CALCULATION OF THE AVOIDING IDEAL FOR $\Sigma^{1,1}$

TAMÁS TERPAI
Alfréd Rényi Institute of Mathematics
13-15 Reáltanoda u., 1053 Budapest, Hungary
E-mail: terpai@renyi.hu

Abstract

We calculate the mapping $H^{*}\left(B O ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(K^{1,0} ; \mathbb{Z}_{2}\right)$ and obtain a generating system of its kernel. As a corollary, bounds on the codimension of fold maps from real projective spaces to Euclidean space are calculated and the rank of a singular bordism group is determined.

1. Introduction and definitions. We work with homologies and cohomologies with \mathbb{Z}_{2} coefficients, even when the coefficient ring is not indicated. We will investigate the spaces of the Kazarian construction (see [5]) and the maps in cohomology induced by the natural embeddings of these spaces into one another. In Section 2 these maps are calculated explicitly, this result is then used in Section 3 to provide bounds on the codimension of fold maps of real projective spaces into Euclidean spaces. Another application is demonstrated in Section 4, where we obtain a description of the rank of the unoriented right-left fold bordism group ($C^{1,0}(n, k)$ in the notation of [3]).

To reach these goals, the Kazarian construction will be considered for immersions, locally stable maps without $\Sigma^{1,1}$ singularities and maps without any constraints on their singularities. The fine details of the construction are presented in [5]; we briefly recall its properties relevant to the aims of this paper. The Kazarian spaces of the classes of maps defined above, denoted here by $K^{0} \approx B O(k), K^{1,0}$ and $K^{\infty} \approx B O$ respectively, can be thought about as subspaces of the bundle of jets over $B O$ cut out by the appropriate restrictions, so we have natural embeddings $K^{0} \xrightarrow{u} K^{1,0} \xrightarrow{g} K^{\infty}$, the composition of which will be denoted by $\bar{u}: K^{0} \rightarrow K^{\infty}$; it is known to be homotopic to the standard embedding $B O(k) \rightarrow B O$. Whenever we have a mapping $f: M^{n} \rightarrow P^{n+k}$ with all singularities in a class τ (in our case: regular points only; regular points and folds only; and any singularities), the mapping inducing the stable normal bundle of $f, \nu_{f} \oplus \varepsilon^{N}$: $M \rightarrow B O(N+k) \rightarrow B O$ can be chosen to lie in $K^{\tau}\left(K^{0}, K^{1,0}, K^{\infty}\right.$ respectively $)$.

[^0]Using an alternative construction that gives a space homotopically equivalent to $K^{1,0}$, we can obtain $K^{1,0}$ as the total space of the vector bundle ξ over the base $B=B G_{\Sigma^{1,0}} \approx$ $\mathbb{R} P^{\infty} \times B O(k)$, which has the form

$$
\xi=l \oplus \gamma
$$

with l and γ being the pullbacks of the tautological bundle over $\mathbb{R} P^{\infty}$ and $B O(k)$, respectively, glued to K^{0}. This gives us an embedding $b: B \rightarrow K^{1,0}$, and after factoring out K^{0} by the projection $p: K^{1,0} \rightarrow\left(K^{1,0}, K^{0}\right)$ we obtain an embedding $\bar{b}: B \rightarrow\left(K^{1,0}, K^{0}\right)$. By excision, for all cohomological purposes \bar{b} is the embedding of B into the pair of the unit ball and unit sphere bundles of ξ for a suitable metric, $(D \xi, S \xi)$. For the calculations, we will need to be able to identify the restrictions of the elements of $H^{*}\left(K^{\infty}\right)$ to B, which are the corresponding characteristic classes of the restriction of the virtual normal bundle ν over K^{∞} to B; it can be shown that stably, $\left.\nu\right|_{B} \approx l \otimes \gamma \ominus l$.

