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E-mail: antonyan@unam.mx

ERIK ELFVING

Department of Mathematics and Statistics, P.O. Box 68 (Gustaf Hällströmin katu 2b)
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Abstract. We prove that if G is a locally compact Hausdorff group then every proper G-ANR

space has the G-homotopy type of a G-CW complex. This is applied to extend the James-

Segal G-homotopy equivalence theorem to the case of arbitrary locally compact proper group

actions.

1. Introduction. In this paper we study equivariant absolute neighborhood retracts or
G-ANR’s from the homotopical point of view, where the acting group G is an arbitrary
locally compact Hausdorff group and the actions are proper in the sense of R. Palais [32].
We prove the following:

Main Theorem 1.1. Let G be a locally compact group and X a G-ANR. Then X has
the G-homotopy type of a G-CW complex.

For G a compact group the theorem is proved in [9]. The reader can find in [9] also
some additional relevant information concerning the earlier particular cases of this result.

Our proof of Main Theorem relies on the so called Approximate Slice Theorem estab-
lished in [6], which enables us to generalize our proof in [9] to proper actions of arbitrary
locally compact groups. On this base we first prove the key Lemma 5.1 which asserts that
every G-ANR has arbitrarily fine G-normal covers.
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The G-nerve of such a cover is just the analogue of Waner’s G-simplicial space (see
[35]) associated with a tube-segmental G-cover. However, in our case the acting group
G is arbitrary locally compact (not necessarily Lie) and its quotients G/H, which are
the “G-vertices” of a G-nerve, may have bad local structure in general; this leads in
turn to a bad local structure of the proper G-nerve. The Approximate Slice Theorem
just enables us to always work with only those “G-vertices” G/H which are smooth
proper G-manifolds (the corresponding compact subgroup H ⊂ G is called large in the
text), and this fact finally guarantees that the relevant G-nerves have the G-homotopy
type of a G-CW complex. More precisely, we prove in Proposition 5.2 that the G-nerves
of G-normal covers dominate arbitrary closely the given G-ANR space, and then using
the G-manifold structure of the “G-vertices”, we prove in Theorem 5.3 that these G-
nerves have the G-homotopy type of a G-CW complex. The final step in our argument is
Theorem 5.5 which claims that a G-space, which is G-dominated by a G-CW complex,
has the G-homotopy type of a G-CW complex.

In Proposition 4.2 we show that the topology of the G-nerve behaves nicely with
respect to the adjunction space construction. This enables one to represent the G-nerve
as a limit of a filtration in which each of the spaces is obtained from the previous one by
the adjunction space construction. This is one of the key points in the proof of the above
mentioned Theorem 5.3.

As a corollary of our Main Theorem and Equivariant Whitehead Theorem (see Theo-
rem 5.4 below) we obtain the following extension of the James-Segal Theorem [24], [25]
to proper actions of arbitrary locally compact groups:

Corollary 1.2. Let G be a locally compact group and f : X → Y a G-map between
two G-ANR spaces. Then f is a G-homotopy equivalence if and only if for every closed
subgroup H ⊂ G the restriction fH : XH → Y H to the H-fixed point sets is an ordinary
homotopy equivalence.

Corollary 1.3. Let G be a locally compact group and X a G-ANR space such that for
every compact subgroup H ⊂ G, the H-fixed point set XH is contractible. Then X is a
G-AR.

2. Preliminaries. In this paper the letter G will denote a locally compact Hausdorff
topological group, unless stated otherwise. By e we denote the unit element of G.

By a G-space we mean a completely regular Hausdorff topological space X together
with a fixed continuous action G × X → X of the topological group G on X. We shall
denote by gx the image of the pair (g, x) ∈ G×X under the action.

If X is a G-space, then for a subset S ⊂ X and a subgroup H ⊂ G, the H-hull (or
H-saturation) of S is defined by H(S) = {hs | h ∈ H, s ∈ S}. If S is the one point set
{x}, then the H-hull H(S) is denoted by H(x) and called the H-orbit of x. The H-orbit
space is denoted by X/H.

A subset S ⊂ X is called H-invariant if it coincides with its H-hull, i.e., S = H(S).
For any x ∈ X, the subgroup Gx = {g ∈ G| gx = x} is called the stabilizer (or stationary
subgroup) at x. If Gx = G then x is called a G-fixed point. Since we assume that G-spaces
are Hausdorff spaces (T1 would suffice here), the isotropy subgroups are closed subsets
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of G. For a subgroup H ⊂ G, the set XH = {x ∈ X| H ⊂ Gx} is called the H-fixed point
set of X.

If X and Y are two G-spaces, then a continuous map f : X → Y is called a G-map
or an equivariant map if f(gx) = gf(x) for every x ∈ X and g ∈ G. If G acts trivially
on Y then we use the term “invariant map” instead of “equivariant map”. Any G-map
f : X → Y sends the H-fixed point set XH into the H-fixed point set Y H . We shall
denote by fH the restriction f |XH : XH → Y H .

A homotopy F : X × I → Y is called a G-homotopy if F (gx, t) = gF (x, t) for every
x ∈ X, g ∈ G and t ∈ I. Two G-maps f0, f1 : X → Y are G-homotopic if there exists a
G-homotopy F : X × I → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ X.
We write f0 'G f1 if f0 and f1 are G-homotopic. Two G-spaces X and Y are G-homotopy
equivalent if there exist G-maps f : X → Y and g : Y → X such that g ◦ f 'G idX and
f ◦ g 'G idY .

Let γ be an open cover of Y . Then a G-homotopy F : X× I → Y is said to be limited
by γ, or simply, a γ-G-homotopy provided for any x ∈ X, there exists Γ ∈ γ such that
F (x, t) ∈ Γ for all t ∈ I. In such a case F (·, 0) and F (·, 1) are called γ-G-homotopic
G-maps.

We shall say that a G-space X is γ-G-dominated by a G-space Y if there exist G-maps
f : X → Y and ϕ : Y → X such that ϕf is γ-G-homotopic to the identity map idX of X.

If X is a G-space and A a closed G-invariant subset of X, the inclusion i : A → X

is called a G-cofibration if it has the G-homotopy extension property for all G-maps
f : X → Y and G-homotopies ϕ : A × I → Y with ϕ(a, 0) = f(a) for a ∈ A. More
precisely, given f and ϕ, there exists a G-homotopy φ : X × I → Y such that φ|A×I = ϕ

and φ(x, 0) = f(x). For basic properties of G-cofibrations see, for example, [13] and [16].
For a closed subgroup H ⊂ G, by G/H we will denote the G-space of cosets {gH |

g ∈ G} under the action induced by left translations.
A compatible metric ρ on a G-space X is called invariant or G-invariant if ρ(gx, gy) =

ρ(x, y) for all g ∈ G and x, y ∈ X.
In 1961 Palais [32] introduced the very important concept of a proper action of an

arbitrary locally compact group G and proved that for such actions slices still exist at
each point, whenever G is a Lie group. This makes it possible to extend a substantial
part of the theory of compact Lie transformation groups to locally compact ones.

Let X be a G-space. Two subsets U and V in X are called thin relative to each other
[32, Definition 1.1.1] if the set

〈U, V 〉 = {g ∈ G | gU ∩ V 6= ∅}

has compact closure in G. A subset U of a G-space X is called small if every point in
X has a neighborhood thin relative to U . A G-space X is called proper (in the sense of
Palais) if every point in X has a small neighborhood. Each orbit in a proper G-space
is closed, and each stabilizer is compact [32, Proposition 1.1.4]. Furthermore, if X is a
compact proper G-space, then G has to be compact as well.

Clearly, if G is compact, then every G-space is proper. In the case when G is discrete
and X is locally compact, the notion of a proper action is the same as the classical notion
of a properly discontinuous action. When G = R, the additive group of the reals, proper
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G-spaces are precisely the dispersive dynamical systems with regular orbit space (see [10,
Ch. IV]).

Important examples of proper G-spaces are the coset spaces G/H with H a compact
subgroup of a locally compact group G. Other interesting examples can be found in [1],
[6] and [26]. The reader is referred to [8] for a discussion of the relationship between
Palais proper G-spaces and Bourbaki proper G-spaces.

