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the problem to a Navier-Stokes system on a fixed exterior domain and a subsequent linearization

we are led to a modified Oseen system with two additional terms one of which is not subordinate

to the Laplacean.

In this paper we describe two different approaches to this problem in the whole space case.

One of them is based on a variational method in L2-spaces with weights reflecting the anisotropic

behaviour of the Oseen fundamental solution. The other approach uses weighted multiplier

theory, interpolation and Littlewood-Paley theory to get a priori estimates in anisotropically

weighted Lq-spaces.

1. Introduction. Consider a three-dimensional rigid body K ⊂⊂ R3 rotating with
angular velocity ωωωω = ω(0, 0, 1)T , ω 6= 0, and assume that the complement R3 \ K is
filled with a viscous incompressible fluid modelled by the Navier-Stokes equations. We
will analyze the viscous flow either past the rotating body K with velocity u∞ = ke3 6= 0
at infinity or around a rotating body K which is moving in the direction of its axis of
rotation with velocity −u∞. Given the coefficient of viscosity ν > 0 and an external force
f̃ = f̃(y, t), we are looking for the velocity v = v(y, t) and the pressure q = q(y, t) solving
the nonlinear system

vt − ν∆v + v · ∇v +∇q = f̃ in Ω(t), t > 0,

div v = 0 in Ω(t), t > 0,

v(y, t) = ωωωω × y on ∂Ω(t), t > 0,

v(y, t)→ u∞ 6= 0 as |y| → ∞.

(1.1)

Here the time-dependent exterior domain Ω(t) is given—due to the rotation with angular
velocity ωωωω—by

Ω(t) = Oωω(t)Ω

where Ω ⊂ R3 is a fixed exterior domain and Oωω(t) denotes the orthogonal matrix

Oωω(t) =

cosωt − sinωt 0
sinωt cosωt 0

0 0 1

 . (1.2)

Introducing the change of variables and the new functions

x = OTωω (t)y and u(x, t) = OTωω (t)(v(y, t)− u∞), p(x, t) = q(y, t), (1.3)

respectively, as well as the force term f(x, t) = OTωω (t)f̃(y, t) we arrive at the modified
Navier-Stokes system

ut − ν∆u + u · ∇u + k∂3u

−(ωωωω × x) · ∇u + ωωωω × u +∇p = f in Ω× (0,∞),

div u = 0 in Ω× (0,∞),

u(x, t)→ 0 as |x| → ∞,

(1.4)

with boundary condition u(x, t) = ωωωω × x − u∞ on ∂Ω in the exterior time-independent
domain Ω.

Due to the new coordinate system attached to the rotating body the nonlinear system
(1.4) contains two new linear terms, the classical Coriolis force term ωωωω × u (up to a
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multiplicative constant) and the term (ωωωω × x) · ∇u which is not subordinate to the
Laplacean in unbounded domains. Linearizing (1.4) in u at u ≡ 0 and considering only
the stationary problem we arrive at the modified Oseen system

−ν∆u + k∂3u− (ωωωω × x) · ∇u + ωωωω × u +∇p = f in Ω,

div u = 0 in Ω,

u→ 0 at ∞,
(1.5)

together with the boundary condition u(x, t) = ωωωω×x−u∞ on ∂Ω. Note that there is no
boundary condition in the case Ω = R3.

In our paper we follow two different ways to handle this problem in R3. The first
approach in an L2-setting uses variational calculus. This viewpoint has already been
applied in [3] by R. Farwig and in [29, 30] by S. Kračmar and P. Penel to solve the scalar
model equations

−ν∆u+ k∂3u = f in Ω

and—with a given non-constant and, in general, non-solenoidal vector function a—

−ν∆u+ k∂3u− a · ∇u = f in Ω,

respectively, in an exterior domain Ω, together with the boundary conditions u = 0 on
∂Ω and u→ 0 as |x| → ∞.

Secondly, to consider more general weights in Lq-spaces, we apply weighted multiplier
and Littlewood-Paley theory as well as the theory of one-sided Muckenhoupt weights
corresponding to one-sided maximal functions. This approach was introduced firstly by
Farwig, Hishida, Müller [7] for the case u∞ = 0 and in [4], [5] when u∞ 6= 0 without
weights and then extended to the weighted case by Krbec, Farwig, Nečasová [8], [9] and
Nečasová, Schumacher [35].

The paper is organized as follows. Section 2 introduces some necessary notation and
preliminaries, mainly on weighted function spaces and techniques to deal with operators
on them. The main results are presented in Section 3. Next, Section 4 discusses the
question of uniqueness. Sections 5 and 6 deal with the (outline of) proofs for the weighted
L2-results and weighted Lq-results, respectively. Finally, we resume the main differences
of the two different approaches in Section 7.

2. Notations and preliminaries

2.1. Anisotropic weights. To reflect the decay properties near infinity we introduce the
following weight functions:

w(x) = ηαβ = ηα,δβ,ε (x) = (1 + δr)α (1 + εs)β ,

with r = r(x) = |x| = (
∑3
i=1 x

2
i )

1/2, s = s(x) = r − x3 where x ∈ R3, ε, δ > 0, α, β ∈ R.
For suitable exponents α and β the corresponding weighted spaces Lq(R3; w) will give
the appropriate framework to solve (1.5).

We recall the definition of the classical Muckenhoupt class A2 based on cubes (i.e. open
bounded axiparallel cubes Q), which we will use in the L2 framework. In order to apply
estimates for singular integral operators, multiplier operators and maximal operators,
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the weight function w will be supposed to satisfy the Muckenhoupt A2-condition. Let us
mention that ηα,δβ,ε (x) belongs to the class A2 in R3 if −1 < β < 1 and −3 < α+ β < 3.

Definition 2.1. A weight function 0 ≤ w ∈ L1
loc belongs to the Muckenhoupt class A2

if there exists a constant C > 0 such that

sup
Q

(
1
|Q|

∫
Q

w(x) dx
)(

1
|Q|

∫
Q

w−1 dx
)
≤ C < +∞.

Concerning the weight functions ηαβ , we will use the two notations ηαβ (x) and ηα,δβ,ε (x)
taking advantage of the following estimate: For any δ1, δ2, ε1, ε2 > 0 one has

cmin · ηα,δ2β,ε2
≤ ηα,δ1β,ε1

≤ cmax · ηα,δ2β,ε2
, (2.1)

where cmin = min(1, ( δ1δ2 )α) · min(1, ( ε1ε2 )β), cmax = max(1, ( δ1δ2 )α) · max(1, ( ε1ε2 )β). The
parameters δ and ε are useful to rescale separately the isotropic and anisotropic parts of
the weight function ηαβ .

Now, we define more general Muckenhoupt classes of weights; for further details see
e.g. Sawyer [38]. In particular, we will use the weight w = ηα,1β,1 .

Definition 2.2. LetR be a collection of bounded sets R in Rn, each of positive Lebesgue
measure |R|. A weight function 0 ≤ w ∈ L1

loc belongs to the Muckenhoupt class Aq(R) =
Aq(Rn,R), 1 ≤ q <∞, if there exists a constant C > 0 such that

sup
R

(
1
|R|

∫
R

w(x) dx
)(

1
|R|

∫
R

w(x)−1/(q−1) dx
)q−1

≤ C,

if 1 < q <∞, and

sup
R∈R, R3x0

1
|R|

∫
R

w(x) dx ≤ Cw(x0) for a.a. x0 ∈ Rn,

if q = 1, respectively.

Due to the anisotropic nature of our problem the standard Muckenhoupt class Aq(C) =
Aq(R3, C), where C is the set of all cubes Q ⊂ R3 with edges parallel to the coordinate
axes, is not suitable. Actually, we have to work with a variant where C is replaced by
J , the set of all bounded axiparallel intervals (rectangles) in R3, leading to the class
Aq(J ) = Aq(R3,J ). Obviously, Aq(R3,J ) ( Aq(R3, C).