The mappings defined above commute in a natural manner, implying the commutativity of the corresponding diagram of cohomology groups in all dimensions. The elements of those groups will be expressed in the terms of the usual generators $w_{I} \in H^{*}(B O)$ in case of K^{0} and K^{∞}, while the elements of $H^{*}(B)$ (and subsequently $H^{*}(D \xi, S \xi)$) will be expressed in the terms of the generators $c \in H^{1}\left(\mathbb{R} P^{\infty}\right)$ and $v_{I}=w_{I}(\gamma) \in H^{*}(B O(k))$.
2. Calculation. The Stiefel-Whitney characteristic classes of the tensor product $l \otimes \gamma$ are easily calculated using the splitting lemma to be

$$
w_{i}(l \otimes \gamma)=\sum_{j=0}^{i}\binom{k-j}{i-j} v_{j} c^{i-j}
$$

Inverting the total Stiefel-Whitney class of l we have

$$
w(-l)=w(l)^{-1}=1+c+c^{2}+\ldots, w_{i}(-l)=c^{i}
$$

so the characteristic classes of the sum are

$$
w_{i}\left(\left.\nu\right|_{B}\right)=\sum_{s=0}^{i} w_{s}(l \otimes \gamma) v_{i-s}(-l)=\sum_{s=0}^{i} \sum_{j=0}^{s}\binom{k-j}{s-j} v_{j} c^{s-j} c^{i-s}=\sum_{j=0}^{i} v_{j} c^{i-j} \sum_{s=j}^{i}\binom{k-j}{s-j} .
$$

If additionally $i \geq k$, then the inner sum takes the form

$$
\sum_{s=j}^{i}\binom{k-j}{s-j}=\binom{k-j}{0}+\cdots+\binom{k-j}{k-j}+0+\cdots+0=2^{k-j}
$$

if $j \leq k$ and is 0 otherwise, so for these values of i we have

$$
w_{i}\left(\left.\nu\right|_{B}\right)=\sum_{j=0}^{k} 2^{k-j} v_{j} c^{i-j}=v_{k} c^{i-k}
$$

Consider now the mapping $b^{*} \circ g^{*}: w_{I} \mapsto w_{I}\left(\left.\nu\right|_{B}\right)$ on monomials with max $I>k$. By the formula derived above, the image will be divisible by $w_{k+1}(\xi)=v_{k} c$, let $a_{I} \in H^{*}(B)$ be such that $b^{*} g^{*} w_{I}=v_{k} c a_{I}$ (if $I=I^{+} \cup I^{-}$with $\max I^{-} \leq k, \min I^{+} \geq k+1$ and $\sum_{i \in I^{+}}(i-k)=S$, then $\left.a_{I}=w_{I^{-}}(\nu) v_{k}^{\left|I^{+}\right|-1} c^{S-1}\right)$. The element $g^{*} w_{I}$ is sent to 0 by u^{*} since $u^{*} g^{*}=\bar{u}^{*}$ annihilates all w_{i} with $i>k$, so by exactness of the horizontal row of our diagram (it is a fragment of the cohomology long exact sequence of the pair $\left(K^{1,0}, K^{0}\right)$) there is a class $U b_{I} \in H^{*}(D \xi, S \xi)$ such that

$$
g^{*} w_{I}=p^{*}\left(U b_{I}\right)
$$

Applying b^{*} to both sides of this equation, we get that $v_{k} c a_{I}=b^{*} g^{*} w_{I}=b^{*} p^{*}\left(U b_{I}\right)=$ $\bar{b}^{*}\left(U b_{I}\right)=v_{k} c b_{I}$. Since $H^{*}(B)$ has no zero divisors, this implies $a_{I}=b_{I}$ and hence

$$
\begin{equation*}
g^{*} w_{I}=p^{*}\left(U a_{I}\right) \tag{1}
\end{equation*}
$$

The mapping p^{*} is injective given that even $\bar{p}^{*}=b^{*} \circ p^{*}$ is injective, so

$$
g^{*} \sum_{I \in \mathcal{I}} w_{I}=p^{*} \sum_{I \in \mathcal{I}} U a_{I}=0 \Leftrightarrow \sum_{I \in \mathcal{I}} a_{I}=0
$$

if all of the index sets I satisfied max $I>k$ to begin with. However, for max $I \leq k$ we have $u^{*} g^{*} w_{I}=\bar{u}^{*} w_{I}=w_{I}$, so if a class in $H^{*}\left(K^{\infty}\right)$ lies in the kernel of g^{*}, then all of its monomials (with non-zero coefficients) have to satisfy $\max I>k$.
Theorem 1. The avoiding ideal \mathcal{A} for the singularity $\Sigma^{1,1}$ is generated as an $H^{*}\left(K^{\infty}\right)$ ideal by the set

$$
\left\{w_{k+l} w_{k+m}+w_{k+q} w_{k+r} \mid l, m, q, r \geq 0 \text { and } l+m=q+r \geq 2\right\} .
$$

