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Abstract. We consider the multiplicative algebra P(G′
+) of continuous scalar polynomials on

the space G′
+ of Roumieu ultradistributions on [0,∞) as well as its strong dual P′(G′

+). The
algebra P(G′

+) is densely embedded into P′(G′
+) and the operation of multiplication possesses a

unique extension to P′(G′
+), that is, P′(G′

+) is also an algebra. The operation of differentiation
on these algebras is investigated. The polynomially extended Laplace transformation and its
connections with the differentiation are also studied.

1. Introduction. Recently, algebras of distributions and utradistributions with the ten-
sor operation of multiplication were effectively used in physics (see e.g. [1]). It is not
difficult to see that such algebras have to be defined on spaces of differentiable functions
of infinitely many variables. These algebras have often an equivalent structure of scalar
polynomials with pointwise multiplication, but the fact is not observed in the literature.

In the present paper, we would like to take this structure into consideration in a
special case. For many reasons it is convenient to start with the space G′+ of Roumieu
ultradistributions and its predual, which belong to the known classes (FS) and (DFS)
(see e.g. [6]), respectively, and are nuclear; all these properties are important for our
purposes. Algebras of scalar polynomials on such spaces may be described by means
of projective symmetric tensor products. Thus, the symmetric tensor and multiplicative
structures are equivalent in a certain sense. This fact is crucial for our investigations.

We give a description of properties of the differentiation on algebras P(G′+) and P′(G′+)
by means of their tensor representations (Theorems 4.1 and 5.1). A connection between
the differentiation of polynomials and the polynomially extended Laplace transformation
in the form of operator calculus is described (Theorem 6.3).
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2. Tensor representations of nuclear polynomial algebras. For polynomials on
infinite dimensional spaces we refer to [3]. IfX,Y are locally convex (shortly: LC) complex
vector spaces, then L (X,Y ) := Lb(X,Y ) denotes the space of all continuous linear
operators endowed with the topology b of uniform convergence on bounded sets in X.
Further, L (X) := L (X,X) is an algebra with the operation ◦ of operator composition
and X ′ := Lb(X,C) is the strong dual of X.

We will denote by [[T ]] the commutant of T ∈ L (X) and by 〈f |x〉 the value of f ∈ X ′
at x ∈ X. Let L n(X,C) := L n

b (X,C) (resp. L n
s (X,C)) denote the space of continuous

n-linear (resp. continuous n-linear symmetric) forms defined on the Cartesian product
X × . . .×X of n copies of X.

The symbol ⊗p (resp. �p) denotes the completion of the algebraic tensor product ⊗
(resp. of the symmetric tensor product �) in the projective tensor LC topology. Consider
the projective tensor product⊗npX ′ (resp. the projective symmetric tensor product�npX ′)
of n copies of the strong dual X ′ and define the symmetrization projector as follows

sn : ⊗npX ′ 3 f1 ⊗ · · · ⊗ fn 7→ f1 � · · · � fn :=
1
n!

∑
s

fs(1) ⊗ · · · ⊗ fs(n) ∈ �npX ′,

where the sum is taken over all permutations s of the set {1, . . . , n}. Analogously, the
projective tensor product ⊗npX (resp. the projective symmetric product �npX) may be
considered for the space X.

We define the LC space Pn(X) of n-homogeneous polynomials on X via the canonical
topological linear isomorphisms Pn(X) ' L n

s (X,C) ' (�npX)′ described in [3]. Namely,
consider the following canonical embeddings:

⊗n : X × . . .×X 3 (x1, . . . , xn) 7→ x1 ⊗ . . .⊗ xn ∈ ⊗npX,
Γn : X 3 x 7→ (x, · · · , x) ∈ X × . . .×X,

and put
(�npX)′ 3 pn 7→ Pn := pn ◦ ⊗n ◦ Γn ∈ Pn(X),

i.e.
Pn(x) := 〈pn | ⊗nx〉, ⊗nx := (⊗n ◦ Γn)x = x⊗ · · · ⊗ x, x ∈ X.

We call Pn so defined the n-homogeneous polynomial on X.
We equip Pn(X) with the topology b on X for n ∈ N and put P0(X) := C. The space

P(X) :=
{
P =

m∑
n=0

Pn: Pn ∈ Pn(X), m ∈ N
}
,

endowed with the topology b, is called the space of continuous polynomials on X. Note
that the space P(X) is a topological algebra with the scalar unit 1 and the pointwise
multiplication given by

P (x) ·Q(x) :=
∑
n∈Z+

n∑
m=0

Pm(x) ·Qn−m(x), x ∈ X.

We will denote by P′(X) and P′n(X) the strong duals of P(X) and Pn(X), respectively.
The spaces P(X ′) and Pn(X ′) of polynomials for the dual X ′ and their duals are defined
similarly.
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The symbols
∏•
n�npX and

∑•
n�npX, where the product and the sum (here and in

the sequel) are taken over all n ∈ Z+, will mean the LC Cartesian product and the LC
direct sum of X, respectively. In a similar way we mean the Cartesian product and the
direct sum for X ′.