In the present paper we are especially interested in the class G-M of all metrizable
proper G-spaces X that admit a G-invariant metric. Observe that in this case the orbit
space X/G is metrizable. Indeed, if ρ is a G-invariant metric on a proper G-space X,
then the formula

ρ̃(G(x), G(y)) = inf{ρ(x′, y′) | x′ ∈ G(x), y′ ∈ G(y)}

defines a metric ρ̃, compatible with the quotient topology of X/G [32, Theorem 4.3.4].
It is well-known that for G a compact group, the class G-M coincides with the class

of all metrizable G-spaces (see e.g., [3, Proposition 5]). A fundamental result of R. Palais
[32, Theorem 4.3.4], states that if G is any Lie group, then G-M includes all separable
metrizable proper G-spaces. The question of whether the separability can be omitted in
this Palais’ result, still remains open (even for G = R and G = Z). We refer to [8] for a
further discussion of this problem.

A G-space Y is called a G-equivariant absolute neighborhood extensor (for the class
G-M) (notation: Y ∈ G-ANE) if for any closed invariant subset A ⊂ X of a G-space
X ∈ G-M and any G-map f : A → Y , there exist an invariant neighborhood U of A
in X and a G-map ψ : U → Y such that ψ|A = f . If, in addition, one can always take
U = X, then we say that Y is an G-equivariant absolute extensor (notation: Y ∈ G-AE).
The map ψ is called a G-extension of f .

A G-space Y ∈ G-M is called a G-equivariant absolute neighborhood retract (for the
class G-M) (notation: Y ∈ G-ANR) provided that for any closed G-embedding Y ↪→ X

in a G-space X ∈ G-M, there exists a G-retraction r : U → Y , where U is an invariant
neighborhood of Y in X. If, in addition, one can always take U = X, then we say that
Y is a G-equivariant absolute retract (notation: Y ∈ G-AR).

We note that, in general, a metrizable G-ANE space Y need not be a G-ANR, because
it may not belong to the class G-M. But if Y ∈ G-M and Y ∈ G-ANE, then clearly
Y ∈ G-ANR. The converse is also true: for G an almost connected group it was proved
in [5, Remark 5], and the general case is treated in [2].

Let us recall the well known definition of a slice [32, p. 305]:

Definition 2.1. Let G be a group, H a closed subgroup of G, and X a G-space. An
H-invariant subset S ⊂ X is called an H-slice in X if G(S) is open in X and there is
a G-equivariant map f : G(S) → G/H, called the slicing map, such that S = f−1(eH).
The saturation G(S) will be said to be a tubular set and the subgroup H will be referred
to as the slicing subgroup.

If G(S) = X then S is called a global H-slice of X.

One of the most powerful results in the theory of topological transformation groups
states (see [32, Proposition 2.3.1]) that, if X is a proper G-space with G a Lie group,
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then for any point x ∈ X, there exists a Gx-slice S in X with x ∈ S. In general, when
G is not a Lie group, it is no longer true that a slice exists at each point of X (see [4]).
However an approximate version of the slice theorem is true which is based on the notion
of a large subgroup of G first introduced in [4] and [6].

A closed subgroup H ⊂ G is called a large subgroup (see [6]) if there exists a closed
normal subgroup N ⊂ G such that N ⊂ H and G/N is a Lie group. A G-space X is
called a rich G-space [6] if for any point x ∈ X and any neighborhood U of x, there exists
a point y ∈ U such that the stabilizer Gy is a large subgroup of G, and Gx ⊂ Gy.

It was established in [6] that for a closed subgroup H ⊂ G the following properties
are equivalent: (1) H is a large subgroup, (2) the quotient G/H is locally contractible,
(3) G/H is a G-ANR space, (4) G/H is G-homeomorphic to a smooth G-manifold on
which G acts by diffeomorphisms.

Theorem 2.6 below contains more precise information concerning the last property (4).
The following result can be regarded as an approximate version of the well known

Slice Theorem of R. Palais [32] for non-Lie group actions and is a crucial tool in our
argument:

Theorem 2.2 (Approximate Slice Theorem [6]). Let X be a proper G-space and x ∈ X.
Then for any neighborhood O of x in X there exist a compact large subgroup K of G with
Gx ⊂ K, and a K-slice S such that x ∈ S ⊂ O. Moreover, if X is a rich G-space, then
the K-slice S can be chosen in such a way that Gs = K for a point s ∈ S.

The following lemma is a well known result in the Theory of Lie groups (see e.g., [19,
Ch. II, Theorem 4.2]):

Lemma 2.3. Let Γ be a Lie group and ∆ a closed subgroup of Γ. Then the quotient space
Γ/∆ has a unique smooth structure with the property that the natural Γ-action on Γ/∆
induced by left translations is smooth.

Lemma 2.4. Let Γ be a locally compact group, Λ a closed normal subgroup of Γ, and ∆
a closed subgroup of Γ such that Λ ⊂ ∆. Let f : Γ/∆→ Γ/Λ

∆/Λ be the natural map defined
by f(γ∆) = [γΛ], where [γΛ] is the left coset of the subgroup ∆/Λ in Γ/Λ that contains
the element γΛ ∈ Γ/Λ. Then:

1. f is a Γ/Λ-equivariant homeomorphism.
2. If Γ is a Lie group, then f is a Γ/Λ-equivariant diffeomorphism.
3. If Γ is a Lie group and ∆ a normal subgroup of Γ, then f is an isomorphism of Lie

groups.

Proof. (1) is evident.
(2) Since Γ acts smoothly and Λ acts trivially on Γ/∆, we infer that the Lie group

Γ/Λ acts smoothly on Γ/∆. Now the result follows from (1) and the uniqueness part of
Lemma 2.3.

(3) It is clear that f is an isomorphism of topological groups. Since both Γ/∆ and
Γ/Λ
∆/Λ are Lie groups, f should be a diffeomorphism (see, e.g., [19, Ch. II, Theorem 2.6]).
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Lemma 2.5. Let G be a locally compact group and N0, . . . , Nk compact normal subgroups
of G such that each quotient G/Ni is a Lie group. Let N be the intersection N0∩· · ·∩Nk.
Then G/N is a Lie group too.

Proof. Because of compactness of the subgroup Ni the quotient homomorphism πi : G→
G/Ni is a closed map for all 0 ≤ i ≤ k. This yields that the diagonal homomorphism
π : G→ G/N0 × · · · ×G/Nk defined by π(g) = (π0(g), . . . , πk(g), g ∈ G, is also a closed
map [18, Proposition 2.3.30]. Observe that the kernel of π is precisely the intersection
N = N0∩· · ·∩Nk. This yields quickly that the continuous isomorphism π̃ : G/N → π(G)
induced by π is a closed map, and hence, a homeomorphism. Thus the quotient group
G/N is topologically isomorphic to the image π(G). On the other hand π(G), being a
closed subgroup of the Lie group G/N0 × · · · ×G/Nk, is itself a Lie group (see e.g., [19,
Ch. II, Theorem 2.3]). Thus G/N is a Lie group.

Theorem 2.6. Let G be a locally compact group and H0, . . . ,Hn large subgroups of G.
Assume that N0, . . . , Nn are compact normal subgroups of G such that for every i =
0, . . . , n, Ni ⊂ Hi and G/Ni is a Lie group. Then the product G/H0 × · · · × G/Hn is a
smooth manifold. Furthermore, if we denote N := N0∩· · ·∩Nn then G/N is a Lie group,
and the action of G/N on G/H0 × · · · ×G/Hn defined by the following rule is a smooth
action:

ḡN(g0H0, . . . , gnHn) = (ḡg0H0, . . . , ḡgnHn),

where ḡN ∈ G/N and giHi ∈ G/Hi, i = 0, . . . , n.

Proof. Clearly N is a compact normal subgroup of G. That the quotient group G/N is
a Lie group follows from Lemma 2.5.

According to Lemma 2.4(1),

G/Hi is G/Ni-homeomorphic to
G/Ni
Hi/Ni

.

We will consider just the smooth structure on G/Hi induced by this homeomorphism.
Hence, the topological product G/H0 × · · · ×G/Hn is a smooth manifold.