Proof. Denote by

$$
\mathcal{B}=\left(w_{k+l} w_{k+m}+w_{k+q} w_{k+r} \mid l, m, q, r \geq 0 \text { and } l+m=q+r \geq 2\right)_{H^{*}\left(K^{\infty}\right)}
$$

the ideal generated by the elements given in the statement of the theorem. It is easy to see that $\mathcal{B} \subset \operatorname{ker} \bar{u}^{*}$ and

$$
a_{\{k+l, k+m\}}=v_{k}^{2} c^{l+m}=v_{k}^{2} c^{q+r}=a_{\{k+q, k+r\}}
$$

holds for all the quartuples (l, m, q, r) involved, so by equality (1)

$$
\mathcal{B} \subseteq \mathcal{A}
$$

To finish the proof, it is sufficient to verify that

$$
\begin{equation*}
\operatorname{rank} \mathcal{A}^{n} \leq \operatorname{rank} \mathcal{B}^{n} \text { for all } n \tag{2}
\end{equation*}
$$

The left hand side can be calculated from the fact that $\operatorname{ker} g^{*}=\operatorname{ker} b^{*} g^{*}$.
Indeed, if $b^{*} g^{*} \alpha=0$ for some $\alpha \in H^{*}(B O)$, then set $\alpha^{-}=\bar{u}^{*} \alpha \in H^{*}(B O(k)) \subset$ $H^{*}(B O)$ and $\alpha^{+}=\alpha-\alpha^{-}$. We have $b^{*} g^{*} \alpha=\alpha(\nu)=\alpha^{-}(\nu)+\alpha^{+}(\nu)$. Observe that the mapping $H^{*}(B O(k)) \ni \alpha^{-} \mapsto \alpha^{-}(\nu) \in H^{*}(B)$ is the sum of coordinate maps $w_{I} \mapsto$ $w_{I}(l \otimes \gamma-l)=w_{I}(\gamma)+c \cdot(\ldots)$, so $\alpha^{-}(\nu)$ written in the basis we use will contain every v_{I} for which α^{-}contains w_{I}. On the other hand, all of the monomials of $\alpha^{+}(\nu)$ contain c (since all $w_{k+1+a}(\nu)=c c^{a} v_{k}$ do), so if $b^{*} g^{*} \alpha=0$, then $\alpha^{-}=0$. By (1) we then have $g^{*} \alpha=g^{*} \alpha^{+}=p^{*}\left(U \alpha(\nu) / v_{k} c\right)=0$ and $\alpha \in \operatorname{ker} g^{*}$.

To calculate the image of $b^{*} g^{*}$, we know that $b^{*} g^{*} w_{I}=w_{I}(\nu)$, in particular,

$$
b^{*} g^{*} w_{k+a} w_{I}=v_{k} c^{a} w_{I}(\nu) .
$$

If we choose any I with $\max I \leq k$, then $w_{I}(\nu)=v_{I}+c \cdot(\ldots)$ shows that $b^{*} g^{*}$ is onto the factor ring $H^{*}(B O(k))=H^{*}(B) /(c)$, and $w_{k+a} w_{I}(\nu)=v_{k} v_{I} c^{a}+c^{a+1} \cdot(\ldots)$ shows that the image of $b^{*} g^{*}$ in the slice $c^{a} H^{*}(B O(k))=c^{a} H^{*}(B) /\left(c^{a+1}\right)$ contains exactly the elements divisible by v_{k}. Thus the image of $b^{*} g^{*}$ is spanned by w_{I}, $\max I \leq k$ and $c^{a} w_{I}$, $\max I=k$.

Therefore

$$
\begin{aligned}
\operatorname{rank} \mathcal{A}^{n}= & \operatorname{rank} \operatorname{ker} g^{n}=\operatorname{rank} \operatorname{ker} b^{n} g^{n}=\operatorname{rank} H^{n}\left(K^{\infty}\right)-\operatorname{rank} \operatorname{im} b^{n} \circ g^{n} \\
= & \left|\left\{a_{0} \geq \cdots \geq a_{m} \geq 0 \mid n=a_{0}+\cdots+a_{m}\right\}\right| \\
& \quad-\left|\left\{k \geq a_{0} \geq \cdots \geq a_{m} \geq 0 \mid n=a_{0}+\cdots+a_{m}\right\}\right| \\
& \quad-\left|\left\{k=a_{0} \geq \cdots \geq a_{m} \geq 0 \mid n \geq a_{0}+\cdots+a_{m}\right\}\right| \\
= & \mid\left\{a_{0} \geq \cdots \geq a_{m} \geq 0 \mid a_{0}>k \text { and } n=a_{0}+\cdots+a_{m}\right\} \mid \\
& \quad-\left|\left\{a_{0}^{\prime}>k \geq a_{1} \geq \cdots \geq a_{m} \geq 0 \mid n=a_{0}^{\prime}+a_{1}+\cdots+a_{m}\right\}\right| \\
= & \mid\left\{a_{0} \geq \cdots \geq a_{m} \geq 0 \mid a_{1}>k \text { and } n=a_{0}+\cdots+a_{m}\right\} \mid .
\end{aligned}
$$