From now we will assume that X is a nuclear (F ) or (DF ) LC space (see [5, 10]).

Proposition 2.1. There exist linear topological isomorphisms ΥX′ ,ΥX and their linear
extensions Υ̃X′ , Υ̃X such that

�npX ′
ΥX′
' Pn(X),

∏•

n

�npX ′
eΥX′
' P′(X ′),

�npX
ΥX' Pn(X ′),

∑•

n

�npX
eΥX' P(X ′).

Consequently, the identity

〈P′(X ′)
∣∣ P(X ′)〉 =

〈∏•

n

�npX ′
∣∣∣ ∑•

n

�npX
〉

describes equivalence between the corresponding dual pairs.
If X # X ′ is a continuous dense embedding, then

P(X ′) # P′(X ′)

is also a continuous dense embedding.

Proof. Since the topological isomorphism �npX ′ ' (�npX)′ holds for every nuclear (F ) or
(DF ) space X [6, Th. 2.2], we have the isomorphism

ΥX′ : �npX ′ 3 fn 7→ Fn := fn ◦ ⊗n ◦ Γn ∈ Pn(X).

For the dual pair 〈
∑•
n�npX ′

∣∣ ∏•
n�npX〉 the formula

F (x) :=
∑
n

Fn(x) =
〈∑•

n

fn

∣∣∣ ∏•

n

⊗nx
〉
, x ∈ X

induces the isomorphism

Υ̃X′ :
∑•

n

�npX ′ 3 f =
∑•

n

fn 7→ F ∈ P(X),

where F = Υ̃X′(f) =
∑
n ΥX′(fn) acts as a linear extension of ΥX′ : �npX ′ 7→ Pn(X).

Replacing above X by X ′, we obtain �npX
ΥX' Pn(X ′) and therefore (see [3])∑•

n

�npX ' P(X ′).

Now, since the topological isomorphism (�npX ′)′ ' �npX holds for every nuclear (F ) or
(DF ) space X [6], we have

P′n(X) ' (�npX ′)′ ' �npX ' Pn(X ′).

On the other hand, applying the known duality between Cartesian products and direct
sums [10], we obtain

P′(X ′) '
(∑•

n

�npX
)′
'
∏•

n

�npX ′ '
∏•

n

Pn(X).
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Hence the dual pair
〈∏•

n�npX ′
∣∣ ∑•

n�npX
〉
may be transformed to

〈
P′(X ′)

∣∣ P(X ′)
〉
. Due

to the canonical embedding
∑•
n�npX ′ ⊂

∏•
n�npX ′, we have

P(X) '
∑•

n

�npX ′ ⊂
∏•

n

�npX ′ ' P′(X ′).

Since
∑•
n⊗nx is a total subset in

∑•
n�npX, the mapping Υ̃X′ :

∑•
n�npX ′ → P(X) can

be linearly extended to the mapping

Υ̃X′ :
∏•

n

�npX ′ 3 f =
∏•

n

fn 7→ F =
∏•

n

ΥX′(fn) ∈
∏•

n

Pn(X)

by the formula

F
(∑•

n

⊗nx
)

=
〈∏•

n

fn

∣∣∣ ∑•

n

⊗nx
〉

=
∑
n

Fn(x), F =
∏•

n

Fn, x ∈ X. (1)

If X # X ′ is a continuous dense embedding, then so are the embeddings
∑•
n�npX #∑•

n�npX ′ and
∑•
n�npX ′ #

∏•
n�npX ′. Consequently, we have

P(X ′) '
∑•

n

�npX #
∑•

n

�npX ′ #
∏•

n

�npX ′ ' P′(X ′)

with the respective dense continuous embeddings.

Formula (1) means that P′(X ′) consists of polynomials on X.

Proposition 2.2. The direct sum∑•

n

�npX =
{
ϕ =

∑•

n

ϕn : ϕn ∈ �npX
}

is an LC algebra with respect to the convolution

ϕ ? ψ :=
∑•

n

( n∑
m=0

ϕn � ψn−m
)

and the following mapping is an algebraic isomorphism{∑•

n

�npX, ?
} eΥX−→ P(X ′).

Proof. For arbitrary ϕn ∈ �npX and ψk ∈ �kpX we have

ϕn � ψk ∈ (�npX) � (�kpX) ⊂ �n+k
p X.

Hence the direct sum
∑•
n�npX is an algebra with respect to the convolution ?. By

Proposition 2.1, we have �npX
ΥX' Pn(X ′), so the linear extension Υ̃X of ΥX given by

Υ̃X :
∑•

n

�npX 3 ϕ 7→ Υ̃X(ϕ) ∈ P(X ′)

is the required algebraic isomorphism.