In order to prove that the above defined action of G/N on G/H0 × · · · × G/Hn is
smooth, it suffices to show that the action of G/N on each G/Hi, i = 1, . . . , n, defined
by

ḡN(giHi) = ḡgiHi, ḡN ∈ G/N, giHi ∈ G/Hi,

is smooth.
Since Ni/N is a closed subgroup of the Lie group G/N the quotient group Hi/N

Ni/N
is

a Lie group as well (see e.g., [19, Ch. II, Theorem 4.2]). On the other hand G/N is also
a Lie group, and by Lemma 2.4(1), the natural isomorphism f : G/Ni → G/N

Ni/N
is a

G/N -equivariant homeomorphism. Since the smooth structure on a Lie group is unique
(see e.g., [19, Ch. II, Corollary 2.2]) we conclude that f is, in fact a diffeomorphism. Thus
f : G/Ni → G/N

Ni/N
is a G/N -equivariant smooth isomorphism. Next, we observe that f

maps the closed subgroup Hi/Ni onto Hi/N
Ni/N

. In other words,

the pair (G/Ni, Hi/Ni) is smoothly isomorphic to the pair
( G/N
Ni/N

,
Hi/N

Ni/N

)
.



EQUIVARIANT HOMOTOPY TYPE OF G-ANR’S 161

This yields that the quotient

G/Hi =
G/Ni
Hi/Ni

is G/Ni-diffeomorphic to
(G/N)/(Ni/N)
(Hi/N)/(Ni/N)

.

Now, by applying Lemma 2.4(2) to Γ = G/N , Λ = Ni/N and ∆ = Hi/N , we get that

(G/N)/(Ni/N)
(Hi/N)/(Ni/N)

is G/N -diffeomorphic to
G/N

Hi/N
.

Thus,

G/Hi is G/N -diffeomorphic to
G/N

Hi/N
.

Since by Lemma 2.3, the induced action of the Lie group G/N on its quotient space G/N
Hi/N

is smooth, we infer that G/Hi is a smooth G/N -space. This completes the proof.

3. G-CW complexes. In this chapter we present several results on G-CW complexes
which are needed later. For the definition and basic properties of G-CW complexes we
refer to [20], [21], [29], [27], [13] and [16]. We first recall some basic properties of adjunction
spaces.

Let X be a G-space, A a closed invariant subset of X, and f : A → Y a G-map in
a G-space Y . We denote the adjunction space by X ∪f Y and the natural projection
by p : X t Y → X ∪f Y (see [15, Section VI.6]). From the G-actions on X and Y the
adjunction space inherits a natural G-action. Continuity of this action follows from the
fact that in the commutative diagram

G× (X t Y ) //

id×p
��

X t Y

p

��
G× (X ∪f Y ) // X ∪f Y

the map id×p is a quotient map, since p is a quotient map and G is locally compact (see
[14, Lemma V.2.13], where a quotient map is called an identification map). Thus X ∪f Y
is a G-space if it is a Hausdorff space. Note that the adjunction space of two Hausdorff
spaces is not necessarily Hausdorff. We have, for example, the following results:

Proposition 3.1. If the spaces X and Y are normal topological spaces then the space
X ∪f Y is a normal and, in particular, Hausdorff space.

Proof. See [15, VII.3.4].

Proposition 3.2. Let X and Y be Hausdorff (G-)spaces, A a closed (G-)subspace of
X and f : A → Y a (G-)map. If the inclusion A ⊂ X is a (G-)cofibration then the
adjunction space X ∪f Y is a Hausdorff space.

Proof. See [16, Proposition 1.11].

If X is a G-CW complex, the skeletons of X are denoted by Xk, k = 0, 1, . . . . A G-map
f : X → Y , where X and Y are G-CW complexes, is called skeletal if f(Xk) ⊂ Y k for
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all k ≥ 0. Recall the following skeletal approximation theorem from [21, Theorem I.2.14,
p. 31] (see also [28, Theorem 4.4] for the absolute case):

Theorem 3.3. Any G-map f : X → Y between G-CW complexes is G-homotopic to
a skeletal G-map f̃ : X → Y . If f is skeletal on a G-subcomplex X0 of X then f is
G-homotopic relative to X0 to a skeletal G-map.

In the previous theorem the G-map f̃ is called a skeletal approximation or a cellular
approximation to f .

Concerning properness of a G-CW complex we have the following result (see [27,
p. 18]):

Proposition 3.4. A G-CW complex X is a proper G-space if and only if Gx is compact
for each x ∈ X.

The following three propositions are not difficult to verify.

Proposition 3.5. Let L and A be proper G-CW complexes, B ⊂ A a G-subcomplex and
α : B → L a cellular G-map. Denote αn = α|Bn : Bn → Ln, n ≥ 0. Then L = A ∪α L is
a proper G-CW complex with skeletons

L
n

= An ∪αn Ln,

and L is a G-subcomplex of L.

Proposition 3.6. Let L0 ⊂ L1 ⊂ · · · be a sequence of proper G-CW complexes such
that Ln is a G-subcomplex of Ln+1 for each n ≥ 0. If we give the set L =

⋃
n≥0 Ln the

weak topology with respect to the family {Ln}n≥0, then L is a proper G-CW complex with
skeletons

Lk =
⋃
n≥0

Lkn, k = 0, 1, . . .

The product of two ordinary CW complexes need not be a CW complex in a natu-
ral way (see the footnote in [34, p. 401]). With G-CW complexes the situation is even
more complicated [13, p. 103]. However, we have the following result (compare also [21,
Proposition I.2.6, p. 23]):

Proposition 3.7. Let X be a locally compact proper G-CW complex, Y a locally compact
CW complex endowed with the trivial G-action, and B ⊂ Y a subcomplex. Then the
product X × Y is a proper G-CW complex with skeletons

(X × Y )n =
⋃

k+p=n

Xk × Y p

and X ×B is a G-subcomplex of X × Y .

Next we consider the following commutative diagram of G-spaces and G-maps:

X0
� � i1 //

f0

��

X1
� � i2 //

f1

��

X2
� � //

f2

��

. . .

Y0
� �

j1
// Y1

� �

j2
// Y2

� � // . . .
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where the inclusions i1, i2, . . . and j1, j2, . . . are G-cofibrations and the maps f0, f1, . . .

are G-homotopy equivalences. Let X :=
⋃
Xk and Y :=

⋃
Yk, endowed with the weak

topologies with respect to the families {Xk}k≥0 and {Yk}k≥0, respectively. The spaces
X and Y are Hausdorff spaces by [16, Proposition 1.12]. The G-actions on all the spaces
Xk and Yk define G-actions on the spaces X and Y . Continuity of these actions follows
from the fact that the product G×X and G× Y have the weak topologies with respect
to the families {G×Xk}k≥0 and {G× Yk}k≥0, respectively, since G is a locally compact
Hausdorff space. The maps fk define a G-map f : X → Y .

The proof of the following theorem is analogous to the proof of the non-equivariant
case proved in [12].

Theorem 3.8. The map f : X → Y is a G-homotopy equivalence.

Theorem 3.9. Let (An, Bn), n = 1, 2, . . . , be a sequence of proper G-CW pairs. Let K0

be a proper G-CW complex and suppose that for all n = 1, 2, . . . , the G-space Kn is
obtained from Kn−1 as an adjunction space

Kn = An ∪ϕn Kn−1,

where ϕn : Bn → Kn−1 is a G-map. If we denote K :=
⋃∞
n=0Kn and give K the weak

topology with respect to the family {Kn}n≥1, then the G-space K has the G-homotopy
type of a G-CW complex.

Proof. The actions Φn : G × Kn → Kn on the spaces Kn together define an action
Φ on the union K =

⋃∞
n=0Kn. Since K has the weak topology with respect to the

family {Kn}n≥0, the natural map ι :
⊔∞
n=0Kn → K is a quotient map. Thus, the map

id×ι : G×
⊔∞
n=0Kn → G×K is a quotient map since G is locally compact. Now continuity

of Φ follows from the commutative diagram:

G× (
⊔∞
n=0Kn)

tΦn //

id×ι
��

⊔∞
n=0Kn

ι

��
G×K

Φ
// K.

We shall construct a sequence L0, L1, . . . of proper G-CW complexes and G-homotopy
equivalences fn : Kn → Ln, n = 0, 1, . . . . First we define L0 = K0 and f0 = id. Suppose
n ≥ 1 and we have constructed L0, . . . , Ln−1 and f0, . . . , fn−1. Let µn be a G-cellular
approximation to the composite G-map fn−1 ◦ ϕn : Bn → Kn−1 → Ln−1, and define

Ln := An ∪µn Ln−1.