In addition to that, for a more precise description of the anisotropy of the wake region
in terms of weights we have to introduce a suitable “hybrid Muckenhoupt class”. Roughly
speaking, such weights satisfy the Muckenhoupt condition on R3 and their restrictions to
the third variable belong to the one-sided Muckenhoupt class corresponding to one-sided
maximal operators on the real line and are uniform with respect to the radius of the
rotation, see Definition 2.3, Theorem 2.7 and Lemma 2.8 below.

Definition 2.3. (i) For every locally integrable function u on the real line let M+u be
defined by

M+u(x) = sup
h>0

1
h

∫ x+h

x

|u(t)| dt.
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Analogously,

M−u(x) = sup
h>0

1
h

∫ x

x−h
|u(t)| dt.

(ii) A weight function 0 ≤ w ∈ L1
loc(R) lies in the weight class A−1 if there exists a

constant c > 0 such that M+w(x) ≤ cw(x) for almost all x ∈ R. Analogously, w ∈ A+
1 if

and only if M−w(x) ≤ cw(x) for almost all x ∈ R. The smallest constant c ≥ 0 satisfying
M±w(x) ≤ cw(x) for almost all x ∈ R is called the A∓1 -constant of w.

(iii) A weight function 0 ≤ w ∈ L1
loc belongs to the one-sided Muckenhoupt class A+

q ,
1 < q <∞, if there exists a constant C > 0 such that for all x ∈ R

sup
h>0

(
1
h

∫ x

x−h
w(t) dt

)(
1
h

∫ x+h

x

w(t)−1/(q−1) dt

)q−1

≤ C.

The smallest constant C ≥ 0 satisfying this estimate is called the A+
q -constant of w. By

analogy, we define the set of weights A−q and the A−q -constant of a weight in A−q .

Now we are in a position to describe the most general weights considered in this paper.
Note that these weights are independent of the angular variable θ in the cylindrical
coordinate system (r, θ, x3) ∈ [0,∞) × [0, 2π] × R attached to the axis of revolution
e3 = (0, 0, 1)T . Hence we will write w(x) = w(x1, x2, x3) = wr(x3) for r = |(x1, x2)|,
x = (x1, x2, x3).

Definition 2.4. For 1 ≤ q <∞ let

Ã−q = Ã−q (R3) = {w ∈ Aq(R3) : w is θ-independent for a.a. r > 0,

w(x1, x2, ·) = wr(·) ∈ A−q (R)

with A−q (R)-constant essentially bounded in r}.

2.2. Function spaces. Let us outline our notations. Let Ω be an exterior domain with
boundary satisfying the cone property or the whole space R3, and

Ŵm,q (Ω) =
{
u ∈ L1

loc (Ω) : Dlu ∈ Lq (Ω) , |l| = m
}

equipped with the seminorm |u|m,q = (
∑
|l|=m

∫
Ω
|u|q)1/q. It is known that Ŵm,q(Ω) is a

Banach space (and, if q = 2, the space Ĥm(Ω) = Ŵm,2(Ω) is a Hilbert space), provided
we identify two functions u1, u2 whenever |u1 − u2|m,q = 0, i.e., u1, u2 differ (at most)
by a polynomial of degree m− 1. As usual, we denote by Ŵm,q

0 (Ω) the closure of C∞0 (Ω)
in Ŵm,q(Ω).

Let (L2(Ω; w))3 be the set of measurable vector functions f = (f1, f2, f3) in Ω such
that

‖f‖22,Ω;w =
∫

Ω

|f |2 w dx <∞.

We will use the notation L2
α,β(Ω) instead of (L2(Ω; ηαβ ))3 and ‖ · ‖2,α,β instead of

‖ · ‖(L2(Ω; ηαβ ))3 . Let us define the weighted Sobolev space H1(Ω; ηα0
β0
, ηα1
β1

) as the set
of functions u ∈ L2

α0,β0
(Ω) with weak derivatives ∂iu ∈ L2

α1,β1
(Ω), i = 1, 2, 3. The norm

of u ∈ H1(Ω; ηα0
β0
, ηα1
β1

) is given by

‖u‖
H1
(

Ω; η
α0
β0
,η
α1
β1

) =
(∫

Ω

|u|2 ηα0
β0
dx +

∫
Ω

|∇u|2 ηα1
β1
dx
)1/2

.
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As usual, H̊1(Ω; ηα0
β0
, ηα1
β1

) will be the closure of C∞0 (Ω) in H1(Ω; ηα0
β0
, ηα1
β1

), where C∞0 (Ω)
is (C∞0 (Ω))3.

For simplicity, we shall use the following abbreviations:

L2
α,β(Ω) instead of (L2(Ω; ηαβ ))3,

‖ · ‖2,α,β instead of ‖ · ‖(L2(Ω; ηαβ ))3 ,

H̊1
α, β(Ω) instead of H̊1(Ω; ηα−1

β−1 , η
α
β ),

Vα,β(Ω) instead of H̊1(Ω; ηα−1
β , ηαβ ).

We shall use these last two Hilbert spaces for α ≥ 0, β > 0, α+ β < 3. As usual, H1(Ω)
and H̊1(Ω) mean the unweighted spaces (H1(Ω; 1, 1))3 and (H̊1(Ω; 1, 1))3, respectively.

We also use the notation of sets BR = {x ∈ R3 : |x| ≤ R}, BR = {x ∈ R3 : |x| ≥ R},
ΩR = BR ∩ Ω, ΩR = BR ∩ Ω, BR1

R2
= BR1 ∩ BR2 , ΩR1

R2
= BR1

R2
∩ Ω, for positive numbers

R, R1, R2.

Finally, for a nonnegative weight function w∈L1
loc we introduce the weighted Lebesgue

space

Lqw(R3) = Lqw =
{
u ∈ L1

loc(R3) : ‖u‖q,w =
(∫

Rn
|u(x)|qw(x) dx

)1/q

<∞
}
.

2.3. Properties of Muckenhoupt weights. To prove Theorem 3.3 below we need several
properties of Muckenhoupt weights and of maximal operators. Recall that J stands for
the set of all non-degenerate rectangles in Rn with edges parallel to the coordinate axes.

Proposition 2.5. (1) Let µ be a non-negative regular Borel measure such that the strong
Hardy-Littlewood maximal operator

MJµ(x) = sup
R∈J , R3x

1
|R|

∫
R

dµ

is finite for almost all x ∈ Rn; here R runs through the collection J of rectangles con-
taining the point x, and |R| denotes the Lebesgue measure of R. Then (MJµ)γ ∈ A1(J )
for all γ ∈ [0, 1).

(2) For all 1 < q < τ we have A1(J ) ⊂ Aq(J ) ⊂ Aτ (J ).
(3) Let 1 < q <∞ and w ∈ Aq(J ). Then there are w1, w2 ∈ A1(J ) such that

w =
w1

wq−1
2

.

Conversely, given w1, w2 ∈ A1(J ), the weight w = w1w
1−q
2 belongs to Aq(J ).

For the proofs see [15, Chapter IV, § 6]. The claim (3) is a variant of Jones’ factor-
ization theorem, see [15, Chapter IV, Theorem 6.8].

For a rapidly decreasing function u ∈ S(Rn) let

Fu(ξξξ) = û(ξξξ) =
1

(2π)n/2

∫
Rn
e−ix·ξξu(x) dx, ξξξ ∈ Rn,

be the Fourier transform of u. Its inverse will be denoted by F−1. Moreover, we define
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the centered Hardy-Littlewood maximal operator

Mu(x) = sup
Q3x

1
|Q|

∫
Q

|u(y)| dy, x ∈ Rn,

for u ∈ L1
loc(Rn) where Q runs through the set of all axiparallel cubes centered at x.

Theorem 2.6. Let 1 < q <∞ and w ∈ Aq(C).

(i) The operator M, defined e.g. on S(Rn), is a bounded operator from Lqw to Lqw.
(ii) Let m ∈ Cn(Rn \ {0}) satisfy the pointwise Hörmander-Mikhlin multiplier condi-

tion
|ξξξ||α| |Dαm(ξξξ)| ≤ cα for all ξξξ ∈ Rn \ {0}

and all multiindices α ∈ Nn0 with |α| ≤ n1 ∈ N, where n1 > n/2. Then the multiplier
operator u 7→ F−1(mû), u ∈ S(Rn), can be extended to a bounded linear operator from
Lqw to Lqw.