Now we suppose that X # X ′ is a continuous dense embedding. Then the convolution
in {

∑•
n�npX, ?} can be extended to the convolution

f ? g :=
∏•

n

( n∑
m=0

fn � gn−m
)
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in the Cartesian product∏•

n

�npX ′ =
{
f =

∏•

n

fn : fn ∈ �npX ′
}
,

which is also a topological convolutional algebra.

Proposition 2.3. The multiplication in P(X ′) can be uniquely extended to the multipli-
cation in P′(X ′), given by the formula

(P ·Q)
(∑•

n

⊗nx
)

:=
∑
n

n∑
m=0

Pm(x) ·Qn−m(x)

for Q =
∏•
nQn, P =

∏•
n Pn ∈

∏•
n Pn(X) and x ∈ X. Thus P′(X ′) is a topological

algebra and Υ̃X uniquely extends to the following algebraic isomorphism{∏•

n

�npX ′, ?
} eΥX′
' P′(X ′).

Proof. Proposition 2.1 together with Proposition 2.2 imply at once that the extended
mapping

Υ̃X′ :
∏•

n

�npX ′ 3 f =
∏•

n

fn 7→ F =
∏•

n

Fn ∈ P′(X ′)

gives the required isomorphism of algebras.

In the sequel, we will define by

LΓ

(∑•

n

�npX
)

:=
[

L (�npX) : n = m

0 : n 6= m

]
n,m∈Z+

a subalgebra of diagonal form in L (
∑•
n�npX) endowed with the topology of uniform

convergence on bounded sets; analogously, for the Cartesian product

LΓ

(∏•

n

�npX
)

:=
[

L (�npX) : n = m

0 : n 6= m

]
n,m∈Z+

⊂ L
(∏•

n

�npX
)
.

We will define also diagonal subalgebras for the dual X ′.
Using the isomorphisms P(X ′) '

∑•
n�npX and P′(X ′) '

∏•
n�npX ′ we will identify

the appropriate operator algebras, namely:

L
(∑•

n

�npX
)
' L (P(X ′)), LΓ

(∑•

n

�npX
)
' LΓ(P(X ′)),

L
(∏•

n

�npX
)
' L (P(X ′)), LΓ

(∏•

n

�npX ′
)
' LΓ(P′(X ′)).

We denote by [[T ]]Γ the commutant in LΓ(·) of an operator T ∈ LΓ(·).

3. A multiplicative algebra of polynomial ultradistributions. Fix β > 1. For ev-
ery µ > 0 and finite [a, b] ⊂ R we define the space

Gµ[a,b] := {ϕ ∈ C∞(R): ‖ϕ‖Gµ[a,b] <∞}
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of complex functions ϕ with suppϕ ⊆ [a, b] and the norm

‖ϕ‖Gµ[a,b] := sup
t∈[a,b], k∈Z+

|Dkϕ(t)|
µkkkβ

, D := −i d
dt
.

The space G of Gevrey ultradifferentiable functions with compact support can be defined
as the inductive limit

G := ind lim
−a,b,µ→∞

Gµ[a,b].

As it is known [6, 8, 7], G is a nuclear (DFS)-space and is a topological algebra with
respect to the pointwise multiplication.

Denote by G′ the strong dual of G of all Roumieu ultradistributions on R [9] and let
G′+ denote the closed subspace in G′ of ultradistributions with supports in [0,∞). If G′⊥+
denotes the orthogonal complement of G′+ with respect to 〈G′ | G〉 then the factor space

G+ := G/G′⊥+ = {ϕ̃ := ϕ+ G′⊥+ : ϕ ∈ G}

is the dual of G′+. The operator of multiplication

Θ: G 3 ϕ 7→ θϕ ∈ G′

by the Heaviside function θ has the kernel {ϕ ∈ G : suppϕ ⊂ (−∞, 0)} = G′⊥+. Hence,
for its codomain Θ(G) the topological isomorphism

G+ ' Θ(G)

holds. Thus every element ϕ̃ ∈ G+ can be interpreted as a regular ultradistribution,
belonging to G′+.

From duality arguments it follows that G′+ is a nuclear (FS)-space and G+ is a nuclear
(DFS)-space. As it is known [2, 11], G′+ is a topological algebra with respect to the
convolution

(f, g) 7→ f ∗ g, f, g ∈ G′+

with the Dirac function δ as the convolutional unit. Since G′⊥+ is a closed ideal in G, the
factor space G+ is also a topological algebra.

Proposition 3.1.