By Proposition 3.5, Ln is a proper G-CW complex.
Let

α : An ∪ϕn Kn−1 → An ∪fn−1ϕn Ln−1

be the canonical extension of the G-map fn−1, that is, the G-map induced by fn−1 and
the identity map on An. Since fn−1 is a G-homotopy equivalence, also α is a G-homotopy
equivalence by [22, Proposition 3.3].
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Since fn−1 ◦ ϕn 'G µn, by [22, Proposition 3.1] there is a G-homotopy equivalence

β : An ∪fn−1ϕn Ln−1 → An ∪µn Ln−1

with β|Ln−1 = idLn−1 .
Then fn := β ◦ α : Kn → Ln is a G-homotopy equivalence extending fn−1. Thus we

obtain a commutative diagram

K0
� � i1 //

f0

��

K1
� � i2 //

f1

��

K2
� � i3 //

f2

��

. . .

L0
� �

j1
// L1

� �

j2
// L2

� �

j3
// . . .

in which the inclusions are G-cofibrations and the maps f0, f1, . . . are G-homotopy equiv-
alences.

Define L :=
⋃
n≥0 Ln and give L the weak topology with respect to the family

{Ln}n≥0. By Proposition 3.6, L is a proper G-CW complex. By Theorem 3.8, the map
f : K → L induced by the maps fn, is a G-homotopy equivalence.

The following lemma is easy to verify:

Lemma 3.10. Let G be a locally compact group and N a closed normal subgroup of G.
Denote by π : G → G/N the natural homomorphism. Let K be a closed subgroup (not
necessarily normal) of G/N , and denote H := π−1(K), which is a closed subgroup of G
containing N . Then the map

ψ : G/H → (G/N)
/
K; gH 7→ π(g)K

is a homeomorphism.
If we let G act on the spaces G/H and (G/N)

/
K in the natural way, that is, the

actions are induced by the left translations in G, then ψ is also a G-map.

Proposition 3.11. Let G be a locally compact group and N a closed normal subgroup
of G. Suppose X is a (G/N)-CW complex with skeletons {Xn}n≥0. Then X is a G-CW
complex with the same skeletons and equivariant cells.

Proof. The G-action on X is given by

G×X π×id−−−→ (G/N)×X → X.

Let ϕ : Dn× (G/N)
/
K → c be a characteristic (G/N)-map for a (G/N)-cell c. Define

ϕ = ϕ ◦ (id× ψ) : Dn ×G/H → Dn × (G/N)
/
K → c,

where the subgroup H and the homeomorphism ψ are as in the previous lemma. Then ϕ
is a characteristic G-map for the G-cell c.

It is clear that the other conditions for X being a G-CW complex are satisfied.

4. G-normal covers and G-nerves. In this chapter we introduce the concepts of a
G-normal cover as in [6], and the G-nerve of a G-normal cover, following the ideas in [29]
and [35].
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General theory of simplicial sets can be found in [30]. Concrete examples can also be
found in for example [33] and [35]. However, these constructions are not similar to ours,
and compared with [30] we have no degeneracy operators. Hence we present the details
of our construction in this chapter.

For any space X, the support of a map f : X → R is the closed set

supp f := {x ∈ X | f(x) 6= 0}.

A family {ϕα | α ∈ A} of continuous maps ϕα : X → I is called a partition of unity on X
if: (1) the supports of the ϕα form a locally finite closed cover of X and, (2)

∑
α ϕα(x) = 1

for each x ∈ X. If {Uβ | β ∈ B} is a given open cover of X, we say that a partition
{ϕβ | β ∈ B} of unity is subordinated to {Uβ} if suppϕβ ⊂ Uβ for all β ∈ B.

If U is a cover of a space X then for A ⊂ X we denote

St(A,U) =
⋃
{U ∈ U | U ∩A 6= ∅},

the star of A with respect to U . A cover U of X is a star-refinement of another cover V
of X if the cover {St(U,U)}U∈U is a refinement of V.

A cover U of a G-space X is G-invariant if each of the sets U ∈ U is G-invariant. A
cover U of a G-space X is a G-cover if gU ∈ U for every U ∈ U and g ∈ G. Note that the
index set for a G-cover can be regarded as a G-set.

Let Λ be a G-set and Λ/G denote its orbit set. If U = {Uλ}λ∈Λ is a G-cover of X
then for each µ ∈ Λ/G, define

Ũµ :=
⋃
λ∈µ

Uλ.

In other words, if λ ∈ µ then we have Ũµ = G(Uλ). The G-invariant cover Ũ = {Ũµ}µ∈Λ/G

is called the saturation of U .
Suppose X ∈ G-M. Let H ⊂ G be a closed subgroup, S an H-slice in X, and O ⊂ G a

neighborhood of the identity. The set gOS, where g ∈ G and gOS = {gps | p ∈ O, s ∈ S},
is called a tubular segment of type H, and the group H is called its slicing group. The set
OS is called the initial tubular segment of length O of the H-tube G(S).

A family
U = {gOµSµ | g ∈ G,µ ∈M}

consisting of tubular segments gOµSµ with compact large slicing subgroups Hµ is called
a G-normal cover of X if the family of open tubes Ũ = {G(Sµ) | µ ∈ M} covers X
and there exists an invariant locally finite partition of unity {ϕµ : X → [0, 1] | µ ∈ M}
subordinated to Ũ .

A G-normal cover is called rich if each slicing subgroup Hµ is the stabilizer of a point
sµ ∈ Sµ. Note that the slices Sµ and the slicing subgroups Hµ form a part of the structure
of a G-normal cover.

Next we construct the G-nerve of a G-normal cover.
Let U = {gOµSµ | g ∈ G,µ ∈M} be a G-normal cover of a space X ∈ G-M. Denote

by Λ = G ×M the index set of the cover, and U = {Uλ}λ∈Λ, where Uλ = gOµSµ for
λ = (g, µ). In what follows we shall identify µ ∈ M with the orbit of λ = (g, µ) in Λ,
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and we will write λ ∈ µ whenever λ = (g, µ) for some g ∈ G. In particular, we have
Λ/G ≈M.

Denote Ũµ = G(Sµ) and Ũ = {Ũµ}µ∈M, the saturation of U , and let fµ : Ũµ → G/Hµ,
µ ∈M, be the slicing maps given by the definition of a slice.

Let N = N(Ũ) denote the nerve of Ũ , that is, a simplicial complex with vertices
µ ∈M and simplexes defined by the following condition: {µ0, . . . , µn} is a simplex of N
if and only if Ũµ0 ∩ · · · ∩ Ũµn 6= ∅. Denote by Nn = Nn(Ũ) the set of n-simplexes. We
assume that M is well-ordered.

For each n-simplex σ = {µ0, . . . , µn}, µ0 < · · · < µn, of N we define an open subspace
Kσ of G/Hµ0 × · · · ×G/Hµn as follows: If λ0 ∈ µ0, . . . , λn ∈ µn are such that

(∗)
n⋂
i=0

Uλi 6= ∅,

then we consider the subset fµ0(Uλ0) × · · · × fµn(Uλn) ⊂ G/Hµ0 × · · · × G/Hµn . Then
define Kσ to be the union of such subsets, where the union is taken over those n-tuples
of indices λ0, . . . , λn that satisfy (∗) above. In other words,

Kσ =
⋃{

Qλ0 × · · · ×Qλn
∣∣∣ λi ∈ µi, i = 0, . . . , n,

n⋂
i=0

Uλi 6= ∅
}
,

where we denote Qλi := fµi(Uλi) ⊂ G/Hµi . Observe that if λi = (g, µi) then Qλi =
gOµiHµi . In particular, each set Qλi is open in G/Hµi , and hence, Kσ is an open G-
invariant subset of the product G/Hµ0 × · · · ×G/Hµn .

Now, the G-action on Kσ is defined by

(g, (x0, . . . , xn)) 7→ (gx0, . . . , gxn).

Next, we define a G-space K∗(U), the simplicial G-nerve of U as follows.
The n-th space Kn(U), n ≥ 0, of K∗(U) is

Kn(U) :=
⊔
σ∈Nn

Kσ

and the face operators ∂i : Kn(U)→ Kn−1(U), 0 ≤ i ≤ n, are defined as follows.
Let σ = {µ0, . . . , µn}, µ0 < · · · < µn, and x = (x0, . . . , xn) ∈ Kσ ⊂ Kn(U). Then

τi = {µ0, . . . , µ̂i, . . . , µn}, obtained from σ by omitting µi, is an (n−1)-simplex of N and
(x0, . . . , x̂i, . . . , xn) ∈ Kτi . Now define

∂i(x) = (x0, . . . , x̂i, . . . , xn) ∈ Kτi .

