
LINEAR AND NON-LINEAR THEORY OF

GENERALIZED FUNCTIONS AND ITS APPLICATIONS

BANACH CENTER PUBLICATIONS, VOLUME 88

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2010

SINGULAR SOLUTIONS
TO SYSTEMS OF CONSERVATION LAWS

AND THEIR ALGEBRAIC ASPECTS

V. M. SHELKOVICH

Department of Mathematics

St.-Petersburg State Architecture and Civil Engineering University

2 Krasnoarmeiskaya 4, 190005, St. Petersburg, Russia

E-mail: shelkv@vs1567.spb.edu

Abstract. We discuss the definitions of singular solutions (in the form of integral identities)

to systems of conservation laws such as shocks, δ-, δ′-, and δ(n)-shocks (n = 2, 3, . . . ). Using

these definitions, the Rankine–Hugoniot conditions for δ- and δ′-shocks are derived. The weak

asymptotics method for the solution of the Cauchy problems admitting δ- and δ′-shocks is briefly

described. The algebraic aspects of such singular solutions are studied. Namely, explicit formulas

for flux-functions of singular solutions are computed. Though the flux-functions are nonlinear,

they can be considered as “right” singular superpositions of distributions, thus being well defined

Schwartzian distributions. Therefore, singular solutions of Cauchy problems generate algebraic

relations between their distributional components.

1. Introduction

1.1. δ(n)-Shock wave type solutions, n = 0, 1, 2, . . . . There are “nonclassical” situa-
tions when, in contrast to Lax’s and Glimm’s results, the Cauchy problem for a system of
conservation laws does not possess a weak L∞-solution except for some particular initial
data. In order to solve the Cauchy problem in this “nonclassical” situation, it is neces-
sary to consider the Cauchy problem in a class of singular solutions called δ-shocks and
δ(n)-shocks, n = 1, 2, . . . . Roughly speaking, the δ(n)-shock (n = 0, 1, 2, . . . ) is a solution
such that its components contain delta functions and their derivatives up to n-th order
(for the exact structure of δ′- and δ′-shocks see (6) and (9) below).

The theory of δ-shocks has been intensively developed in the last ten years (see [1],
[4], [5], [8], [10], [14], [15] and the references therein). One of the typical one-dimensional
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system of conservation laws admitting δ-shocks is

L1[u, v] = ut + (F (u, v))x = 0, L2[u, v] = vt + (G(u, v))x = 0, (1)

where F (u, v), G(u, v) are smooth functions, linear with respect to v; u = u(x, t), v =
v(x, t) ∈ R; x ∈ R. A particular case of system (1)

ut + (f(u))x = 0, vt + (g(u)v)x = 0, (2)

(here F (u, v) = f(u), G(u, v) = vg(u)) was studied in [4], [5], [10]. δ-Shock in the well-
known Keyfitz–Kranzer system

ut + (u2 − v)x = 0, vt +
(

1
3
u3 − u

)
x

= 0 (3)

(here F (u, v) = u2−v, G(u, v) = 1
3u

3−u) was studied in [8]. In [8] δ-shock approximating
solutions were constructed, however the notion of an exact singular solution was not
defined. Later, in [14], it was first proved that system (3) admits an exact δ-shock solution
(6) in the sense of Definition 2.1. In [14], [15] (see also [1]), an exact δ-shock solution to
the Keyfitz–Kranzer type system

ut +
(
f(u)− v

)
x

= 0, vt +
(
g(u)

)
x

= 0, (4)

was constructed, where f(u) and g(u) are polynomials of degree n and n+1, respectively,
n is even (here F (u, v) = f(u)− v, G(u, v) = g(u)).

Several approaches to solving δ-shock problems are known (for details, see the above
cited papers and the references therein). One of them was proposed in [3]–[5], [14], [15].
In these papers the weak asymptotics method was developed for studying the dynamics of
propagation and interaction of different singularities of quasi-linear differential equations
and systems of conservation laws. Using this method, in [1], [4], [5], [14], [15], for some
cases of system (1) with the initial data

u0(x) = u0
+(x) + [u0(x)]H(−x), v0(x) = v0

+(x) + [v0(x)]H(−x) + e0δ(−x), (5)

the Cauchy problems were solved, where u0
±, v0

± are given smooth functions, e0 is a given
constant, [u0] = u0

− − u0
+, [v0] = v0

− − v0
+, and H(x) is the Heaviside function, δ(x) is

the delta function. According to [1], [4], [5], [14], [15], the δ-shock wave type solutions of
these Cauchy problems have the form

u(x, t) = u+(x, t) + [u(x, t)]H(−x+ φ(t)),
v(x, t) = v+(x, t) + [v(x, t)]H(−x+ φ(t)) + e(t)δ(−x+ φ(t)),

(6)

where u±, v±, e(t), φ(t) are desired functions, [u] = u− − u+, [v] = v− − v+, x = φ(t) is
the discontinuity curve.