(i) The LC algebra P′(G′+) is a
〈
P′(G′+) | P(G′+)

〉
-strong completion of finite type poly-

nomials
α+

∑
n∈N

( ∑
fj∈G′

+

〈f1 | ϕ̃〉 · . . . · 〈fn | ϕ̃〉
)
, α ∈ C

by the variable ϕ̃ ∈ G+. The space G′+ is closed in P′(G′+).
(ii) The LC algebra P(G′+) is a completion by uniform convergence topology on bounded

sets in G′+ of finite type polynomials

α+
∑
n∈N

( ∑
ϕ̃j∈G+

〈f | ϕ̃1〉 · . . . · 〈f | ϕ̃n〉
)
, α ∈ C

by the variable f ∈ G′+. The space G+ is closed in P(G′+).
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Proof. The statements follow from the topological isomorphisms P′(G′+) '
∏•
n�npG′+

and P(G′+) '
∑•
n�npG+, established by Proposition 2.1, with the help of additional

arguments that (FS)-spaces �npG′+ and (DFS)-spaces �npG+ can be approximated by
linear combinations of elements f1 � · · · � fn and ϕ̃1 � · · · � ϕ̃n, respectively (see [4]).

We will call elements of P′(G′+) polynomial ultradistributions on [0,∞). Clearly, since
G′+ ⊂ P′(G′+), elements of G′+ can be understood as linear ultradistributions.

4. A generalized differentiation of polynomial ultradistributions. The ideal G′⊥+
is invariant with respect to the right shift in the space G, hence the diagram

G+ 3 ϕ̃
Tt−−−−→ ϕ̃(·+ t) ∈ G+

Θ ↑ Θ ↑

G 3 ϕ −−−−→ ϕ(·+ t) ∈ G
uniquely defines a semigroup [0,∞) 3 t 7→ Tt of the operators Tt ∈ L (G+).

The ideal G′⊥+ is also invariant with respect to the differentiation D, hence D uniquely
defines some differentiation D+ on the algebra G+ (in Leibniz’s sense), which can be also
defined as a generator of semigroup Tt.

The factor topology on Gµ+[0, b] := Gµ[a,b]
/
G′⊥+ ∩ G

µ
[a,b] is defined by the factor norms

‖ϕ̃‖Gµ+[0,b] := sup
t∈[a,b], k∈Z+

|Dk
+ϕ̃(t)|
µkkβk

and
G+ ' ind lim

b,µ→∞
Gµ+[0, b].

Let T ′t and D′+ = −D+ denote the corresponding adjoints with respect to
〈
G′+ | G+

〉
.

Theorem 4.1.

(i) The family {Γ(T ′t ) : t ∈ [0,∞)} of continuous linear operators on P(G′+) of the form

Γ(T ′t ) : Q 7→ Q ◦ T ′t , Q =
∑
n

Qn ∈ P(G′+),

where Qn = qn ◦ ⊗n ◦ Γn and qn ∈ �npG+, acting as

Γ(T ′t )Q(f) = Q(T ′tf) for all f ∈ G′+,

is an equicontinuous C0-semigroup of automorphisms on the algebra P(G′+).
An equivalent tensor representation on

∑•
n�npG+ ' P(G′+) of its generator dΓ(D′+)

belongs to the subalgebra LΓ(
∑•
n�npG+) and on every element q =

∑•
n qn it acts

as

dΓ(D′+)q =
∑•

n

n∑
j=1

n
jD+qn,

n
jD+ :=

n︷ ︸︸ ︷
1+ ⊗ . . .⊗ D+︸︷︷︸

j

⊗ . . .⊗ 1+ .

(ii) The family {Γ(Tt) : t ∈ [0,∞)} of continuous linear operators on P′(G′+) of the form

Γ(Tt) : P 7→ P ◦ Tt, P =
∏•

n

Pn ∈ P′(G′+),
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where Pn = pn ◦ ⊗n ◦ Γn and pn ∈ �npG′+, acting as

Γ(Tt)P (ϕ̃) = P (Ttϕ̃) for all ϕ̃ ∈ G+,

is an equicontinuous C0-semigroup of automorphisms on P′(G′+) with the generator
dΓ(D+), which, in an equivalent tensor representation on

∏•
n�npG′+ ' P′(G′+),

belongs to LΓ(
∏•
n�npG′+) and acts as

dΓ(D+)p = −
∏•

n

n∑
j=1

n
jD+pn for all p =

∏•

n

pn.

(iii) The generator dΓ(D′+) is a continuous differentiation on P(G′+), that is,

dΓ(D′+)(P ·Q)(f) = (dΓ(D′+)P ·Q)(f) + (P · dΓ(D′+)Q)(f) (2)

for all P,Q ∈ P(G′+) and f ∈ G′+ (similarly, for dΓ(D+) on P′(G′+)).

(iv) The generators dΓ(D+) and dΓ(D′+) satisfy the dual relation〈
dΓ(D+)P

∣∣Q〉 = −
〈
P
∣∣ dΓ(D′+)Q

〉
, P ∈ P′(G′+), Q ∈ P(G′+).

