. The two-dimensional part of F1 consists of the two-

dimensional orientation preserving representations of Zn. The differential

d1 : E1
2,1 = O3(F2,F1)→ E1

1,1 = O2(F1,F0)

is injective, since any element of O3(F2,F1) is a union of disks of dihedral representations,
the boundaries of these disks are spheres that have one singularity Zn and two Z2’s, these
spheres cannot bound in O2(F1,F0). Thus E2

2,1 = 0.
Now,

E1
1,2 = O3(F1,F0) = O3(Zn, {e}) = Ω1,t(BNO(2)Zn/Zn)

which is the cobordism group of orbivector bundles over 1-dimensional purely ineffec-
tive orbifolds, where we require the total space of the orbivector bundle to be oriented.
Since any 1-dimensional compact closed manifold is naturally oriented, this group is the
cobordism group of oriented orbivector bundles over one-dimensional purely ineffective
orbifolds, i.e.

Ω1(B(NSO(2)Zn/Zn)).

But SO(2) = S1 is commutative, thus NSO(2)Zn = S1 and

B(NSO(2)Zn/Zn) = B(S1/Zn) = BS1 = CP∞.

Since CP∞ is simply connected, Ω1(B(NSO(2)Zn/Zn)) = E1
1,2 is zero. Therefore all

the E2-terms are zero. By Rohlin’s theorem, every three dimensional oriented manifold
bounds, therefore,

Theorem 3.6 (K. Druschel). Every three dimensional effective oriented orbifold bounds.

The previous arguments can be used to study the cobordism groups of locally oriented
orbifolds. Word by word we can make the corresponding definitions and the following is
the corresponding version of theorem 2.11.

Theorem 3.7. Suppose that F ⊃ F ′ are families which differ at dimension n by the
representation (H, ρ), i.e. F(n) − (H, ρ) = F ′(n). Then the locally oriented cobordism
group of effective orbifolds

On(F ,F ′) ' Nn(BNO(n−k)ρ̂(H)/ρ̂(H))

where Nn(BNO(n−k)ρ̂(H)/ρ̂(H)) is the usual (unoriented) bordism group.

As previously shown, the same spectral sequence argument shows that every locally
oriented orbifold is cobordant to a locally oriented manifold. Now a locally oriented
manifold is just an unoriented manifold. Thom completely calculated the cobordism ring
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of manifolds as the polynomial algebra Z2[xi | i 6= 2j − 1], in particular, every three
dimensional manifold bounds, therefore

Theorem 3.8. Every three dimensional effective locally oriented orbifold bounds.

Now, N2
∼= Z2 and the generator can be taken to be RP2, a similar spectral sequence

argument allows us to conclude that every two dimensional locally oriented orbifold is
cobordant to a manifold. Although by an argument with Stiefel-Whitney numbers we
know that RP2 it is not the boundary of another manifold, we still have to prove that is
not the boundary of a locally oriented orbifold. For example it is the boundary of another
orbifold, just consider the three dimensional disk D3 mod the antipodal action. This is an
orbifold with one singular point with isotropy Z2 and its boundary is the real projective
plane. Indeed without any restriction, any orbifold is the boundary of another orbifold,
just consider X × [I/Z2], where Z2 acts by multiplying by −1.

Now, even though we are only considering two-dimensional orbifolds we need to use
families that will exhaust all possible three-dimensional orientation preserving ones to
conclude that the real projective space does not bound. Take the families generated by
the following representations: F0 = {e} the trivial family. The family F1 is generated by
the representations of Zn acting on R3 by rotations. F2 the family generated by Zn o Z2

acting on D2 × I as in lemma 3.2 and the family F3 generated by Zn o Z2 acting on
D2 × I as in lemma 3.2 and the representations of the symmetries of the tetrahedron,
octahedron and icosahedron acting on R3.

By induction, let us see that N2 → O2(Fi) is injective. By theorem 3.7, the map
N2 = O2(F0) → O2(F1) is injective if O3(F1,F0) ∼=

⊕
N1(BNO(2)Zn/Zn) → N2 is the

zero map. But the elements of the relative group, which are disk orbibundles, are sent by
the boundary map O3(F1,F0)→ N2 to manifolds fibered over the circle, such manifolds
have Euler characteristic zero and therefore cannot be cobordant as manifolds to RP2

which is the generator of N2.
Since the adjacency conditions are satisfied, the groupO3(F2,F1) is generated by disks

of representations, the boundary map sends these disks to one of the spheres described
in theorem 3.5, and these spheres with an odd number of cyclic singularities cannot be
cobordant to RP2 in O2(F1). Therefore the map N2 → O2(F2) can be factored

N2

i

�� %%KKKKKKKKKK

O3(F2,F1) ∂ // O2(F1) // O2(F2)

and is injective.
The three dimensional parts of F2 and F3 are the same and therefore O3(F3,F2) = 0

and we conclude similarly that N2 → O2(F3) is injective.

Theorem 3.9. RP2 generates the second cobordism group of effective locally oriented
orbifolds.

As discussed above, without further restrictions on the local representations of the
orbifolds that we allow, all the cobordism groups become zero. An intermediate case
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between all orbifolds and locally oriented orbifolds occurs when we restrict our groups to
be of odd order. In this case a complete description of the cobordism ring as a module
over N can be given [1].

Theorem 3.10. Denote by Nodd
∗,orb the cobordism ring of effective orbifolds with isotropy

groups of odd order, then

Nodd
∗,orb

∼= N∗
⊕
H odd

⊕
Rep∗(H)

Ndegree(ρ)(BNO(∗−degree(ρ))H/H)

where the sum extends over all groups of odd order and all faithful representations.

In particular, since all two dimensional faithful representations are given by cyclic
groups and have degree zero, then

Nodd
2,orb

∼= N2

⊕
n odd

N0(BNO(2)Zn/Zn) ∼=
⊕

n odd

Z2

where the generators can be taken to be the orbifold real projective spaces RP2/Zn. In
the three dimensional case, the only odd groups that can appear as isotropy groups of
three dimensional orbifolds are the cyclic groups, thus

Nodd
3,orb

∼=
⊕
n odd

N1(BNO(2)Zn/Zn)

An application of the Serre spectral sequence shows that each of these groups is isomor-
phic to N1(BO(2)), which is Z2, therefore

Nodd
3,orb

∼=
⊕

n odd

Z2.
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