This gives us maps ∂i : Kn(U)→ Kn−1(U), 0 ≤ i ≤ n.
The G-actions on the spaces Kσ give us a G-action on every space Kn(U), n ≥ 0, and

the face operators are equivariant maps.
Next we consider the discrete union⊔

n≥0

Kn(U)×∆n

and the equivalence relation on it generated by

(∂ix, t) ∼ (x, δit),
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where x ∈ Kn(U), t ∈ ∆n−1, δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1) ∈ ∆n and
i ∈ {0, . . . , n}, n ≥ 1.

We denote the quotient space by

K(U) = |K∗(U)| =
(⊔
n≥0

Kn(U)×∆n
)/
∼ .

It is called the geometric G-nerve of U .
Denote by π :

⊔
n≥0Kn(U)×∆n → K(U) the projection.

The image of
⊔n
i=0Ki(U)×∆i under the map π is called the n-skeleton of K(U), and

denoted by Kn(U).
For x = (xµ0 , . . . , xµn) ∈ Kσ ⊂ G/Hµ0 × · · · × G/Hµn and t = (t0, . . . , tn) ∈ ∆n,

denote π(x, t) := |xµ0 , . . . , xµn ; t0, . . . , tn| =: |x; t|.
The G-actions on the spaces Kn(U) fit together and give a G-action on K(U) by

g|xµ0 , . . . , xµn ; t0, . . . , tn| = |gxµ0 , . . . , gxµn ; t0, . . . , tn|. Since G is locally compact the
action on the quotient space is continuous.

Since there are no identifications between points of K0(U) we have that K0(U) =
K0(U) =

⊔
µ∈Λ/GG/Hµ. Let n ≥ 1. Each t̄ ∈ ∂∆n is of the form t̄ = δi(t) for some

t ∈ ∆n−1, i ∈ {0, . . . , n}. For each n ≥ 1, we can define a continuous map αn : Kn(U)×
∂∆n → Kn−1(U) by

αn(x, δi(t)) = |∂ix; t|.

In the commutative diagram

(1)
⊔n
i=0Ki(U)×∆i

π|
��

� � // ⊔∞
i=0Ki(U)×∆i

π

��
Kn(U) � � // K(U)

the map π is a quotient map by definition.
The following proposition plays a key role in what follows:

Proposition 4.1. In the diagram (1) also the restriction map π| is a quotient map.

Proof. Suppose F ⊂ Kn(U) and π−1(F ) ∩ (Ki(U) ×∆i) is closed in Ki(U) ×∆i for all
i = 0, . . . , n, or equivalently,

(2) π−1(F ) ∩ (Kσ ×∆dim(σ)) is closed in Kσ ×∆dim(σ)

for all simplexes σ of N with dim σ ≤ n.
We prove that (2) holds for all simplexes σ of N , from which it follows that F is closed

in K(U) and thus in Kn(U), which proves the proposition.
Let first σ be an (n + 1)-simplex of N with the vertices µ0, . . . , µn+1. Denote σ =

{µ0, . . . , µn+1}. Now F ⊂ Kn(U) and the identifications are such that each point of
Kσ × ∂∆n+1 is identified with exactly one point of Kn(U), and hence

π−1(F ) ∩ (Kσ ×∆n+1) ⊂ Kσ × ∂∆n+1.

Denote
∆n

(i) = {(t0, . . . , tn+1) ∈ ∆n+1 | ti = 0},
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the i-th face of ∆n+1, and τi = {µ0, . . . , µ̂i, . . . , µn+1} < σ. The identifications on the
i-th face of Kσ ×∆n+1 can be given by the continuous map

α′i : Kσ ×∆n
(i) → Kτi ×∆n

(x0, . . . , xn+1; t0, . . . , ti−1, 0, ti, . . . , tn) 7→ (x0, . . . , x̂i, . . . , xn+1; t0, . . . , tn).

Now by the assumption (2) we have that

A := π−1(F ) ∩ (Kτi ×∆n) is closed in Kτi ×∆n

and the set
B = π−1(F ) ∩ (Kσ ×∆n

(i))

is the inverse image of A under the map α′i, so it is closed in Kσ ×∆n
(i). Now Kσ ×∆n

(i)

is closed in Kσ ×∆n+1, and hence, B is closed in Kσ ×∆n+1. Since a simplex has only
finitely many faces, the set π−1(F )∩ (Kσ×∆n+1) =

⋃n+1
i=0 π

−1(F )∩ (Kσ×∆n
(i)) is closed

in Kσ ×∆n+1.
This proves the case dim σ = n+ 1.
By induction we get (2) for all simplexes σ of N . This completes the proof.

The previous proposition implies the following important

Proposition 4.2. The restriction

(in−1 t π)| : Kn−1(U) t (Kn(U)×∆n)→ Kn(U)

is a quotient map, and thus, Kn(U) is G-homeomorphic to the adjunction space

(Kn(U)×∆n) ∪αn Kn−1(U).

In the diagram

Kn(U)× ∂∆n

αn

��

id×ιn // Kn(U)×∆n

π|
��

Kn−1(U)
in−1

// Kn(U)

the map ιn is a cofibration and thus id × ιn is a G-cofibration. On the other hand,
in−1 : Kn−1(U)→ Kn(U) is a G-cofibration by [13, Proposition II.1.2]. The spaces Kn(U)
are Hausdorff spaces by [16, Proposition 1.11].

The topology of K(U) is the weak topology with respect to the filtration

K0(U) ⊂ K1(U) ⊂ · · · ,

and thus, K(U) is a Hausdorff space (see [16, Proposition 1.12]).

Proposition 4.3. Let U = {gOµSµ| g ∈ G,µ ∈ M} be a G-normal cover of a G-space
X with fµ : Ũµ = G(Sµ) → G/Hµ, µ ∈ M, the corresponding slicing maps. Choose a
G-invariant locally finite partition of unity {ϕµ}µ∈M subordinated to the open invariant
cover Ũ = {Ũµ}µ∈M. Define P : X → K(U) by

P (x) = |fµ0(x), . . . , fµn(x);ϕµ0(x), . . . , ϕµn(x)|,

where x ∈ X and {µ0, . . . , µn} = {µ ∈ M | ϕµ(x) 6= 0}, µ0 < · · · < µn. Then P is a
continuous G-map.
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Proof. As above, we denote Λ = G ×M and identify the orbit set Λ/G with M. We
shall write λ ∈ µ whenever there exists a g ∈ G such that λ = (g, µ). Then U = {Uλ}λ∈Λ,
where Uλ = gOµSµ for λ = (g, µ).

Denote σ = {µ0, . . . , µn} ∈ N(Ũ). Since ϕµi(x) > 0 we see that x ∈ Ũµi , and thus,
there exists a λi ∈ µi for which x ∈ Uλi , i = 0, . . . , n. Consequently, x ∈

⋂n
i=0 Uλi , and

hence, (fµ0(x), . . . , fµn(x)) ∈ Kσ by the definition of Kσ. Thus P (x) ∈ K(U).
To show the continuity of P we first consider the following simplicial space. The n-th

space XeUn is given by ⊔
σ∈Nn( eU)

Tσ, where Tσ =
⋂
µ∈σ

Ũµ 6= ∅,

that is,
XeUn =

⋃
σ∈Nn( eU)

(Tσ × {σ}).

The face maps are then defined as follows: if n ≥ 1, (x, σ) ∈ XeUn and i ∈ {0, . . . , n},
then x ∈ Tσ and Tσ is of the form Tσ = Ũµ0 ∩ · · · ∩ Ũµn , where µ0 < · · · < µn ∈M. Now
define τi = {µ0, . . . , µ̂i, . . . , µn}, that is, τi is obtained from σ by omitting the i-th term,
and by definition, ∂i(x, σ) = (x, τi) ∈ XeUn−1 .

As before, we define an equivalence relation on the space
⊔
n≥0XeUn ×∆n generated

by the relations (∂ix; t) ∼ (x; δit), and consider the quotient space

BXeU =
⊔
n≥0

XeUn ×∆n/ ∼ .

Denote by π̃ the projection
⊔
n≥0XeUn ×∆n → BXeU .

A G-action on BXeU can be defined by

g|(x, σ); t| = |(gx, σ); t|.