Proof. (i) First note that the inductive limit G+ ' ind limν,b→∞ Gν+[0, b] has compact
embeddings Gµ+[0, b] # Gν+[0, b′], if µ < ν, b < b′ [7]. Using the known property [4] that
the order of inductive limits and projective tensor products can be changed, we obtain

�npG+ ' ind lim
ν,b→∞

�npGν+[0, b].

Proposition 2.1 implies that

Γ(T ′t )Q(f) =
∑
n

〈
qn
∣∣⊗nT ′tf〉 =

∑
n

〈
(⊗nTt)qn

∣∣⊗nf〉
with the semigroup ⊗nTt := Tt ⊗ . . .⊗ Tt, acting on �npG+. Consider ⊗nTt on a to-
tal in �npGν+[0, b] subset of functions (τ1, . . . , τn) 7→ ϕ̃1(τ1) � . . . � ϕ̃n(τn), defined on
[0, b]× . . .× [0, b]. The conditions τj ∈ supp ϕ̃j and τj − t ∈ supp(Ttϕ̃j) are equivalent,
thus,

supp(Ttϕ̃j) = (supp ϕ̃j − t) ∩ [0,∞) with t ≥ 0.

Hence,
‖Ttϕ̃j‖Gν+[0,b] ≤ ‖ϕ̃j‖Gν+[0,b] for all ϕ̃j ∈ Gν+[0, b], t ≥ 0.

Now, the regularity of inductive limits ind limν,b→∞�npGν+[0, b] implies that ⊗nTt
is equibounded and, as a consequence, it is equicontinous on �npG+. Clearly, the last
conclusion uses barreledness of �npG+ and the uniform boundedness Banach-Steinhaus
principle.

Since the function

[0,∞) 3 t 7→ Dk
+ϕ̃1(·+ t)� . . .�Dk

+ϕ̃n(·+ t) ∈ �npG+

is smooth, the Lagrange theorem at once implies the C0-property for ⊗nTt on �npG+. The
equicontinuity and C0-property on P(G′+) '

∑•
n�npG+ directly follows from properties

of the direct sum topology.
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Since (kj + 1)(kj+1)β ≤ 2(kj+1)βk
kjβ
j , we get

‖D+ϕ̃j‖Gν+[0,b] ≤ ν sup
kj∈Z+

sup
τj∈[0,b]

|Dkj+1
+ ϕ̃j(τj)|

(ν2−β)kj+1(kj + 1)(kj+1)β
≤ ν‖ϕ̃j‖Gµ+[0,b]

with µ = ν2−β . Therefore, we have n
jD+ ∈ L (�npG+) and the definition of a semigroup

generator implies that

D+(Ttϕ̃1 � . . .� Ttϕ̃n) =
n∑
j=1

(⊗nTt) ◦ njD+(ϕ̃1 � . . .� ϕ̃n).

In order to approximate an arbitrary q ∈
∑•
n�npG+ by linear combinations of ϕ̃1�. . .�ϕ̃n

it remains to apply Proposition 3.1(ii).
The assertion (ii) follows from the duality 〈P′(G′+)

∣∣ P(G′+)〉 =
〈∏•

n�npG′+
∣∣ ∑•

n�npG+

〉
and Proposition (i).

(iii) The generator dΓ(D′+) satisfies the equality

dΓ(D′+)Q(f) = dfQ(D′+f)

with the Fréchet derivative dfQ(D′+f) of the polynomial Q ∈ P(G′+) at the point f ∈ G′+
in the direction D′+f , since

dΓ(D′+)Q(T ′tf) =
d

dt
Q(T ′tf) = dT ′

tf
Q
( d
dt
T ′tf

)
= dT ′

tf
Q(D′+Ttf)

and
dΓ(D′+)Q(f) = dΓ(D′+)Q(T ′tf) |t=0= dT ′

tf
Q(D+T

′
tf) |t=0= dfQ(D′+f),

as a consequence. It follows that the Leibniz property (2) holds for dΓ(D′+) and, similarly,
for dΓ(D+).

The assertion (iv) immediately follows from the dual relations

D′+ = −D+,
〈
pn

∣∣∣ n∑
j=1

n
jD+qn

〉
= −

〈 n∑
j=1

n
jD+pn

∣∣∣ qn〉
with qn ∈ �npG+ and pn ∈ �npG′+.

5. An operator representation of differentiation. Via Theorem 4.1 for every poly-
nomial Q ∈ P(G′+) there exists a unique P(G′+)-valued continuous function

Qt : [0,∞) 3 t 7→ Γ(T ′t )Q ∈ P(G′+).

The isomorphism P(G′+) '
∑•

n
�npG+ implies that for allQ =

∑
n qn ◦ ⊗n ◦ Γn ∈ P(G′+)

with qn ∈ �npG+ and for all n it well-defines the unique �npG+-value continuous function

[0,∞) 3 t 7→ (⊗nTt)qn.