(iii) Let m be of class Cn in each “quadrant” of Rn and let a constant B ≥ 0 exist
such that ‖m‖∞ ≤ B,

sup
xk+1,...,xn

∫
I

∣∣∣∣ ∂km(ξξξ)
∂ξ1 · · · ∂ξk

∣∣∣∣ dξ1 · · · dξk ≤ B
for any dyadic interval I in Rk, 1 ≤ k ≤ n, and also for any permutation of the vari-
ables ξ1, . . . , ξk within ξ1, . . . , ξn. If w ∈ Aq(Rn,J ), then m defines a bounded multiplier
operator from Lqw(Rn) to Lqw(Rn).

For the proof of (i) see [15, Theorem IV 2.8], [32, Theorem 9], for (ii) see [15, Theorem
IV 3.9] or [31, Theorem 4]. Note that the pointwise condition on m implies the integral
condition in [15], [31]. For the proof of (iii) see [31].

Concerning one-sided weights and one-sided maximal operators on the real line, see
Definition 2.1, we first recall the following duality property: w ∈ A+

q if and only if
w−q

′/q = w−1/(q−1) ∈ A−q′ . Moreover we will need the following results:

Theorem 2.7 ([38, Theorem 1]). Let 1 < p <∞ and p′ = p
p−1 .

(i) Let w1 ∈ A+
1 , w2 ∈ A−1 . Then w1

wp−1
2
∈ A+

p . Conversely, given w ∈ A+
p there exist

w1 ∈ A+
1 , w2 ∈ A−1 such that w = w1

wp−1
2

.

(ii) The operator M+ is continuous from Lpw(R) to itself if and only if w ∈ A+
p .

Analogously, M− : Lpw(R)→ Lpw(R) if and only if w ∈ A−p .

Obviously, Ap ⊂ A±p where Ap denotes the usual Muckenhoupt class on the real line.
Hence |x|α, (1 + |x|)α ∈ A±p if −1 < α < p − 1, 1 < p < ∞. However, in view of the
anisotropic weight w = ηαβ on R3, see (3.9), we have to consider also one-dimensional
anisotropic weight functions such as

w̃α,β(x) = w̃α,β(x; r) = (r2 + x2)α/2(
√
r2 + x2 − x)β , x ∈ R, r > 0. (2.2)

Lemma 2.8 ([9, Lemma 2.4]). (i) For every r > 0 the univariate weight w̃α,β(x; r) lies in
A−1 if and only if β ≥ 0, α ≤ β and α + β > −1. Moreover, the A−1 -constant of w̃α,β is
uniformly bounded in r.
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(ii) For every r > 0 the univariate weight

wα,β(x) = wα,β(x; r) = (1 + r2 + x2)α/2(1 +
√
r2 + x2 − x)β

lies in A−1 with an A−1 -constant independent of r > 0 if and only if

α ≤ 0 ≤ β and α+ β > −1. (2.3)

(iii) Let 1 < p <∞. Then for every r > 0

wα,β(· ; r) ∈ A+
p for α > −1, β ≤ 0, α+ β < p− 1

wα,β(· ; r) ∈ A−p for α < p− 1, β ≥ 0, α+ β > −1.
(2.4)

Moreover, the A±p -constant is uniformly bounded in r > 0.

3. Main results. Weighted estimates of the solution to the classical stationary Oseen
problem were firstly obtained by R. Finn 1959, see [10], [11], and then improved by
R. Farwig [2], [3] in 1992; see [29] for other comments and references.

The linear system (1.5) with u∞ = 0 and the nonlinear system (1.4) in L2 spaces were
investigated by Hishida [17] and by Galdi and Silvestre [13], [14]. In the work of Galdi
and Silvestre one can find a combination of L2-estimates and pointwise anisotropically
weighted estimates. For a discussion of weak solutions we refer to [6], [24], [25].

Let us assume for a moment that the pressure p is known. In solving the problem
(1.5) with respect to u and p by means of a purely variational approach, we test (1.5)
with w u where w is an appropriate weight function, and get the equation

ν

∫
R3
|∇u|2 wdx + ν

∫
R3

u∇u · ∇w dx− k

2

∫
R3
|u|2 ∂1wdx

−1
2

∫
R3
|u|2 div (w [ωωωω × x]) dx =

∫
R3

f · uw dx−
∫

R3
∇p · uw dx. (3.1)

First, let us note that div(w[ωωωω × x]) equals zero for w = ηαβ . The left hand side can be
estimated from below by

ν

2

∫
R3
|∇u|2w dx +

1
2

∫
R3
|u|2(−ν|∇w|2/w − k∂1w)dx. (3.2)

Since the term −ν|∇w|2/w − k∂1w is known explicitly, we will have the possibility to
estimate it from below by a small negative quantity in the form −C ηα−1

β−1 without any
constraint in s(·), see Lemma 5.3 below.

The first main result of this paper in weighted L2-spaces, see Theorem 3.1 below,
is strongly based on the theorem of Lax-Milgram and an improved weighted Friedrichs-
Poincaré type inequality in H̊1

α, β . This inequality allows to compensate by the viscous
Dirichlet integral the “small” negative contribution in the second integral of (3.2); the
parameters α, β, δ, ε will be specified later.

Theorem 3.1. Let β > 0. There are positive constants R0, c0, c1 depending on α, β, δ,
ε (essentially, c0 = O(ε−2 + δ−2) and c1 = O(ε−1δ−1) for δ and ε tending to zero, for
more details see Lemma 5.3, such that for all v ∈ H̊1

α, β

‖v‖22,α−1,β−1 ≤ c0
∫
BR0

|∇v|2 ηαβ dx + c1

∫
BR0

|∇v|2 ηαβ dx. (3.3)
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Theorem 3.2 (Existence and uniqueness). Let 0 < β ≤ 1, 0 ≤ α < y1β with y1 to
be given in Subsection 5.4 below, see (5.12). Moreover, let f ∈ L2

α+1,β, g ∈ W 1,2
0 with

supp g = K ⊂⊂ R3, and
∫

R3 g dx = 0. Then there exists a unique weak solution {u, p}
of the problem (1.5) such that u ∈ Vα,β, p ∈ L2

α,β−1, ∇p ∈ L2
α+1,β and

‖u‖2,α−1,β + ‖∇u‖2,α,β + ‖p‖2,α,β−1 + ‖∇p‖2,α+1,β ≤ C(‖f‖2,α+1,β + ‖g‖1,2).

In an Lq setting the problem is much more difficult and cannot be handled by a
variational approach. Moreover, it is necessary to use more advanced harmonic analysis
since the integral operators which have to be estimated are not of classical Calderón–
Zygmund type. The linear system (1.5) has been analyzed in classical Lq-spaces, 1 < q <

∞, for the whole space case in [4], [5] proving the a priori -estimate

‖ν∇2u‖q + ‖∇p‖q ≤ c‖f‖q,

‖k∂3u‖q + ‖(ωωωω × x) · ∇u + ωωωω × u‖q ≤ c
(

1 +
k4

ν2|ω|2

)
‖f‖q

(3.4)

with a constant c > 0 independent of ν, k and ωωωω. The corresponding case when u∞ = 0
has recently been analyzed in [6]–[8], [19], [20]. For a more comprehensive introduction
including physical considerations and non-Newtonian fluids we refer to [12].

The main result of the second part of the paper can be formulated by the following
theorem.

Theorem 3.3. Let the weight function 0 ≤ w ∈ L1
loc(R3) be independent of the angular

variable θ and satisfy the following condition depending on q ∈ (1,∞):

2 ≤ q <∞ : wτ ∈ Ã−τq/2 for some τ ∈ [1,∞),

1 < q < 2 : wτ ∈ Ã−τq/2 for some τ ∈
(

2
q ,

2
2−q
]
.