The right hand side of (2) can be estimated similarly, once we observe that the elements of $H^{n}(B O) / \mathcal{B}^{n}$ can be represented as sums of monomials w_{I} or $w_{k+a} w_{I}$ with $\max I \leq k$: indeed, if a monomial has the form $w_{k+a} w_{k+b} \hat{w}$, we can change it by $\left(w_{k+a} w_{k+b}+w_{k+a+b} w_{k}\right) \hat{w} \in \mathcal{B}$ to get an equivalent representation $w_{k+a+b} w_{k} \hat{w}$ with less indices larger than k. Thus we have rank $H^{n}\left(K^{\infty}\right) / \mathcal{B}^{n} \leq \operatorname{rank} \operatorname{im} b^{n} \circ g^{n}$ (the number of words $c^{a} w_{k} w_{I}$ with max $I \leq k$ is the same as the number of words $w_{k+a} w_{I}$ with $\max I \leq k$), implying
$\operatorname{rank} \mathcal{B}^{n}=\operatorname{rank} H^{n}(B O)-\operatorname{rank} H^{n}(B O) / \mathcal{B}^{n} \geq \operatorname{rank} H^{n}\left(K^{\infty}\right)-\operatorname{rank} b^{n} \circ g^{n}=\operatorname{rank} \mathcal{A}^{n}$ and (2) holds, completing the proof.

As an immediate consequence, we obtain the following corollary which allows us to efficiently decide whether a characteristic number lies in the avoiding ideal or not:

Corollary 2. The avoiding ideal for the singularity $\Sigma^{1,1}$ consists of elements

$$
\sum_{I \in \mathcal{I}} w_{I} \text { such that } \sum_{I \in \mathcal{I}} c^{S} w_{k}^{\left|I^{+}\right|} w_{I \backslash I^{+}}=0
$$

where \mathcal{I} contains only index sets I with $\max I>k, I^{+}$denotes $\bigcup\{J \subseteq I \mid \min J>k\}$ and $S=\sum_{i \in I^{+}}(i-k)$.
3. Fold maps of projective spaces. As an application of Theorem 1, we will consider maps of projective spaces into Euclidean space. If we have a mapping $f: M^{n} \rightarrow \mathbb{R}^{n+k}$ with only regular points and folds, then the classifying map of its stable normal bundle $\nu_{f}: M \rightarrow B O$ is homotopic to a composition of a suitable $\tilde{\nu}_{f}: M \rightarrow K^{1,0}$ and the canonical embedding $g: K^{1,0} \rightarrow K^{\infty}$. Hence the induced mapping in cohomology $-\left(\nu_{f}\right)$: $H^{*}(B O) \rightarrow H^{*}(M)$ decomposes as $-\left(\nu_{f}\right)=\left(\tilde{\nu}_{f}\right)^{*} \circ g^{*}$ and consequently ker $-\left(\nu_{f}\right) \supseteq$ ker g^{*}. In particular, all elements $\alpha(l, m, q, r)=w_{l} w_{m}+w_{q} w_{r}$ with $l+m=q+r \geq 2 k+2$, $l, m, q, r \geq k$, must evaluate to 0 on ν_{f}. When we choose $M=\mathbb{R} P^{n}$, then this evaluation is particularly easy to compute since if we denote by a the generator of $H^{1}\left(\mathbb{R} P^{n}\right)$ and $n=2^{s}+t$ is the unique decomposition of n such that s and $m<2^{s}$ are nonnegative integers, then $a^{n+1}=0$ and hence

$$
\begin{align*}
w\left(\nu_{f}\right) & =w\left(-\tau_{\mathbb{R} P^{n}}\right)=(1+a)^{-n-1}=\left(1+a^{2^{s+1}}\right)(1+a)^{-n-1}=(1+a)^{2^{s+1}}(1+a)^{-n-1} \\
& =\sum_{j=0}^{n}\binom{2^{s+1}-n-1}{j} a^{j}=\sum_{j=0}^{n}\binom{2^{s}-t-1}{j} a^{j} \tag{3}
\end{align*}
$$