Approaching qn by linear combinations of ϕ̃1 � . . . � ϕ̃n ∈ �npG+ and using that the
functions [0,∞) 3 t 7→ Dk

+ϕ̃1(·+ t)� . . .�Dk
+ϕ̃n(·+ t) ∈ �npG+ are smooth, we see that

qn belongs to �npG+⊗pG+. Thus Qt ∈ P(G′+)⊗pG+.

Theorem 5.1. The mapping (which is a polynomially extended cross-correlation)

K : G′+ 3 f 7→ Kf ∈ LΓ(P(G′+)), Kf (Q) := 〈f | Qt〉, Q ∈ P(G′+)
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uniquely defines an algebraic topological isomorphism from the convolutional algebra G′+
into the commutant [[dΓ(D′+)]]Γ of dΓ(D′+), such that

δ 7→ Kδ, δ′ 7→ dΓ(D′+), f ∗ g 7→ Kf ◦ Kg, f, g ∈ G′+,

where Kδ is the unit in LΓ(P(G′+)). The cross-correlation satisfies the conditions

dΓ(D′+)(Kf ◦ Kg) =
[
dΓ(D′+)Kf

]
◦ Kg = Kf ◦

[
dΓ(D′+)Kg

]
, f, g ∈ G′+.

Proof. First note that 〈f(t) | (⊗nTt)qn〉 ∈ �npG+, since (⊗nTt)qn ∈ �npG+⊗pG+ and
f ∈ G′+. The operator

K : G′+ 3 f 7→ Kf ∈ L (Pn(G′+)) ' L (�npG+) with Kfqn := 〈f(t) | (⊗nTt)qn〉

is obviously injective and it acts as an algebraic isomorphism. In fact, the convolution in
G′ can be defined by the duality 〈G′ | G〉 as follows

〈f ∗ g | ϕ〉 = 〈f(t)
∣∣ ξ(t) 〈g(s) | η(s)ϕ(t+ s)〉〉

for any ϕ ∈ G, where ξ, η ∈ G are 1 near supp f and 0 outside of supports (see [11]). We
obtain

Kf∗gqn = 〈f(t)
∣∣ ξ(t) 〈g(s) | η(s)(⊗nTt+s)qn〉〉

=
〈
f(t)

∣∣ ξ(t)Kg[η(·)(⊗nTt+·)qn
]〉

= (Kf ◦ Kg)qn.

Thus Kδ is the unit of L [�npG+]. It also follows that

Kδ′qn := 〈δ′(t)
∣∣ (⊗nTt)qn〉 = −

(∑
n
jD+

)
qn,

hence, Kδ′(Q) = dΓ(D′+)Q. Replacing (
∑

n
jD+)qn by qn in Kfqn = 〈f(t) | (⊗nTt)qn〉, we

obtain

Kf
(∑

n
jD+

)
qn =

〈
f(t)

∣∣ (∑ n
jD+

)
(⊗nTt)qn

〉
=
(∑

n
jD+

) 〈
f(t)

∣∣ (⊗nTt)qn
〉

=
(∑

n
jD+

)
Kfqn

for any n, hence, Kf ∈ [[dΓ(D′+)]]. Finally, since

(δ′ ∗ f) ∗ g = f ′ ∗ g = f ∗ g′ = f ∗ (δ′ ∗ g),

we have

dΓ(D′+)(Kf ◦ Kg)(Q) = [Kδ′ ◦ Kf ] ◦ Kg(Q) = Kδ′∗f ◦ Kg(Q)

=
[
dΓ(D+)Kf

]
◦ Kg(Q) = Kf ◦ Kδ′∗g(Q)

= Kf ◦
[
dΓ(D′+)Kg

]
(Q).

Let us consider topological properties. The isomorphism G+ ' ind limν,b→∞ Gν+[0, b]
implies the following adjoint isomorphism for the corresponding strong duals with a
projective limit structure

G′+ ' proj lim
ν,b→0

(Gν+[0, b])′.

The regularity of the inductive limit �npG+ ' ind limν,b→∞�npGν+[0, b] implies the em-
bedding

proj lim
ν,b→0

L (�npGν+[0, b]) # L (�npG+),
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where the operator spaces are endowed with corresponding uniform convergence topolo-
gies. By definition, every composition of K with the projector G′+ −→ (Gν+[0, b])′ acts
as

(Gν+[0, b])′ 3 f 7→ f ◦ JG+ ∈ L (�npGν+[0, b]),

where JG+ : G+ # �npG+⊗pG+ is the canonical continuous embedding in the projective
tensor product definition. Thus it, and therefore K, are continuous. Moreover, K has a
closed codomain in L (�npGν+[0, b]) for all n. In fact, the equality

Gν+[0, b] = {
〈
pn
∣∣ (⊗nTt)qn

〉
: qn ∈ �npGν+[0, b], pn ∈ (�npGν+[0, b])′}

implies that if a sequence (fj) is pointwise convergent to f in L (�npGν+[0, b]), where
�npGν+[0, b] endowed with

〈
(�npGν+[0, b])′

∣∣�npGν+[0, b]
〉
-weak topology, then (fj) is also

weakly convergent in Gν+[0, b]. Therefore, f ∈ Gν+[0, b], via the appropriate completeness.
Now, the open mapping Banach theorem implies that K is a topological isomorphism
from (Gν+[0, b])′ into L (�npGν+[0, b]) for any ν, b, thus, from G′+ into L (�npG+) for all n.
Using a diagonal form of LΓ(P(G′+)), we obtain the required isomorphism.