(3.5)

(i) Given f ∈ Lqw(R3)3 there exists a solution (u, p) ∈ L1
loc(R3)3 × L1

loc(R3) of (1.5)
satisfying the estimate

‖ν∇2u‖q,w + ‖∇p‖q,w ≤ c‖f‖q,w, (3.6)

with a constant c = c(q, w) > 0 independent of ν, k and ωωωω.
(ii) Let f ∈ Lq1w1

(R3)3 ∩ Lq2w2
(R3)3 such that both (q1, w1) and (q2, w2) satisfy the con-

ditions (3.5), and let u1,u2 ∈ L1
loc(R3)3 together with corresponding pressure functions

p1, p2 ∈ L1
loc(R3) be solutions of (1.5) satisfying (3.6) for (q1, w1) and (q2, w2), respec-

tively. Then there are α, β ∈ R such that u1 coincides with u2 up to an affine linear field
αe3 + βωωωω × x, α, β ∈ R.

Corollary 3.4. Let the weight function 0 ≤ w ∈ L1
loc(R3) be independent of the angular

variable θ. Moreover, let w satisfy the following condition depending on q ∈ (1,∞):

2 ≤ q <∞ : wτ ∈ Ã−τq/2(J ) for some τ ∈ [1,∞),

1 < q < 2 : wτ ∈ Ã−τq/2(J ) for some τ ∈
(

2
q ,

2
2−q
]
,

(3.7)

where the weight class Ã−τ (J ), 1 ≤ τ <∞, is defined by

Ã−τ (J ) = Ã−τ (R3) ∩Aτ (J ).
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Given f ∈ Lqw(R3)3 there exists a solution (u, p) ∈ L1
loc(R3)3 × L1

loc(R3) of (1.5)
satisfying the estimate

‖k∂3u‖q,w + ‖(ωωωω × x) · u− ωωωω × u‖q,w ≤ c
(

1 +
k5

ν5/2|ω|5/2

)
‖f‖q,w (3.8)

with a constant c = c(q, w) > 0 independent of ν, k and ωωωω.

We remark that the ωωωω-dependent term 1 + k5

ν5/2|ωω|5/2 in (3.8) cannot be avoided in
general; see [5] for an example in the space L2(R3).

As an example of anisotropic weight functions we consider as before

w(x) = ηαβ (x) = (1 + |x|)α(1 + s(x))β , (3.9)

introduced in [2] to analyze the Oseen equations; see also [9], [24].

Corollary 3.5. The a priori estimate (3.6) holds for the anisotropic weights w = ηαβ ,
see (3.9), provided that

2 ≤ q <∞ : − q2 < α < q
2 , 0 ≤ β < q

2 and α+ β > −1,

1 < q < 2 : − q2 < α < q − 1, 0 ≤ β < q − 1 and α+ β > − q2 .

Note that the condition β ≥ 0 will reflect the existence of a wake region in the
downstream direction x3 > 0, where the solution of the original nonlinear problem (1.1)
will decay slower than in the upstream direction x3 < 0.

4. Uniqueness in R3. In this section, we will start with the question of uniqueness of
weak solutions to problem (1.5) in Ω = R3. The approach will also be used in Section 5
in the proof of existence of solenoidal solutions.

Theorem 4.1 (Uniqueness in R3). Let {u, p} be a solution in S ′ of the problem (1.5)
with f = 0, g = 0.

(i) If u ∈ Ĥ1,2
0 and p ∈ L2

loc, then u = 0 and p = const.
(ii) If ∇2u ∈ Lqw(R3)3 where 1 < q <∞ and w ∈ Aq(C), then u = αe3 + βωωωω× x with

constants α, β ∈ R and p = const.

Proof. Because div((ωωωω×x) · ∇u−ωωωω×u) = (ωωωω×x) · ∇div u = 0, we have 4p = 0. Hence,
applying the Laplacean and the Fourier transform we get

4(−ν∆u + k∂3u− (ωωωω × x) · ∇u + ωωωω × u) = 0,

|ξξξ|2(ν|ξξξ|2û + i k ξ3û− (ωωωω × ξξξ) · ∇ξξû + ωωωω × û) = 0 in S ′.

Consider the latter equation in cylindrical coordinates (ξ3, ρ, ϕ) such that (ωωωω× ξξξ) ·∇ξξû =
ω ∂ϕû and let v̂ = T (ϕ)−1û(ξ3, ρ, ϕ), where

T (ϕ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 .

Then v̂ satisfies the equation

|ξξξ|2{−∂ϕv̂ + [(ν/ω)|ξξξ|2 + i(k/ω)ξ3]v̂} = 0 in S ′. (4.1)
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We will show that this equation implies supp v̂ ⊂ {0}; moreover, due to the definition
of v̂ we will also have supp û ⊂ {0}. Hence u is a polynomial of x1, x2, x3. In (i) we
have ∇u ∈ L2, so that the polynomial u belongs to L6. Consequently, u = 0. In (ii) the
polynomial ∇2u ∈ Lqw(R3)27 must vanish so that ∇u is linear. Now it is easily seen that
there exists constants α, β ∈ R such that u = αe3 + ωωωω × x, for the complete proof of
part (ii) see [4, Theorem 1.1 (2)]. Moreover, in both cases, (1.5) implies that ∇p = 0 and
p = const.

So, we have to prove that an arbitrary vector function Ψ ∈ C∞0 (R3 \ {0}) satisfies
〈v̂,Ψ〉 = 0. If for each Ψ ∈ C∞0 (R3 \ {0}) there is a function Φ ∈ C∞0 (R3 \ {0}) such that

∂ϕ(|ξξξ|2Φ) + [(ν/ω)|ξξξ|2 + i(k/ω)ξ3](|ξξξ|2Φ) = Ψ, (4.2)

then (4.1) implies that

0 = 〈|ξξξ|2{−∂ϕv̂ + [(ν/ω)|ξξξ|2 + i(k/ω)ξ3]v̂},Φ〉
= 〈v̂, ∂ϕ(|ξξξ|2Φ) + [(ν/ω)|ξξξ|2 + i(k/ω)ξ3](|ξξξ|2Φ)〉 = 〈v̂,Ψ〉.

Hence, the proof of supp v̂ ⊂ {0} is reduced to the solvability of (4.2).
First we note that it is sufficient to solve the equation

∂ϕζζζ + ((ν/ω)|ξξξ|2 + i(k/ω)ξ3)ζζζ = Ψ, (4.3)

for the division by the expression |ξξξ|2 defines a one-to-one correspondence of the space
C∞0 (R3 \ {0}) onto itself. Finally, the solvability of (4.3) in C∞0 (R3 \ {0}) follows from
standard arguments on ordinary differential equations.

5. Existence of a solution in R3. In this section we will construct a weak solution of
the problem (1.5) assuming that g = 0.

5.1. Existence of the pressure in R3 for a solenoidal solution. If there exist distributions
u, p satisfying

−ν∆u + k ∂3u− (ωωωω × x) · ∇u + ωωωω × u +∇p = f in R3,

div u = 0 in R3,

then the pressure p satisfies the equation

4p = div f , (5.1)

for div((ωωωω × x) · ∇u− ωωωω × u) = (ωωωω × x) · ∇div u = 0, and div(∆u + k ∂3u) = 0.
Let E be the fundamental solution of the Laplace equation, i.e. E = −1/(4πr). As-

suming firstly f ∈ C∞0 we have p = E ? div f and ∇p = ∇E ? div f and so, p = ∇E ? f and
∇p = ∇2E ? f . It is well known that both formulas can be extended to f ∈ L2

α+1, β with
0 < β < 1 and −2 < α + β < 2 (concerning the term ∇p = ∇2E ? f note that ∇2E is
a singular kernel of Calderón-Zygmund type and that ηα+1

β belongs to the Muckenhoupt
class of weights A2), see [2, Thm. 3.2, Thm. 5.5], [28, Thm. 4.4, Thm. 5.4], where the
theorems are formulated for the pressure part P of the fundamental solution of the clas-
sical Oseen problem. For f ∈ L2

α+1, β we get p ∈ L2
α, β−1 and ∇p ∈ L2

α+1, β , and there are
positive constants C1, C2 such that the following estimates are satisfied:

‖p‖2,α,β−1 ≤ C1‖f‖2,α+1,β , ‖∇p‖2,α+1,β ≤ C2‖f‖2,α+1,β . (5.2)
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5.2. Friedrichs-Poincaré inequality. In this subsection we formulate an inequality of
Friedrichs-Poincaré type in the weighted Sobolev space H̊1

α, β . It will be necessary for
our aims to estimate constants in this inequality carefully. We also recall some technical
assertion; for more details see Kračmar and Penel [29].