Define a function P ′ : X → BXeU as follows: If x ∈ X and

{µ0, . . . , µn} = {µ ∈ Λ/G | ϕµ(x) 6= 0}, µ0 < · · · < µn,

then denote σ = {µ0, . . . , µn} and put

P ′(x) = |(x, σ);ϕµ0(x), . . . , ϕµn(x)|.

We now prove that P ′ is continuous. Let V ′ be a neighborhood of x such that ϕµ|V ′ ≡ 0
for all but a finite number of µ’s. Let

{β0, . . . , βm} = {β ∈M | ϕβ(y) 6= 0 for some y ∈ V ′}.

If x 6∈ Ũβj for some βj ∈ {β0, . . . , βm}, we can find a neighborhood of x in which ϕβj ≡ 0;
we exclude βj in this case. Thus we may assume that x ∈ Ũβj for all j = 0, . . . ,m.

Assume β0 < · · · < βm. Now V = (
⋂m
j=0 Ũβj ) ∩ V ′ is a neighborhood of x. Let

σ′ = {β0, . . . , βm}. Then we can define

ψ : V → XeUm ×∆m

by
ψ(y) = ((y, σ′), ϕβ0(y), . . . , ϕβm(y)), y ∈ V,
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which is clearly continuous. Now observe that

P ′|V = π̃ ◦ ψ,

and hence, P ′ is continuous at x. That P ′ is a G-map follows from

P ′(gx) = |(gx, σ);ϕµ0(gx), . . . , ϕµn(gx)| = |(gx, σ);ϕµ0(x), . . . , ϕµn(x)| = gP ′(x).

Next define a map

φ∗ : XeU∗ =
⊔

σ∈Nn( eU)
n≥0

(Tσ × {σ})→ K∗(U)

as follows: if (x, σ) ∈ XeUn with x ∈ Tσ = Ũµ0 ∩ · · · ∩ Ũµn and µ0 < · · · < µn ∈ M, then
we put

φ∗(x, σ) = (fµ0(x), . . . , fµn(x)) ∈ Kσ ⊂ Kn(U).

Clearly φ∗ is a continuous G-map.
Now φ∗ satisfies

φ∗(∂i(x, σ)) = ∂iφ∗(x, σ),

where ∂i on the left side denotes the face map in XeU∗ , and on the right side the face map
in K∗(U). From this it follows that φ∗ defines a continuous map

|φ∗| : BXeU → K(U)

such that the diagram⊔
n≥0XeUn ×∆n

eπ
��

F
φn×id //

⊔
n≥0Kn(U)×∆n

π

��
BXeU |φ∗|

// K(U)

commutes.
Clearly |φ∗| is a G-map. Now P = |φ∗| ◦ P ′ : X → BXeU → K(U), which proves that

P is a continuous G-map.

5. Proofs of the main theorem and corollaries. In this section we prove the main
result formulated in Introduction. We start with the following key lemma:

Lemma 5.1. Let G be a locally compact group and X ∈ G-M. Then for each open G-cover
V of X, there exists a G-normal cover

U = {gOtRt | g ∈ G, t ∈ T}

of X, accompanied with compact large slicing subgroups Ht, such that U is a star-
refinement of V. Furthermore, if X is a rich G-space then U can be chosen to be rich,
i.e., for each t ∈ T there is a point xt ∈ Rt such that Gxt = Ht.

Proof. Choose a G-invariant metric d on X. We fix a point on each orbit G(x) ⊂ X, say
x ∈ G(x), and choose an element Vx ∈ V such that x ∈ Vx. Let εx > 0 be such that
B(x, 5εx) ⊂ Vx, where B(x, r) stands for the open ball of radius r centered at x.



EQUIVARIANT HOMOTOPY TYPE OF G-ANR’S 171

By the continuity of the action of G on X, there exist a neighborhood Qx of the unity
in G and a neighborhood Nx of x in X such that QxNx ⊂ B(x, εx). By the Approximate
Slice Theorem (see Theorem 2.2), there exist a compact large subgroup Hx ⊂ G and an
Hx-slice Sx such that x ∈ Sx ⊂ Nx. Thus, we have QxSx ⊂ B(x, εx).

Let W be the totality of all these tubular segments {gQxSx| g ∈ G}. Clearly, W is an
open G-cover of X.

Let p : X → X/G be the orbit projection. Since p(W) = {p(W ) | W ∈ W} is an open
cover of the paracompact space X/G, there exists an open cover ω = {Ωt | t ∈ T} of
X/G which is a star-refinement of p(W) (see [15, Ch. VIII, §3]).

We emphasize that all the covers we consider are essential, i.e., none of the elements
of the cover is contained in the union of others.

It then follows that the invariant open cover p−1(ω) = {p−1(Ωt) | t ∈ T} of X is a
star-refinement of the invariant open cover G(W) = {G(W ) |W ∈ W} of X. In particular,
each element p−1(Ωt) ∈ p−1(ω) is a tubular set. Indeed, since p−1(Ωt) is a subset of a
tubular set G(Sx) ∈ G(W), the intersection A = Sx ∩ p−1(Ωt) is a global Hx-slice of
p−1(Ωt) and QxA is a tubular segment of p−1(Ωt).

Next, for every index t ∈ T we consider the set Lt of all tubular segments OS =
{gs | g ∈ O, s ∈ S}, where O is a neighborhood of the unity of G and S is a global H-
slice for p−1(Ωt) with H a compact large subgroup of G. Observe that Lt is non-empty
since p−1(Ωt) is a tubular set. Write

ξt = inf{ diamOS | OS ∈ Lt}.

We claim that ξt = 0 iff p−1(Ωt) contains only one orbit. The “if” part is evi-
dent. Now assume that ξt = 0. Then there are a point a ∈ p−1(Ωt) and a sequence
of Hn-slices Sn, n = 1, 2, . . . , containing the point a such that G(Sn) = p−1(Ωt) and
diamSn < 1/n; n = 1, 2, . . . . Pick a point x ∈ p−1(Ωt). As p−1(Ωt) = G(Sn) for every
n ≥ 1, there exist gn ∈ G and sn ∈ Sn such that x = gnsn. Then sn = g−1

n x, and
we have that d(sn, a)  0, i.e., d(g−1

n x, a)  0. Since the orbit G(x) is closed in X,
we infer that a ∈ G(x), or equivalently, x ∈ G(a). Thus p−1(Ωt) = G(a), proving the
claim.

If some p−1(Ωt) contains only one orbit G(y) and is a tubular set with a slicing
subgroup Hx ⊂ G, then the p−1(Ωt) is a subset of some G(Sx), where Sx is the Hx-slice
described at the beginning of the proof which satisfies the condition QxSx ⊂ B(x, εx).
Then the intersection Ax = Sx ∩ p−1(Ωt) is a global Hx-slice for p−1(Ωt). In this case
we assign to p−1(Ωt) the tubular segment OtRt where Ot = Qx and Rt = Ax. Evidently,
diamOtRt ≤ 2εx.

If p−1(Ωt) contains more than one orbit then ξt > 0 according to the claim above. In
this case we assign to p−1(Ωt) a tubular segment OtRt ∈ Lt for which diamOtRt < 2ξt,
where Rt is a global Ht-slice of p−1(Ωt), and the slicing group Ht is a compact large
subgroup of G.

Now we define U to be the totality of all these tubular segments

{gOtRt | g ∈ G, t ∈ T}.
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Since the orbit space X/G is paracompact the open invariant cover p−1(ω) of X
admits a locally finite partition of unity subordinated to p−1(ω); thus U is a G-normal
cover. Let us check that U is a star-refinement of V.

Indeed, let g0Ot0Rt0 ∈ U and gOtRt ⊂ St(g0Ot0Rt0 ,U), where St(g0Ot0Rt0 ,U) de-
notes the star of g0Ot0Rt0 with respect to U .

If ξt0 = 0 then Rt0 is a singleton {y}, and since p−1(ω) is an essential cover, we infer
that St

(
G(Rt0), p−1(ω)

)
= G(Rt0). Then

St(g0Ot0Rt0 ,U) =
⋃{

gOt0Rt0
∣∣ gOt0Rt0 ∩ g0Ot0Rt0 6= ∅

}
.