6. A polynomially extended operator calculus. By the Paley-Wiener theorem the
Fourier transformation

ϕ̂(ζ) := Fϕ(ζ) =
∫
e−itζϕ(t) dt with ϕ ∈ G, ζ ∈ C, t ∈ R,

acts as a topological isomorphism
F : G → Ĝ

onto a space Ĝ of entire analytic functions, which we for simplicity endow with the
inductive LC topology, generated by F . In the sequel,

Ĝ+ := Ĝ
/
F(G′⊥+)

stands for the corresponding LC factor space. For the strong duals, the appropriate adjoint
transformation

F ′ : Ĝ
′
→ G′

is defined. The codomain
Ĝ′+ := F ′−1(G′+)

of the subspace G′+ ⊂ G′ with respect to the inverse mapping

F ′−1 : G′ 3 f 7→ f̂ ∈Ĝ
′

is closed in the dual Ĝ
′
. The mappings F ′ and F ′−1 are continuous with respect to

the strong topologies. It follows that Ĝ
′
+ is a nuclear (FS)-space. The space Ĝ′+ is a

multiplicative topological algebra with the unit δ̂, since

(̂f ∗ g) = f̂ · ĝ, f, g ∈ G′+.

A generalized Laplace transformation can be defined as

F+ : G′+ 3 f 7→ f̂ ∈ Ĝ′+, F+ := F ′−1 |G′
+
. (3)
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Every element of Ĝ+ can be interpreted as the Laplace transform ϕ̂+ = F+(ϕ+) of
the regular ultradistribution

ϕ+ := Θ(ϕ) ∈ G′+ with ϕ ∈ G.

From duality arguments it follows that the topological isomorphism

F+ : G+ 3 ϕ+ 7→ ϕ̂+ ∈Ĝ+

is true. Hence, Ĝ+ is a nuclear (DFS)-space. From Proposition 2.1 it follows that the
commutative diagrams

Pn(G+) Fn−−−−→ Pn(Ĝ+)

ΥG′
+

∥∥∥ Υ bG′
+

∥∥∥
�npG′+

⊗nF+−−−−→ �np Ĝ′+,

P′(G′+)
F+−−−−→ P′(Ĝ′+)

Υ̃G′
+

∥∥∥ Υ̃ bG′
+

∥∥∥
•∏
n
�npG′+ −−−−→

•∏
n
�np Ĝ′+,

uniquely define the polynomial extension

F+ : P′(G′+) 3 P =
∏•

n

Pn 7→ P̂ =
∏•

n

Fn(Pn) ∈ P′(Ĝ′+), Pn ∈ Pn(G+)

of the generalized Laplace transformation (3), as an operator of the diagonal subalgebra

LΓ(P′(G′+),P′(Ĝ′+)) :=
[

L (Pn(G+),Pn(Ĝ+)) : n = m

0 : n 6= m

]
n,m∈Z+

.

The above diagrams and Proposition 2.2 imply that F+ is invariant with respect to the
polynomial multiplication and acts as an algebraic surjective topological isomorphism.
Proposition 2.3 implies that the restriction of F+ to Pn(G′+) acts also as an algebraic
surjective isomorphism

F+ : P(G′+) 3 Q =
∑

Qn → Q̂ =
∑

Fn(Qn) ∈ P(Ĝ′+), Qn ∈ Pn(G′+)

and the duality equivalence 〈P̂ | Q̂〉 = 〈P | Q〉 with P ∈ P′(G′+), Q ∈ P(G′+) holds.
Let us reduce the cross-correlation concept, considered in Theorem 5.1, to the case

of linear ultradistributions. For this purpose we compare for every element ϕ+ ∈ G+ the
G+-valued function

Ttϕ+ : [0,∞) 3 t 7→ ϕ+(·+ t) ∈ G+,

belonging to G+⊗pG+. Then the cross-correlation

K : G′+ 3 f 7→ Kf ∈ L (G+), Kfϕ+ := 〈f(t) | Ttϕ+〉 , ϕ+ ∈ G+,

can be expressed by the convolution

Kfϕ+ = f ∗ ϕ̌+ with ϕ̌+(t) := ϕ+(−t).