Therefore $\alpha(l, m, q, r)\left(\nu_{f}\right)=\left(\binom{2^{s}-t-1}{k+l}\binom{2^{s}-t-1}{k+m}+\binom{2^{s}-t-1}{k+q}\binom{2^{s}-t-1}{k+r}\right) a^{2 k+l+m}$ is null if and only if $\binom{2^{s}-t-1}{k+l}\binom{2^{s}-t-1}{k+m}+\binom{2^{s}-t-1}{k+q}\binom{2^{s}-t-1}{k+r}$ is even or $2 k+l+m>n$. If we produce an $\alpha(l, m, q, r)$ that does not evaluate to 0 , then the first k for which this element will be in \mathcal{A} is the minimum of $\{l, m, q, r\}$, so we need to maximize this quantity in order to optimize our estimate on k.

If $t>\frac{2^{s}}{3}$, then the maximal j in the sum (3) for which the corresponding term is nonzero is $2^{s}-t-1<\frac{n}{2}$, so the best α which does not evaluate to 0 is $\alpha\left(2^{s}-t-2,2^{s}-\right.$ $\left.t, 2^{s}-t-1,2^{s}-t-1\right)=\left(0+\binom{2^{s}-t-1}{2^{s}-t-1}\right) a^{2^{s+1}-2 t}=a^{2^{s+1}-2 t} \neq 0$, and we have to consider this element if $k \leq 2^{s}-t-2$. Hence in this case, the existence of a fold map from $\mathbb{R} P^{n}$ to \mathbb{R}^{n+k} implies $k \geq 2^{s}-t-1=2^{s+1}-n-1$.

If $t<\frac{2^{s}}{3}$, the calculation is less obvious. All $\alpha(l, m, q, r)$ with $l+m>n$ evaluate to 0 by virtue of being elements of $H^{l+m}\left(\mathbb{R} P^{n}\right)$, so we can assume that $l+m \leq n$. Start listing the values

$$
\binom{2^{s}-t-1}{\left\lfloor\frac{n}{2}\right\rfloor},\binom{2^{s}-t-1}{\left\lfloor\frac{n}{2}\right\rfloor-1},\binom{2^{s}-t-1}{\left\lfloor\frac{n}{2}\right\rfloor-2}, \ldots,\binom{2^{s}-t-1}{\left\lfloor\frac{n}{2}\right\rfloor-h}
$$

and assume that the first h elements of this sequence have the same parity while the next one has the opposite parity. If the sequence starts with even elements, then it is clear that any term $w_{b} w_{c}$ which does not evaluate to zero has $\min \{b, c\} \leq\left\lfloor\frac{n}{2}\right\rfloor-h$, and an optimal α is either $\alpha(j, j+i, j+1, j+i-1)$ with an i such that $h<i \leq n-j$ and $\binom{2^{s}-t-1}{j+i}$ is odd, or $\alpha(j-1, j+1, j, j)$ with $j=\left\lfloor\frac{n}{2}\right\rfloor-h$ if there is no such i. If the sequence starts with odd elements, then the same argument with the roles of 0 and a^{b+c} reversed gives us that an optimal α is either $\alpha(j, j+i, j+1, j+i-1)$ with an i such that $h<i \leq n-j$ and $\binom{2^{s}-t-1}{j+i}$ is even, or $\alpha(j-1, j+1, j, j)$ with $j=\left\lfloor\frac{n}{2}\right\rfloor-h$ if there is no such i.