Since d is a G-invariant metric, one has diam gOt0Rt0 = diamOt0Rt0 ≤ 2εx which yields
that diamSt(g0Ot0Rt0 ,U) ≤ 4εx. Since g0y ∈ g0Sx ⊂ B(g0x, εx) we see that

g0y ∈ St(g0Ot0Rt0 ,U) ∩B(g0x, εx)

which implies, in turn, that St(g0Ot0Rt0 ,U) ⊂ B(g0x, 5εx). By the G-invariance of the
metric d one has B(g0x, 5εx) = g0B(x, 5εx). Now, since B(x, 5εx) ⊂ Vx with Vx ∈
V, we see that g0B(x, 5εx) ⊂ g0Vx. But V is a G-cover, and hence, g0Vx ∈ V. Thus
St(g0Ot0Rt0 ,U) ⊂ g0Vx, as required.

Now assume that ξt0 > 0 and gOtRt ⊂ St(g0Ot0Rt0 ,U). Then ξt > 0 and G(Rt) ⊂
St
(
G(Rt0), p−1(ω)

)
.

Since p−1(ω) is a star-refinement of G(W), there is an element G(Sx) ∈ G(W) such
that St

(
G(Rt0), p−1(ω)

)
⊂ G(Sx). In particular, G(Rt) ⊂ G(Sx). Evidently, the inter-

section A = Sx ∩ G(Rt) is a global Hx-slice of G(Rt) and QxA is a tubular segment of
G(Rt). Hence, QxA ∈ Lt.

Next, since QxSx ⊂ B(x, εx) and diamQxA ≤ diamQxSx we have that diamQxA ≤
2εx, and hence, ξt ≤ 2εx. Since ξt > 0, this implies that diamOtRt < 2ξt ≤ 4εx.

On the other hand, since G(Rt) ⊂ G(Sx) we infer that OtRt ∩ hSx 6= ∅ for some
h ∈ G. But Sx ⊂ B(x, εx) by construction, and since d is a G-invariant metric, this
yields that hSx ⊂ B(hx, εx). Thus, OtRt ∩ B(hx, εx) 6= ∅ and diamOtRt < 4εx which
yield that OtRt ⊂ B(hx, 5εx). Again, using the G-invariance of the metric d we get
that B(hx, 5εx) = hB(x, 5εx). But remember that B(x, 5εx) ⊂ Vx where Vx ∈ V. Con-
sequently, OtRt ⊂ hB(x, 5εx) ⊂ hVx which yields that gOtRt ⊂ ghVx. Thus, we have
proved that St(g0Ot0Rt0 ,U) ⊂ ghVx.

Since V is a G-cover we see that ghVx ∈ V, and we conclude that U is a star-refinement
of V. This proves the first part of the lemma.

If, in addition, X is a rich G-space then we apply once more Approximate Slice The-
orem (see Theorem 2.2) in order to represent each tubular set G(Rt) as a union of rich
tubular sets, i.e.,

(1) G(Rt) =
⋃
j∈J

G(Bj)

where each Bj is an Hj-slice corresponding to a compact large subgroup Hj ⊂ G such that
Hj=Gzj for some point zj ∈Bj . Moreover, one can achieve that for each j∈J there exists
a neighborhood Mj of the unity of G such that MjBj ⊂ OtRt whenever the equation (1)
holds. This can be done just by repeating the argument at the beginning of this proof.
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Indeed, for each orbit G(x) ⊂ G(Rt) we choose a point in the intersection G(x)∩OtRt,
say x ∈ G(x) ∩ OtRt. Then by continuity of the action of G at the point x, there exist
a neighborhood Mx of the unity in G and a neighborhood Dx of x in X such that
MxDx ⊂ OtRt. Since X is a rich G-space, by Approximate Slice Theorem (see the
second part of Theorem 2.2), there exist a compact large subgroup Hx ⊂ G and an
Hx-slice Bx such that x ∈ Bx ⊂ Dx and Hx is the stabilizer of some point z ∈ Bx. Thus
MxBx ⊂ OtRt, and hence, the required representation (1) is achieved .

Now we denote by Z the totality of all rich tubular segments {gNiBi | g ∈ G, i ∈ I}
which arise in this way. Clearly, Z is an open G-cover of X which is a refinement of U ,
and hence, a star-refinement of V. Moreover, the associated invariant open cover {G(Bi) |
i ∈ I} admits a subordinated locally finite partition of unity because the orbit space X/G
is paracompact. Thus Z is the desired G-normal cover. This completes the proof.

Notice that for the existence of a G-normal cover the only assumption needed is
that X in G-M. In the following proposition we additionally assume that X is a proper
G-ANR, in which case X is always a rich G-space and thus we are able to obtain a rich
G-normal cover.

Proposition 5.2. Let G be a locally compact group and X a proper G-ANR. Then, for
any open cover V of X there exists a rich G-normal cover

U = {gOµSµ | g ∈ G,µ ∈M}

of X such that X is V-G-dominated by the G-nerve K(U) of U .

Proof. By [2, Theorem 3.10] we can assume that X is a closed invariant subset of a
normed linear G-space L, and X has a G-invariant neighbourhood Z on which the action
is proper. Since X is a G-ANR, there exists a G-retraction r : U → X, where U is an
invariant neighborhood of X in Z.

Let C be an open cover of U which refines its open cover {r−1(V )}V ∈V and consists
of open balls of Z. By [6, Proposition 3.10], X is a rich G-space, and thus, by Lemma 5.1
there exists a rich G-normal cover

U = {gOµSµ | g ∈ G,µ ∈M}

which is a star-refinement of C.
Denote by Λ = G×M the index set of the cover, and Uλ = gOµSµ for λ = (g, µ). Then

we have U = {Uλ}λ∈Λ and Λ/G ≈ M. Let fµ : G(Sµ) → G/Hµ, µ ∈ M = Λ/G, be the
corresponding slicing maps. Choose an invariant locally finite partition of unity {ϕµ}µ∈M,
subordinated to the invariant cover Ũ = {G(Sµ)}µ∈M. Let K(U) be the G-nerve of U ,
and P : X → K(U) the G-map defined in Proposition 4.3.

Next we define a continuous G-map q′ : K(U)→ U .
For each µ ∈ M we select a point sµ ∈ Sµ such that Gsµ = Hµ (this is possible

because U is a rich G-normal cover). Define

ψµ : G/Hµ → G(sµ); ψµ(gHµ) = gsµ.

The condition Hµ ⊂ Gsµ guarantees that the map ψµ is a well defined G-map. Then the
maps ψµ and fµ| : G(sµ) → G/Hµ are homeomorphisms inverse to each other. Define
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q′ : K(U)→ U by

q′(x) =
n∑
i=0

tiψµi(xµi),

where x = |xµ0 , . . . , xµn ; t0, . . . , tn| ∈ K(U).
Clearly q′(K(U)) ⊂ Z. We claim that q′(K(U)) ⊂ U . Indeed, by definition there

exist {Uλ0 , . . . , Uλn} ⊂ U such that λi ∈ µi, xµi ∈ fµi(Uλi) ⊂ G/Hµi , i = 0, . . . , n and⋂n
i=0 Uλi 6= ∅. Choose y ∈

⋂n
i=0 Uλi and denote yµi = ψµi(xµi) ∈ Uλi ∩G(sµi). Then we

have that y ∈
⋃n
i=0 Uλi ⊂ St(y,U). Since U is a star-refinement of C, there exists a C ∈ C

such that
{yµ0 , . . . , yµn} ⊂ St(y,U) ⊂ C.

Since C is convex, we have

q′(x) =
n∑
i=0

tiyµi ∈ C ⊂ U,

which proves the claim.
Next, define

q = r ◦ q′ : K(U)→ U → X

and a V-G-homotopy h : q ◦ P 'G idX by

h(x, t) = r(tx+ (1− t)(q′ ◦ P (x))), x ∈ X, t ∈ I.

We have to verify that tx+(1− t)(q′ ◦P (x)) ∈ U . Let x ∈ X and {µ0, . . . , µn} = {µ ∈
M | ϕµ(x) > 0}. Then there exist {Uλ0 , . . . , Uλn} ⊂ U such that λi ∈ µi, i = 0, . . . , n,
and x ∈

⋂n
i=0 Uλi . For each i = 0, . . . , n, we have ψµi ◦ fµi(x) ∈ Uλi and thus there exists

a C ∈ C such that

{x, ψµ0fµ0(x), . . . , ψµnfµn(x)} ⊂
n⋃
i=0

Uλi ⊂ St(x,U) ⊂ C.