Lemma 5.1. Let α ≥ 0, β > 0, α + β < 3, κ > 1. Let δ and ε be arbitrary positive
constants, such that (β − α)(2ε− δ) ≥ 0. Then for all u ∈ H̊1

α, β

‖u‖22,α−1,β−1 ≤ c0 ‖∇u|BR0‖
2
2,α,β + c1

∥∥∇u|BR0
∥∥2

2,α,β
, (5.3)

where c0 = [(αδ + 2βε)/(ββ∗δε)]2, c1 = [(2κ)/(δε)] · [(α + β)/(ββ∗)]2 and R0 ≥ |δ−1 −
(2ε)−1|(κ− 1)−1.

Remark 5.2. Observe that if additionally δ < 2ε and 1 < κ ≤ 2ε/δ + δ/(2ε) − 1 then
c0 ≥ c1.

Lemma 5.3. Let 0 ≤ α < β, κ > 1, 0 < ε ≤ (1/(2κ)) · (k/ν) · ((β−α)/β2) and δ, ν, k > 0.
Then the function

Fα,β(s, r; ν) · ηα−1
β−1 ≡ −ν|∇η

α
β |2/ηαβ − k ∂3 η

α
β (5.4)

satisfies the estimate

Fα,β (s, r; ν)− (1− κ−1)kδε(β − α)s ≥ −αδk(1 + νk−1αδ) (5.5)

for all r > 0 and s ∈ [0, 2r] .

5.3. The problem in BR—solenoidal solutions. In this subsection we will study the exis-
tence of a weak solution of the following problem in a bounded domainBR, where the pres-
sure p is assumed to be known so that the right hand side equals f −∇p = f̃ ∈ L2

α+1, β :

−ν∆u + k ∂3u− (ωωωω × x) · ∇u + ωωωω × u = f̃ in BR, (5.6)

u = 0 on ∂BR. (5.7)

We show the existence of a weak solution uR ∈ H̊1(BR). Following (3.1), (3.2) again with
w = η0

β0
, β0 ∈ (0, 1], let us introduce the continuous bilinear form Q̃(·, ·) on H̊1(BR) ×

H̊1(BR) by

Q̃(u,v) =
∫
BR

ν∇u · ∇(v · η0
β0

) dx + k

∫
BR

∂3u · (vη0
β0

) dx

+
∫
BR

(ωωωω × x) · ∇u(vη0
β0

) dx +
∫
BR

(ωωωω × u) · (vη0
β0

) dx,

so that, using (5.4),

Q̃(v,v) ≥ ν

2

∫
BR

|∇v|2η0
β0
dx +

1
2

∫
BR

|v|2F0,β0(s, r; ν)η−1
β0−1dx. (5.8)

Lemma 5.4. Let 0 < β0 ≤ 1. Then for all f̃ ∈ L2
1,β0

(BR), where ηαβ0
≡ ηα,ε0β0,ε0

, ε0 <
1
2
k
ν

1
β0

,

there exists a unique uR ∈ H̊1(BR) such that for all v ∈ H̊1(BR)

Q̃ (uR,v) =
∫
BR

f̃ ·vη0
β0
dx. (5.9)
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Proof. The bilinear form Q̃ is coercive, i.e., there exists a constant CR > 0 such that
Q̃(v,v) ≥ CR‖v‖2, where ‖ · ‖ is the norm in the space H̊1(BR). Indeed, we get

Q̃(v,v) ≥ ν

2

∫
BR

|∇v|2η0
β0
dx +

1
2

∫
BR

|v|2F0,β0(s, r; ν)η−1
β0−1dx .

Since ε0 <
1
2
k
ν

1
β0

, there is a constant κ > 1 satisfying all previous conditions and addi-
tionally ε0 ≤ 1

2κ
k
ν

1
β0

. Because α = 0, we get from Lemma 5.3∫
BR

|v|2F0,β0(s, r; ν)η−1
β0−1dx ≥

(
1− 1

κ

)
kε2

0β0

∫
BR

|v|2η−1
β0−1s dx,

Q̃(v,v) ≥ ν

2

∫
BR

|∇v|2η0
β0
dx +

1
2

(
1− 1

κ

)
kε0β0

∫
BR

|v|2η−1
β0−1(ε0s) dx.

Using Lemma 5.1 and Remark 5.2 we derive that

Q̃(v,v) ≥ CR
(∫

BR

|∇v|2dx +
∫
BR

|v|2dx
)

= CR‖v‖2, (5.10)

where CR = (ν/4) · (1 − κ−1) · min{1, ε2
0β

2
0/4, 2(k/ν)βε0} · (1 + ε0R). Using the Lax-

Milgram theorem we get that there is a unique uR ∈ H̊1(BR) such that (5.9) is satisfied.

Remark 5.5. An arbitrary function Φ ∈ H̊1(BR) can be expressed in the form Φ =
φ η0

β0
, where φ is a function from H̊1(BR). Therefore, we have

Q(uR,Φ) =
∫
BR

f̃ ·Φ dx, (5.11)

for all Φ ∈ H̊1(BR) where by definition Q(uR,Φ) ≡ Q(uR, φ · η0
β0

) ≡ Q̃(uR, φ).

5.4. Uniform estimates of uR in R3—solenoidal solutions. Our next aim is to prove
that the weak solutions uR of (5.9) are uniformly bounded in Vα,β as R→ +∞.

Let y1 be the unique real solution of the algebraic equation

4y3 + 8y2 + 5y − 1 = 0. (5.12)

It is easy to verify that y1 ∈ (0, 1). We will explain later why the control of α/β by y1 is
necessary.

Lemma 5.6. Let 0 < β ≤ 1, 0 ≤ α < y1β, and f̃ ∈ L2
α+1,β. Then, as R → +∞, the

weak solutions uR of (5.9) given by Lemma 5.4 are uniformly bounded in Vα,β. There is
a constant c > 0 independent of R such that∫

R3
|ũR|2ηα−1

β dx +
∫

R3
|∇ũR|2ηαβdx ≤ c

∫
R3
|̃f |2ηα+1

β dx (5.13)

for all R larger than some R0 > 0; here ũR is the extension by zero of uR on R3 \BR.

Proof. Our aim is to get an estimate of uR with a constant not depending on R. First,
we consider uR on a bounded subdomain BR0 ⊂ BR; the choice of R0 will be given in
the next part of the proof. Let us substitute v = uR into (5.9). Hence we get

Q̃(uR,uR) =
∫
BR

f̃ · uRη0
β0
dx ≥ C1

(∫
BR

|∇uR|2η0
β0
dx +

∫
BR

|uR|2η−1
β0
dx
)
,
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with a constant C1 > 0. Let R0 be some fixed number such that 0 < R0 < R. We get∫
BR0

|∇uR|2 ηαβdx +
∫
BR0

|uR|2ηα−1
β dx ≤ C2

∫
BR

|̃f | |uR|ηαβdx, (5.14)

where the constant C2 = C−1
1 (1 + ε0R0)α(1 + ε02R0)|β−β0| depends on k, ν, α, β, β0, ε0,

R0, κ, but not depend on R.

Now, we are going to derive an estimate of uR on BR. Using the test function Φ =
uRηαβ = uR(1 + δr)α(1 + εs)β ∈ H̊1(BR) in (5.11) we get after integration by parts that

ν

∫
BR

|∇uR|2ηαβdx + ν

∫
BR

uR∇uR · ∇ηαβ dx−
k

2

∫
BR

|uR|2 ∂3η
α
βdx

=
∫
BR

f̃ · uRηαβdx .

So, for some κ > 1
ν

2

∫
BR

|∇uR|2ηαβdx +
1
2

∫
BR

|uR|2Fα,β(s, r; ν)ηα−1
β−1dx ≤

∫
BR

|̃f | |uR|ηαβdx .