Therefore, we have to investigate the parity of $F(j)=\binom{2^{s}-t-1}{j}$ for values of j close to $n / 2$, and for that, we need to look at the binary expansions of $2^{s}-t-1$ and j : by [4], a binomial coefficient $\binom{b}{c}$ is odd precisely when the binary expansion of b has digits 1 at all the places where the binary expansion of c has digits 1 . Given the binary expansion of $n=2^{s}+t$ we can obtain the binary expansion of $2^{s+1}-n-1=\underset{s+1}{1 \ldots 1_{2}}-n$ by bitwise negation, and the binary expansion of $\left\lfloor\frac{n}{2}\right\rfloor$ is obtained by shifting right by one position. This implies that $F(\lfloor n / 2\rfloor)$ is odd precisely when the binary expansion of n does not contain the substring ...11..., and according to this we have two cases.
n contains ...11..., first at position $u: n=2^{u}(8 a+3)+b$ with u maximal and $0 \leq b<2^{u}$. Then decreasing j starting from $\lfloor n / 2\rfloor$ we will get even values of $F(j)$ until the decrease does not affect the $u^{t h}$ digit since this is the highest 1 at a place where $2^{s}-t-1$ has a 0 ; once that location is reached, the highest value of j for which $F(j)$ is odd has to copy the rest of the string from $2^{s}-t-1$, that is, $j=2^{u+2} a+2^{u}-1-b>\frac{n}{2}-2^{u+1}$. Increasing j, on the other hand, does not change the parity of $F(j)$ as long as $j<2^{u+2}(a+1)$ due to either the $u^{t h}$ or the $u+1^{\text {st }}$ digit, which is more than 2^{u+1} steps so we don't get a better estimate on k than $k \geq j-1=2^{u+2} a+2^{u}-b-2$.
n does not contain $\ldots 11 \ldots$. In this case we first deal with the case of n odd; $2^{s}-t-1$ is even and both $\lfloor n / 2\rfloor-1$ and $\lfloor n / 2\rfloor+1$ are odd, so the sharpest possible estimate holds, $k \geq \frac{n-3}{2}$. And if $n \in 2^{p+1} \mathbb{Z}+2^{p}, p>0$, it is easy to see that increasing j first produces a parity change after 2^{p-1} steps and decreasing j does the same after $2^{p-1}+1$ steps, so the estimate is $k \leq \frac{n}{2}-2^{p-1}-1$.

We have thus proved the following result:
Theorem 3. If there exists a fold map $\mathbb{R} P^{n} \rightarrow \mathbb{R}^{n+k}$, then

$$
k \geq \begin{cases}2^{s+1}-n-2 & \text { if } \frac{4}{3} 2^{s}<n<2^{s+1}, \\ \left\lfloor\frac{n}{2}\right\rfloor-1 & \text { if } 2^{s}<n<\frac{4}{3} 2^{s} \text { is odd and } \forall u\left\lfloor\frac{n}{2^{u}}\right\rfloor \not \equiv 3 \bmod 4, \\ \frac{n}{2}-2^{p-1} & \text { if } 2^{s-1}<n=2^{p} m<2^{s} \frac{4}{3} \text { with } p>0, \text { odd } m \\ & \text { and } \forall u\left\lfloor\frac{n}{2^{u}}\right\rfloor \not \equiv 3 \bmod 4, \\ 2^{u+2} a+2^{u}-b-2 & \text { if } n=2^{u}(8 a+3)+b \text { with } 0 \leq b<2^{u} \text { and } u \text { maximal. }\end{cases}
$$

Remark. When $t>2^{s} / 3$, our estimate on the codimension is one less than the geometric dimension of the stable normal bundle of $\mathbb{R} P^{n}$, so allowing fold singularities does not decrease the necessary codimension for a mapping to \mathbb{R}^{n+k} to exist by more than 1 compared to the analogous estimate for immersions. In the case $0<t<2^{s} / 3$ this is no longer the case, but our estimate stays close to the sharpest possible value $k=\lfloor n / 2\rfloor$, for which any generic mapping can only have fold singularities anyway: the restriction on t implies $p \leq s-2 \Rightarrow k>3 n / 8$ in the second and third cases as well as $a \geq 2 \Rightarrow$ $2^{u+2} a+2^{u}-b-2=\frac{n}{2}-\left(2^{u-1}+\frac{3 b}{2}+2\right) \geq \frac{n}{2}-\left(2^{u+1}+\frac{1}{2}\right)>\frac{3 n}{8}$ in the last case with the sole exception of $n=19$ (alternatively, $k \geq 7 n / 19$ for all n).
4. Fold bordism groups. We will simply combine several previously known results. The trivial adaptation of [6, Theorem 14] to the case of unoriented manifolds reduces the calculation of the group $C^{1,0}(n, k)$ to the calculation of the bordism group $\mathfrak{N}_{n+k}\left(X_{\Sigma^{1,0}}\right)$.