Since C is convex, we see that

h(x, t) = tx+ (1− t)(q′ ◦ P (x)) = tx+ (1− t)
n∑
i=0

ϕµi(x)
(
ψµifµi(x)

)
∈ C ⊂ U.

Since there exists a V ∈ V with C ⊂ r−1(V ), we clearly have h(x, t) ∈ r(C) ⊂ V for
every t ∈ I.

Theorem 5.3. The G-nerve K(U) of a G-normal cover of a proper G-space X has the
G-homotopy type of a G-CW complex.

Proof. We first prove that each space Kn(U) is a proper G-CW complex. Indeed, one
has Kn(U) =

⊔
σ∈Nn Kσ, where each Kσ is an open G-subset of a G-space of the form

G/Hµ0 × · · · × G/Hµn , where Hµ0 , . . . ,Hµn are compact large subgroups of G (see the
definition of a G-nerve in Section 4). Let N0, . . . , Nn be closed normal subgroups of
G such that for every i = 0, . . . , n, Ni ⊂ Hi and G/Ni is a Lie group. If we denote
N := N0 ∩ · · · ∩ Nn, then by Theorem 2.6, the G/N -space G/Hµ0 × · · · × G/Hµn is a
proper smooth G/N -manifold, and hence, Kσ is a proper smooth G/N -manifold. Thus,
it follows from [23] that Kσ is a locally compact (G/N)-CW complex, and hence, Kn(U)
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is a locally compact (G/N)-CW complex as well. This implies, by Proposition 3.11, that
Kn(U) is a locally compact G-CW complex.

By Proposition 3.7, (Kn(U) × ∆n,Kn(U) × ∂∆n) is a proper G-CW complex pair
(An, Bn). Now K0 is a proper G-CW complex, and by Proposition 4.2, for every n =
1, 2, . . . , Kn(U) can be regarded as an adjunction space Kn(U) = An ∪αn Kn−1(U),
where An = Kn(U)×∆n and αn : Bn = Kn(U)× ∂∆n → Kn−1(U) is the G-map defined
before Proposition 4.1. The G-nerve K(U) =

⋃∞
n=0K

n(U) has the weak topology with
respect to the family {Kn(U)}∞n=1, and thus, the claim follows from Theorem 3.9.

Recall that a map f : X → Y between topological spaces is called an n-equivalence
for n ≥ 1 if:

1. f induces a one-to-one correspondence between the path components of X and Y ,
2. for every x ∈ X the induced map between homotopy groups

f∗ : πq(X,x)→ πq(Y, f(x))

is an isomorphism for 0 < q < n

3. f∗ is an epimorphism for q = n.

If f is an n-equivalence for all n ≥ 1, f is called a weak homotopy equivalence.
Also recall from [21, p. 35] that a G-map f : X → Y between G-spaces is called an

equivariant n-equivalence if the induced maps fH : XH → Y H between H-fixed point
sets are ordinary n-equivalences for every closed subgroup H ≤ G. If f is an equivariant
n-equivalence for all n ≥ 1, f is called a weak G-homotopy equivalence. In what follows
we will need the following Equivariant Whitehead Theorem proved in [21, Corollary I.3.7,
p. 37] and [28, Theorem 5.3], see also [27, Theorem 2.4]:

Theorem 5.4. A G-map between G-CW complexes is a G-homotopy equivalence if and
only if it is a weak G-homotopy equivalence.

The proof of the next theorem is similar to the proof of [16, Theorem 4.18].

Theorem 5.5. Any proper G-space which is G-dominated by a G-CW complex has the
G-homotopy type of a proper G-CW complex.

Proof of Main Theorem. We have proved in Proposition 5.2 that X is G-dominated by the
G-nerve K(U) of a G-normal cover U of X. By Theorem 5.3, K(U) has the G-homotopy
type of a G-CW complex. Thus, X is dominated by a G-CW complex, and the theorem
follows from Theorem 5.5.

Proof of Corollary 1.2. By Main Theorem, there exist G-homotopy equivalences ϕ : Z →
X and ψ : Y →W , where Z and W are some G-CW complexes. This yields that for each
closed subgroup H ⊂ G the restrictions ϕH : ZH → XH and ψ : Y H →WH are ordinary
homotopy equivalences. Define a G-map ξ : Z → W to be the composition ψfϕ. Since
ξH = ψHfHϕH , we see that ξH is a homotopy equivalence for every closed subgroup
H ⊂ G, and hence, f is weak G-homotopy equivalence. Now, in view of Equivariant
Whitehead Theorem 5.4, ξ should be a G-homotopy equivalence. Since ϕ and ψ are also
G-homotopy equivalences, we conclude that f is so, completing the proof.
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Proof of Corollary 1.3. Due to a result of H. Abels [1, Theorem 4.4] it suffices to prove
that X is a K-AR for every compact subgroup K ⊂ G. Since X, considered as a K-space
(with the restricted K-action), is a K-ANR the result follows from its particular case
corresponding to the compact group actions which was established in [7].

6. G-CW approximations. In this section we prove an equivariant version of the CW
approximation theorem, see for example [31, p. 75]. For the equivariant case of compact
Lie groups see [35, Theorem 3.7]. Then Theorem 5.5 can be given another proof using
this G-CW approximation theorem and the equivariant Whitehead theorem, as in the
proof of [35, Lemma 4.7].

The proof of the following theorem follows the lines given in [31], we only present how
the equivariant case differs from the classical one.

Theorem 6.1. Let G be a locally compact Hausdorff group and X any G-space. Then
there is a G-CW complex ΓX and a weak G-homotopy equivalence γ : ΓX → X (called a
G-CW approximation). For a G-map f : X → Y and a G-CW approximation γ′ : ΓY →
Y there is a G-map Γf : ΓX → ΓY , unique up to G-homotopy, such that the diagram

ΓX

γ

��

Γf // ΓY

γ′

��
X

f
// Y

is G-homotopy commutative.

Proof. In the non-equivariant case it is obvious that we may assume that the space X
is path connected. Since here we have to look at all fixed point sets, the corresponding
assumption cannot be made.

We denote H = {H ≤ G | XH 6= ∅}. For each H ∈ H we choose one base point xH,α
from each path component α of XH . Then we define JqH,α to be a set of representatives for
generators for the homotopy group πq(XH , xH,α), where q ≥ 1, H ∈ H and α ∈ π0(XH).
Thus an element j ∈ JqH,α is a function j : (Sq, ∗)→ (XH , xH,α). If πq(XH , xH,α) = 0 for
some H,α, define JqH,α to consist of the constant map xH,α.

We define
X0 =

∐
H∈H

∐
α∈π0(XH)

∨
(q,j)

G/H × Sqj

where the wedge is taken over pairs (q, j), where q ≥ 1 and j ∈ JqH,α. We choose base
points yH,α = (eH, ∗) ∈ G/H×Sqj . AG-map γ0 : X0 → X can be defined by γ0|eH×Sqj = j.

It is clear that γ0 induces epimorphisms (γ0)H∗ : π0(XH
0 ) → π0(XH) for all H ∈ H

and epimorphisms (γ0)H∗ : πq(XH
0 , yH,α)→ πq(XH , xH,α) for all q ≥ 1, H ∈ H. It is also

clear that X0 has the structure of a G-CW complex with the base points belonging to
the 0-skeleton.

If H ∈ H and α, β ∈ π0(XH
0 ) are such that α 6= β but (γ0)H∗ (α) = (γ0)H∗ (β), we attach

a G-1-cell to X0 by the attaching map ϕH,α,β : G/H × S0 → X0, (gH,−1) 7→ gyH,α,
(gH, 1) 7→ gyH,β . Define X1 to be the G-space obtained from X0 by attaching these
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G-1-cells. Since the attaching maps are skeletal (G/H ×D1 is given the obvious G-CW
structure) we have that X1 is a G-CW complex. Since (γ0)H∗ (α) = (γ0)H∗ (β) above,
the map γ0 can be extended to give γ1 : X1 → X, with the property that (γ1)H induces
bijections between the path components and epimorphisms between the homotopy groups.

As in [31] we proceed to construct a sequence X0, X1, X2, . . . of G-CW complexes and
G-maps γn : Xn → X with the corresponding properties. Then the G-CW complex ΓX
and the weak G-homotopy equivalence γ : ΓX → X are obtained as a colimit as in [31],
compare also [35].
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