Proposition 6.1. The commutative diagram

G′+
K−−−−→ [[D′+]]

F+

y y
Ĝ
′
+

bK−−−−→ [[D̂′+]]
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uniquely defines the algebraic and topological isomorphism

K̂ : Ĝ′+ 3 f̂ 7→ K̂ bf ∈ [[D̂′+]] such that K̂bδ := 1̂+ is the unit in L (Ĝ+) and

δ̂′ 7→ D̂′+, f̂ · ĝ 7→ K̂ bf ◦ K̂bg, f̂ , ĝ ∈ Ĝ′+,

which acts from the algebra Ĝ′+ onto the commutant [[D̂′+]] in L (Ĝ+), where K̂ bf and D̂′+
are defined as

K̂ bf : Ĝ+ 3 ϕ̂+ 7→ K̂fϕ+ ∈ Ĝ+

and
D̂′+ϕ+

(ζ) = ζϕ̂+(ζ)− ϕ+(0), ζ ∈ R.

Proof. Since the cross-correlation mapping K for linear ultradistributions is a special
case of the mapping K for polynomial ultradistributions, Theorem 5.1 is also true if we
substitute G+ in place of P(G′+). Therefore, in the statement Theorem 5.1, we can put
Kf = Kf , Kδ = Kδ and dΓ(D′+) = Kδ′ = Kδ′ = D′+.

However, we can prove more that the algebraic topological isomorphism

K : G′+ −→ [[D′+]]

is surjective. To show it first note that [[D′+]] = [[Tt]] with t ≥ 0. Let K ∈ L (G+) be an
operator for which

(K ◦ Tt)ϕ+ = (Tt ◦K)ϕ+ with ϕ+ ∈ G+.

We show that there is an f ∈ G′+ such that K = Kf . Namely, such an f can be defined
by

〈f | ϕ+〉 := (Kϕ+)(0).

In fact, putting Ttϕ+ instead of ϕ+, we obtain

(Kfϕ+)(s) = 〈f(t)
∣∣ Ttϕ+(s)〉 = 〈f(t)

∣∣ Tsϕ+(t)〉
= ((K ◦ Ts)ϕ+)(0) = (Kϕ+)(s) with s ≥ 0.

Now, it is enough to calculate D̂′+. Since

̂(KfD′+ϕ+
)(ζ) = ζ(K̂fϕ+)(ζ)− 〈f | ϕ+〉,

we have D̂′+ϕ+
(ζ) = ζϕ̂+(ζ) − ϕ+(0), if f = δ. The rest follows from the fact that F+

realizes an algebraic topological isomorphism.

From Theorem 4.1 and Proposition 6.1 it follows

Corollary 6.2. The family [0,∞) 3 t 7→ Γ(T̂ ′+) ∈ L (P(Ĝ′+)) of operators

Γ(T̂ ′t ) : Q̂ 7→ Q̂ ◦ T ′t with Q̂ =
∑
n

Fn(Qn) =
∑
n

q̂n ◦ ⊗n ◦ Γn,

where q̂n := (⊗nF+)qn ∈ �np Ĝ+, acting as

Γ(T̂ ′t )Q̂(f̂) = Q̂(T̂ ′tf) for all f̂ ∈ Ĝ′+,

is an equicontinuous C0-semigroup of automorphisms on P(Ĝ′+).
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A tensor representation on
∑•
n�np Ĝ+ of the semigroup generator dΓ(D̂′+) belongs to

LΓ(
∑•
n�np Ĝ+) and on every q̂ =

∑•
n q̂n it acts as

dΓ(D̂′+)q̂ =
∑•

n

n∑
j=1

n
j D̂
′
+q̂n with n

j D̂
′
+ :=

n︷ ︸︸ ︷
1̂+ ⊗ . . .⊗ D̂′+︸︷︷︸

j

⊗ . . .⊗ 1̂+.

Theorem 6.3. The mapping

K̂ : Ĝ′+ 3 f̂ 7→ K̂ bf ∈ [[dΓ(D̂′+)]]Γ,

where the operator K̂ bf ∈ LΓ

[
P(Ĝ′+)

]
is defined as follows

K̂ bf : P(Ĝ′+) 3 Q̂ 7→ K̂f (Q) ∈ P(Ĝ′+),

realizes an algebraic topological isomorphism from the algebra Ĝ′+ onto the commutant
[[dΓ(D̂′+)]]Γ such that K̂bδ is the unit in L (P(Ĝ′+)) and

δ̂′ 7→ dΓ(D̂′+), f̂ · ĝ 7→ K̂ bf ◦ K̂bg for all f̂ , ĝ ∈ Ĝ′+.

Moreover, the commutative diagram

G′+
K−−−−→ [[dΓ(D′+)]]Γ

F+

y y
Ĝ
′
+

bK−−−−→ [[dΓ(D̂′+)]]Γ
holds.

Proof. The statement directly follows from Theorem 5.1, Proposition 6.1 and Corol-
lary 6.2.
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