Let R0 ≥ | 1δ −
1
2ε |(κ− 1)−1. Using Lemma 5.3 with 0 ≤ α < β, ε ≤ 1

2κ
k
ν
β−α
β2 and Lemma

5.1 (with δ < 2ε), the second term in the previous estimate can be evaluated from below
as follows: ∫

BR

|uR|2 Fα,β(s, r; ν))ηα−1
β−1 dx

≥ − αδk
(

1 +
νκ

k
αδ

)
2κ
δε

(
α+ β

ββ∗

)2 ∫
B
R0
R

|∇uR|2ηαβdx

+ (1− κ−1)kδε(β − α)
∫
B
R0
R

|u2
R|ηα−1

β−1s dx− 2C4

∫
BR0

|∇uR|2ηαβdx .

Let

C5 = αδk

(
1 +

κν

k
αδ

)
κ

δ ε

(
α+ β

ββ∗

)2

.

It is clear that C5 ≤ ν
2κ2 < ν

2κ if 1 + νκαδ/k ≤ κ, i.e. δ ≤ k
ν ·

κ−1
κβ , and α ≤ 1

2κ4 · νk ·
l( β β

∗

α+β r)
2ε. Using Lemma 5.1 and Remark 5.2 we get, if δ < 2ε and 1 < κ ≤ 2ε

δ + δ
2ε − 1,

that ∫
BR

|∇uR|2ηαβdx +
∫
BR

|uR|2 ηα−1
β dx ≤ c

∫
R3
|̃f |2ηα+1

β dx.

It can be easily shown that all conditions on α, β, δ, ε, κ used in the proof are compatible
if 0 ≤ α < y1β.

5.5. The problem in R3—solenoidal solutions. Let y1 be the same constant as in (5.12).

Theorem 5.7 (Existence and uniqueness in R3). Let 0 < β ≤ 1, 0 ≤ α < y1β, and
f ∈ L2

α+1,β. Then there exists a unique weak solution {u, p} of the problem

−ν∆u + k∂3u− (ωωωω × x) · ∇u + ωωωω × u +∇p = f in R3, (5.15)

div u = 0 in R3 (5.16)
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such that u ∈ Vα,β, p ∈ L2
α,β−1, ∇p ∈ L2

α+1,β and

‖u‖2,α−1,β + ‖∇u‖2,α,β + ‖p‖2,α,β−1 + ‖∇p‖2,α+1,β ≤ C ‖f‖2,α+1,β . (5.17)

Proof. Existence. Let p be the function constructed in Subsection 5.1 and satisfying the
estimate (5.2). Choose a sequence {Rn} of positive real numbers converging to +∞. Let
uRn be the weak solution of (5.6), (5.7) on BRn . Extending uRn by zero on R3 \ BRn
to a function ũn ∈ Vα,β we get a bounded sequence {ũn} in Vα,β . Thus, there is a
subsequence ũnk of ũn with a weak limit u in Vα,β . Obviously, u is a weak solution of
(5.15) and

‖u‖22,α−1,β + ‖∇u‖22,α,β ≤ lim inf
k∈N

(∫
R3
|ũnk |2η

α−1
β dx +

∫
R3
|∇ũnk |2ηαβ dx

)
≤ c|̃f |2ηα+1

β dx = c

∫
R3
|f −∇p|2ηα+1

β dx.

Taking into account (5.2) we get (5.17).
Let us also check that u satisfies also the equation (5.16). Note that u ∈ H2

loc because
f −∇p ∈ L2

α+1, β . So, computing the divergence of (5.15) we get

−ν∆(div u) + k∂3(div u)− (ωωωω × x) · ∇(div u) = div f −4p (5.18)

in the sense of distributions. From (5.1) and (5.17) we have

−ν∆γ + k∂3γ − (ωωωω × x) · ∇γ = 0

for γ = div u ∈ L2
α, β ⊂ L2. Using Fourier transform we get

(ν|ξξξ|2 + ikξ3)γ̂ − (ωωωω × ξξξ) · ∇ξξγ̂ = 0 in S ′.

Assuming γ̂ in cylindrical coordinates [ξ3, ρ, ϕ], ρ = (ξ2
1 + ξ2

2)1/2, we can rewrite the
equation in the form

−∂ϕγ̂ + [(ν/ω)|ξξξ|2 + i(k/ω)ξ3]γ̂ = 0.

Using the same approach as in the proof of the uniqueness, see Theorem 4.1, we prove
that supp γ̂ ⊂ {0}. The proof of this fact is reduced to the solvability of the equation
(4.3) which was proved for arbitrary Ψ ∈ C∞0 (R3 \ {0}) in the proof of Theorem 4.1. So,
by the same procedure we derive that γ is a polynomial in R3 and, since γ ∈ L2, we get
γ ≡ 0, i.e. (5.16). The uniqueness of the solution follows from Theorem 4.1.

5.6. The problem in R3 with non-zero divergence. First of all let us formulate a lemma
which will be used for the extension of our results to the case with non-zero divergence.

Lemma 5.8 (Bogovski, Galdi and Sohr). Let Ω ⊆ Rn, n ≥ 2, be a bounded Lipschitz
domain, and 1 < q < ∞. Then for each g ∈ W k,q

0 (Ω) with
∫

Ω
g dx = 0, there exists

G ∈ (W k+1,q
0 (Ω))n satisfying

div G = g, ‖G‖(Wk+1, q
0 (Ω))n ≤ C‖g‖Wk, q

0 (Ω)

with some constant C = C(q, k,Ω) > 0.

For the proof and further references see e.g. [39, Lemma 2.3.1]. Next we will prove
the following theorem:
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Theorem 5.9 (Existence and uniqueness in R3). Let 0 < β ≤ 1, 0 ≤ α < y1β, f ∈
L2
α+1,β, g ∈ W 1,2

0 with supp g = K ⊂⊂ R3, and
∫

R3 g dx = 0. Then there exists a unique
weak solution {u, p} of the problem

−ν∆u + k∂3u− (ωωωω × x) · ∇u + ωωωω × u +∇p = f in R3,

div u = g in R3

such that u ∈ Vα,β, p ∈ L2
α,β−1, ∇p ∈ L2

α+1,β and

‖u‖2,α−1,β + ‖∇u‖2,α,β + ‖p‖2,α,β−1 + ‖∇p‖2,α+1,β ≤ C(‖f‖2,α+1,β + ‖g‖1,2).

Proof. Using Lemma 5.8 we find G ∈W2,2
0 , supp G ⊂ K, where K is a bounded Lipschitz

domain containing an ε-neighbourhood Kε of the compact set K for an arbitrary ε > 0,
such that div G = g, ‖G‖2,2 ≤ C‖g‖1,2. Let us consider the problem

−ν∆U + k ∂3U− (ωωωω × x) · ∇U + ωωωω ×U +∇p = F in R3,

div U = 0 in R3

where U = u−G and F = f + ν∆G− k ∂1G + (ωωωω×x) ·∇G−ω×G . Now the assertion
of Theorem 5.9 follows from Theorem 5.7.

6. Weighted Lq approach. Working first of all formally or in the space S ′(R3) of
tempered distributions we apply the Fourier transform F = ̂ to (1.5). With the Fourier
variable ξξξ = (ξ1, ξ2, ξ3) ∈ R3 and s = |ξξξ| we get from (1.5)

(νs2 + ikξ3)û− ω(∂ϕû− e3 × û) + iξξξp̂ = f̂ , iξξξ · û = 0. (6.1)

The unknown pressure p is given by −|ξξξ|2p̂ = iξξξ · f̂ , i.e.,

∇̂p(ξξξ) = iξξξ · p̂ =
(ξξξ · f̂)f̂
|ξξξ|2

.