By [1, Theorem 1.9],

$$
\mathfrak{N}_{n+k}\left(X_{\Sigma^{1,0}}\right) \approx\left(H_{*}\left(X_{\Sigma^{1,0}} ; \mathbb{Z}_{2}\right) \otimes \mathfrak{N}_{*}\right)_{n+k}
$$

[6, Corollary 72] expresses $X_{\Sigma^{1,0}}$ as $\Gamma T \nu^{k}$ with ν^{k} a bundle over $K^{1,0}$, so we can apply the results of [2] to calculate the ranks of $H_{*}\left(X_{\Sigma^{1,0}} ; \mathbb{Z}_{2}\right)$ from an additive basis of $\bar{H}_{*}\left(T \nu^{k}\right) \approx$ $H_{*-k}\left(K^{1,0}\right)$ (and Theorem 1 provides us with one). As a result, we obtain the following:
Theorem 4. $C^{1,0}(n, k) \approx \mathbb{Z}_{2}^{r_{n, k}}$, where $r_{n, k}$ is the number of different sets of multiindex pairs and a partition $\left\{\left(I_{1}, J_{1}\right), \ldots,\left(I_{s}, J_{s}\right), d_{1}, \ldots, d_{u}\right\}$ such that

- Each $J_{m}=\left(j_{m, 0} \geq j_{m, 1} \geq \ldots \geq j_{m, s_{m}}\right)$ consists of positive indices with $j_{m, 1} \leq k$.
- Each I_{m} is either empty or $I_{m}=\left(i_{m, 1} \geq \ldots \geq i_{m, t_{m}}>0\right)$ with $i_{m, 1} \leq 2 i_{m, 2}, \ldots$, $i_{m, t_{m}-1} \leq 2 i_{m, t_{m}}$.
- If I_{m} is not empty, then $i_{m, 1}-i_{m, 2}-\ldots-i_{m, t_{m}}>j_{m, 0}+\ldots+j_{m, s_{m}}+k$.
- $\sum_{m}\left(i_{m, 1}+\ldots+i_{m, t_{m}}+j_{m, 0}+\ldots+j_{m, s_{m}}\right)=n-d_{1}-\ldots-d_{u}$.
- $d_{1} \geq d_{2} \geq \ldots \geq d_{u}>0$ do not contain numbers of form $2^{v}-1$.

Proof. We have

$$
C^{1,0}(n, k) \approx \mathfrak{N}_{n+k}\left(X_{\Sigma^{1,0}}\right) \approx \bigoplus \mathfrak{N}_{d} \otimes H_{n+k-d}(\Gamma T \nu)
$$

\mathfrak{N}_{d} is a free \mathbb{Z}_{2}-module with a basis enumerated by partitions of d into natural numbers not of the form $2^{v}-1$, and $\bar{H}_{*}(\Gamma T \nu)$ has an additive basis consisting of products of admissible elements of the form $Q^{I}(\Phi a)$ with Φ the Thom isomorphism of ν and a chosen from an additive basis of $H_{*}\left(K^{1,0} ; \mathbb{Z}_{2}\right) \approx H^{*}\left(K^{1,0} ; \mathbb{Z}_{2}\right)$ with all a homogeneous. Choosing this basis to be the elements of the form $g^{*} w_{J}$ with $\max (J \backslash\{\max J\}) \leq k$ as in the proof of Theorem 1, we obtain exactly our claim.
Remark. While this rank is clearly calculable for every n and k, it does not seem to have a closed form that would ease its handling.

References

[1] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Bull. Amer. Math. Soc. 68 (1962), 76-86.
[2] E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88.
[3] T. Ekholm, A. Szűcs and T. Terpai, Cobordism of fold maps and maps with prescribed number of cusps, Kyushu Journal of Mathematics 61 (2007), 395-414.
[4] J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Pure Appl. Math. 30 (1899), 150-156.
[5] M. Kazarian, Characteristic classes in singularity theory, Moscow 2003, Habilitation Dissertation (in Russian), http://mi.ras.ru/~kazarian/
[6] A. Szűcs, Cobordism of singular maps, Geometry and Topology 12 (2008), 2379-2452.

[^0]: 2000 Mathematics Subject Classification: Primary 57R45; Secondary 57R19, 57R90.
 Key words and phrases: avoiding ideal, cusp, fold map.
 The paper is in final form and no version of it will be published elsewhere.