Then the Hörmander-Mikhlin multiplier theorem on weighted Lq-spaces (Theorem 2.7
(ii)) yields for every weight w ∈ Aq(R3, C) the estimate

‖∇p‖q,w ≤ c‖f‖q,w (6.2)

where c = c(q, w) > 0; in particular ∇p ∈ Lqw.
Hence u is a (solenoidal) solution of the reduced problem

(νs2 + ikξ3)û− ω(∂ϕû− e3 × û) = F̂, (6.3)

where F = f−∇p or, equivalently, F̂ = f̂−∇̂p. Equation (6.3) may be considered as a first
order ordinary differential equation with respect to ϕ ∈ (0, 2π) with periodic boundary
conditions. As shown in [4] (6.3) has a unique solution

û(ξξξ) =
∫ ∞

0

e−ν|ξξ|
2tOTωω (t)FF(Oωω(t) · −kte3)(x) dt, (6.4)

or, in x-space, using the heat kernel Et(x) = (4πνt)−3/2e−|x|
2/4νt,

u(x) =
∫ ∞

0

Et ∗OTωω (t)F(Oωω(t) · −kte3)(x) dt. (6.5)

The main ingredients of the proof of Theorem 3.3 are a weighted version of Littlewood-
Paley theory and a decomposition of the integral operator
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TF(x) =
∫ ∞

0

ψ̂νt(ξξξ)OTωω (t)FF(Oωω(t) · −kte3)(ξξξ)
dt

t

=
∫ ∞

0

ψ̂t(ξξξ)OTωω/ν(t)FF
(
Oωω/ν(t) · −k

ν
te3

)
(ξξξ)

dt

t
, (6.6)

where
ψ̂(ξξξ) =

1
(2π)3/2

|ξξξ|2e−|ξξ|
2

and ψ̂t(ξξξ) = ψ̂(
√
tξξξ), t > 0, (6.7)

are the Fourier transforms of the function ψ = −∆E1 ∈ S(R3) and of ψt(x) =
t−3/2ψ(x/

√
t), t > 0, respectively. Note that due to [40, III.1., Proposition 3] and The-

orem 2.6 (ii) it suffices to find an estimate of ‖∆u‖q,w in order to estimate all second
order derivatives ∂j∂ku of u.

To decompose ψ̂t choose χ̃ ∈ C∞0
(

1
2 , 2
)

satisfying 0 ≤ χ̃ ≤ 1 and
∑∞
j=−∞ χ̃(2−js) = 1

for all s > 0. Then define χj , j ∈ Z, by its Fourier transform χ̂j(ξξξ) = χ̃(2−j |ξξξ|), ξξξ ∈ Rn,
yielding

∑∞
j=−∞ χ̂j = 1 on Rn \ {0} and

supp χ̂j ⊂ A(2j−1, 2j+1) := {ξξξ ∈ R3 : 2j−1 ≤ |ξξξ| ≤ 2j+1}. (6.8)

Using χj , we define for j ∈ Z

ψj =
1

(2π)3/2
χj ∗ ψ (ψ̂ = χ̂j · ψ̂). (6.9)

Obviously,
∑∞
j=−∞ ψj = ψ on R3. Finally, in view of (6.6), (6.9), we define the linear

operators

TjF(x) =
∫ ∞

0

ψ̂jνt(ξξξ)O
T
ωω (t)FF(Oωω(t) · −kte3)(ξξξ)

dt

t

=
∫ ∞

0

ψ̂jt (ξξξ)O
T
ωω/ν(t)FF

(
Oωω/ν(t) · −k

ν
te3

)
(ξξξ)

dt

t
. (6.10)

Since formally T =
∑∞
j=−∞ Tj , we have to prove that this infinite series converges even

in the operator norm on Lqw.
For later use we cite the following lemma, see [7].

Lemma 6.1. The functions ψj , ψjt , j ∈ Z, t > 0, have the following properties:

(i) supp ψ̂jt ⊂ A(2j−1/
√
t, 2j+1/

√
t).

(ii) For m > 3
2 let h(x) = (1 + |x|2)−m and ht(x) = t−3/2h(x/

√
t), t > 0. Then there

exists a constant c > 0 independent of j ∈ Z such that

|ψj(x)| ≤ c2−2|j| h2−2j (x), x ∈ R3,

‖ψj‖1 ≤ c2−2|j| .
(6.11)

To introduce a weighted Littlewood-Paley decomposition of Lqw choose ϕ̃ ∈ C∞0 ( 1
2 , 2)

such that 0 ≤ ϕ̃ ≤ 1 and
∫∞

0
ϕ̃(s)2 ds

s = 1
2 . Then define ϕ ∈ S(R3) by its Fourier

transform ϕ̂(ξξξ) = ϕ̃(|ξξξ|) yielding for every s > 0

ϕ̂s(ξξξ) = ϕ̃(
√
s|ξξξ|), supp ϕ̂s ⊂ A

(
1

2
√

2
,

2√
2

)
(6.12)

and the normalization
∫∞

0
ϕ̂s(ξξξ)2 ds

s = 1 for all ξξξ ∈ Rn \ {0}.
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Theorem 6.2. Let 1 < q < ∞ and w ∈ Aq(R3). Then there are constants c1, c2 > 0
depending on q, w and ϕ such that for all f ∈ Lqw

c1‖f‖q,w ≤

∥∥∥∥∥
(∫ ∞

0

|ϕs ∗ f(·)|2 ds
s

)1/2
∥∥∥∥∥
q,w

≤ c2‖f‖q,w (6.13)

where ϕs ∈ S(Rn) is defined by (6.12).

For the proof see [37, Proposition 1.9, Theorem 1.10], and also [31], [42].

6.1. Outline of the proof. As a preliminary version of Theorem 3.3 we prove the following
proposition. The extension to more general weights based on complex interpolation of Lqw-
spaces and a factorization theorem is postponed to the end of this section. On the one
hand can hardly proceed directly: the reason is the difficulty to verify directly that a given
weight function belongs to a particular Muckenhoupt class. On the other hand, there will
be no loss when constructing a weight function by abstract tools because factorization
gives necessary and sufficient condition for a function to be in a Muckenhoupt class in
terms of the A1 weights. The latter class consists of functions majoring their maximal
functions (up to a multiplicative constant) and can effectively be handled.

Proposition 6.3. Let the weight w ∈ L1
loc(R3) be independent of the angle θ and define

wr(x3) := w(x1, x2, x3) for fixed r = |(x1, x2)| > 0. Assume that

w ∈ Ã−q/2 if q > 2,

w ∈ Ã−1 or 1
w ∈ Ã

+
1 if q = 2,

w2/(2−q) ∈ Ã−q/(2−q) if 1 < q < 2.

(6.14)

Then the linear operator T defined by (6.6) satisfies the estimate

‖TF‖q,w ≤ c‖F‖q,w for all F ∈ Lqw (6.15)

with a constant c = c(q, w) > 0 independent of F.

Proof. Step 1. First we consider the case q > 2, w ∈ Ã−q/2 ⊂ Aq, and define the sublinear
operator Mj , a modified maximal operator, by

Mjg(x) = sup
s>0

∫
As

(|ψjt | ∗ |g|)
(
OTωω/ν(t)x +

k

ν
te3

)
dt

t
, (6.16)

where As = [ s16 , 16s]. Then TjF satisfies the estimate

‖TjF‖q,w ≤ c‖ψj‖1/21 ‖Mj‖1/2
L

(q/2)′
v

‖F‖q,w , j ∈ Z, (6.17)

where v denotes the θ-independent weight

v = w−( q2 )′/( q2 ) = w−
2
q−2 ∈ Ã+

(q/2)′ = Ã+
q/(q−2), (6.18)

see [9].

Step 2. We estimate ‖Mjg‖(q/2)′,v. For functions γ depending on θ, x3 only let Mhel

denote the “helical” maximal operator

Mhelγ(θ, x3) = sup
s>0

1
s

∫
As

|γ|
(
θ − ω

ν
t, x3 +

k

ν
t

)
dt,
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where As =
[
s
16 , 16s

]
. Then, writing p := ( q2 )′, the following estimates

Mjg(x) ≤ c2−2|j|M(Mhelg)(x) for a.a. x ∈ Rn, (6.19)

‖Mjg‖p,v ≤ c2−2|j|‖Mhelg‖p,v, (6.20)

are satisfied, where in (6.19)Mhelg is considered asMhelg(r, ·, ·) for almost all r > 0 and
whereM, the centered Hardy-Littlewood maximal operator, is bounded from Lpv(R3) to
itself by Theorem 2.8 (ii). For more details see [9].

Step 3. Note that up to now we have not yet used any specific properties of the weight
v ∈ Ap. To estimate Mhelg in (6.20) we shall work with a suitable one-sided maximal
operator since our weight belongs to a Muckenhoupt class in R3, but a problem occurs
when the weight is considered with respect to x3 only. This naturally corresponds to the
physical circumstances of the problem, where in the Oseen case the wake should appear.
Let us write gr(θ, x3) = g(r, θ, x3) = g(x) and vr(x3) = v(x), r = |(x1, x2)| > 0, for the
θ-independent weight v. Then by the 2π-periodicity of gr and vr with respect to θ we get
for almost all r > 0∫

R

∫ 2π

0

Mhelgr(θ, x3)pvr(x3) dθ dx3

≤
∫

R

∫ 2π

0

∣∣∣∣ sup
s>0

1
s

∫ 16s

0

|gr|
(
θ − ω

k

(
x3 +

k

ν
t

)
, x3 +

k

ν
t

)
dt

∣∣∣∣pvr(x3) dθ dx3

=
∫

R

∫ 2π

0

∣∣∣∣ sup
s>0

1
s

∫ 16s

0

γr,θ

(
x3 +

k

ν
t

)
dt

∣∣∣∣p dθ vr(x3) dx3

= 16
∫ 2π

0

∫
R
|M+γr,θ(x3)|pvr(x3) dx3 dθ

where γr,θ(y3) = |gr|(θ − ω
k y3, y3) and M+ denotes the one-sided maximal operator, see

Definition 2.3. Since wr ∈ A−q/2, by (6.18) and Theorem 2.7 (i) vr = w
−(q/2)′/(q/2)
r ∈

A+
(q/2)′ = A+

p with an A+
p -constant uniformly bounded in r > 0. Then Theorem 2.7 (ii)

yields the estimate∫
R

∫ 2π

0

Mhelgr(θ, x3)pvr(x3) dθ dx3

≤ c
∫ 2π

0

∫
R
|γr,θ(x3)|pvr(x3) dx3 dθ = c‖gr‖pLp(R×(0,2π), vr(x3)),

where c > 0 is independent of k, ν. Integrating with respect to r dr, r ∈ (0,∞), Fubini’s
theorem allows to consider an extension of Mhel to a bounded operator from Lpv(R3)
to itself with an operator norm bounded uniformly in k, ν. Hence, (6.20) implies the
estimate

‖Mhelg‖p,v ≤ c2−2|j|‖g‖p,v,

and (6.17) as well as Lemma 6.1 (ii) show that

‖TjF‖q,w ≤ c2−2|j|‖F‖q,w
for all F ∈ Lqw(R3) with a constant c > 0 independent of j ∈ Z. Summarizing the previous
inequalities we obtain (6.15) for q > 2.
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Step 4. We apply the Littlewood-Paley theory in the case q = 2, w ∈ Ã−1 .

Step 5. Applying a duality argument we get the estimate for 1 < q < 2.

Step 6. Finally, we prove the claim for q = 2 and w = 1
w ∈ Ã

1
+ by a duality argument.

Further important ingredients needed to proceed with the general case are complex
interpolation of weighted Lebesgue spaces, see, e.g. [1], and a suitable factorization theo-
rem. Actually, we need an anisotropic variant of Jones’ factorization theorem tailored to
our situation, where we have to cope with one-sided Muckenhoupt weights with respect
to x3, which, at the same time, satisfy the standard Muckenhoupt condition in three di-
mensions. We include the proof since its idea might be useful to tackle similar anisotropic
situations.

Lemma 6.4 (Anisotropic version of Jones’ Factorization Theorem). Suppose that w ∈ Ã−q ,
1 < q <∞ <. Then there exist weights w1 ∈ Ã−1 and w2 ∈ Ã+

1 such that

w =
w1

wq−1
2

.

Here Ã+
1 is defined by analogy with Ã−1 , cf. Definition 2.5, by assuming for w2 ∈ Ã+

1 that
(w2)r ∈ A+

1 with A+
1 -constants uniformly bounded in r > 0. An analogous result holds

for w ∈ Ã+
q .

Proof. Let q ≥ 2. Given w ∈ Ã−q we consider the operator T defined by

Tf = (w−1/qM(fq/q
′
w1/q))q

′/q + w1/qM(fw−1/q)

+ (w−1/qM+
1 (fq/q

′

r w1/q
r ))q

′/q + w1/qM−1 (frw−1/q
r )

where r = |(x1, x2)|. Then for all f ∈ Lq(R3)

‖Tf‖qq ≤ c
{∫

R3
w−q

′/q(M(fq/q
′
w1/q))q

′
dx +

∫
R3
w(M(fw−1/q))q dx

+
∫

R2

(∫
R
w−q

′/q
r (M+

1 (fq/q
′

r w1/q
r ))q

′
dx3

)
d(x1, x2)

+
∫

R2

(∫
R
wr(M+

1 (frw−1/q
r ))q dx3

)
d(x1, x2)

}
≤ Aq‖f‖qq,

with a constant A = A(q, w) > 0.
Let us fix a non-negative θ-independent function f ∈ Lq(R3) with ‖f‖q = 1 and define

η =
∞∑
k=1

(2A)−kT k(f),

where T k(f) = T (T k−1(f)). Obviously Tf and therefore also η are θ-independent. More-
over, η ∈ Lq(R3) and ‖η‖q ≤

∑∞
k=1 2−k = 1. In particular, η(x) < ∞ for a.a. x ∈ R3,
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ηr(·) ∈ Lq(R) for a.a. (x1, x2) ∈ R2 and ηr(x3) <∞ for a.a. x3 ∈ R. Since T is subadditive
and positivity-preserving, we get the pointwise inequality

Tη ≤
∞∑
k=1

(2A)−kT k+1(f) =
∞∑
k=2

(2A)1−kT k(f) ≤ (2A)η.

Now let w1 := w1/qηq/q
′

and w2 := w−1/qη such that w = w1/w
q−1
2 . Then

M(w1) ≤ w1/q(Tη)q/q
′
≤ w1/qηq/q

′
(2A)q/q

′
= (2A)q/q

′
w1

M+
1 ((w1)r) ≤ w1/q(Tη)q/q

′
≤ w1/qηq/q

′
(2A)q/q

′
= (2A)q/q

′
(w1)r

M(w2) ≤ w−1/qT (η) ≤ w−1/qη 2A = 2Aw2

M−1 ((w2)r) ≤ w−1/qT (η) ≤ w−1/qη 2A = 2A(w2)r

proving that w1 ∈ Ã−1 , w2 ∈ Ã+
1 .

The case 1 < q < 2 follows by a simple duality argument, since w ∈ Ã−q is equivalent
to w−q

′/q ∈ Ã+
q′ .

7. Concluding remarks. In the first part the variational approach in an L2-setting
with anisotropic weights was applied under assumptions on the weights, which follow from
the Friedrichs-Poincaré inequality and the A2-condition. In the second case, to construct
strong solutions in Lq-spaces Littlewood-Paley decomposition was used to estimate second
order derivatives of the solution. This naturally leads to the Muckenhoupt class of Aq/2
weights. Since it turned out to be necessary that the weights are also of Muckenhoupt
type in the direction of the axis of rotation, we had to use the theory of (one-dimensional)
one-sided weights instead of the standard weighted theory, since the natural anisotropic
weights for the Oseen operator do not belong to the class Ap(·, ·, x3). In the L2-framework
the pressure p was obtained by the fundamental solution of the Laplace equation and the
weighted estimate of ∇p follows from the Calderón-Zygmund theory. On the other hand,
to be consistent with the analysis of the velocity field, in the Lq-framework we applied
multiplier theory. Both techniques can be used in L2 as well as in Lq to get an estimate
of ∇p. Also we would like to point out that we are looking for weak solutions in L2, but
for strong solutions in Lq. Anyway, in the L2-setting without weights we can apply the
Plancherel theorem which gives the desired results immediately, see remarks in [7] and
work of Hishida [18].
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