In [13], a concept of δ(n)-shock wave type solutions was introduced and the theory of
δ′-shocks was established for the one-dimensional system of conservation laws

L1[u] = ut + (f(u))x = 0,

L2[u, v] = vt + (f ′(u)v)x = 0,

L3[u, v, w] = wt + (f ′′(u)v2 + f ′(u)w)x = 0,

(7)

where f(u) is a smooth function. In [13], in the framework of the weak asymptotics method
for a particular case of system (7), when f(u) = u2, the Cauchy problem with the singular
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initial data
u0(x) = u0

+(x) + [u0(x)]H(−x),

v0(x) = v0
+(x) + [v0(x)]H(−x) + e0δ(−x),

w0(x) = w0
+(x) + [w0(x)]H(−x) + g0δ(−x) + h0δ′(−x),

(8)

was constructed, where u0
±(x), v0

±(x), w0
±(x), are given smooth functions; e0, g0, h0 are

given constants, δ′(x) is the derivative of the delta function. This solution has the form

u(x, t) = u+(x, t) + [u(x, t)]H(−x+ φ(t)),

v(x, t) = v+(x, t) + [v(x, t)]H(−x+ φ(t)) + e(t)δ(−x+ φ(t)),

w(x, t) = w+(x, t) + [w(x, t)]H(−x+ φ(t)) + g(t)δ(−x+ φ(t))

+h(t)δ′(−x+ φ(t))

(9)

where u±(x, t), v±(x, t), w±(x, t), φ(t), e(t), g(t), h(t) are the desired functions. In [16],
for a particular case of system (7), when f(u) = u2, the Riemann problem admitting δ-,
δ′-shock wave type solutions and vacuum states was solved.

δ(n)-Shocks (n = 0, 1, 2, . . . ) do not satisfy the standard L∞-integral identities, and to
deal with them we need:

• to discover a proper notion of a singular solution, i.e., to define in which sense it
may satisfy a nonlinear system;
• to devise some way to define singular superpositions (products) of distributions (for

example, a product of the Heaviside function and the delta function).

Fortunately, it appears that the above-mentioned weak asymptotics method is a proper
technique to deal with δ- and δ′-shocks.

1.2. Main results. In Sec. 2, Definition 2.1 of δ-shocks for the system of conservation
law (1) is introduced, and the Rankine–Hugoniot conditions (16) are derived. In Sec. 3,
Definition 3.1 of δ′-shock for system (7) is introduced, and the Rankine–Hugoniot con-
ditions (21)–(24) are derived. In Sec. 4, we briefly describe the weak asymptotics method
for the solution of the Cauchy problems admitting δ- and δ′-shocks.

In Subsec. 5.2, the algebraic aspects of δ- and δ′-shocks in systems (1), (7) are stud-
ied. It is well known that in the general case the product of distributions either is not a
Schwartz distribution or it is a Schwartz distribution not uniquely defined. Nevertheless,
we show that singular solutions of the Cauchy problems generate algebraic relations be-
tween their distributional components. More precisely, one can calculate flux-functions
of δ- and δ′-shock solutions (see Theorems 5.1, 5.2). Though flux-functions are nonlin-
ear, they can be considered as “right” singular superpositions of distributions and are
well defined Schwartzian distributions. Thus a “right” singular superposition is deter-
mined only in the context of solving the Cauchy problem. Note that in our paper [9]
the flux-functions of δ-shocks for system (1) with piecewise constant initial data were
calculated. In Subsec. 5.3, we discuss “strange” specific properties of the “right” singular
superpositions. We also discuss the possibilities to use the nonconservative product [10],
[2] and the Colombeau theory to construct a δ-shock for system (3), (4) and a δ′-shock
for system (7).
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2. δ-Shock type solutions and the Rankine–Hugoniot conditions. Suppose that
Γ = {γi : i ∈ I} is a graph in the upper half-plane {(x, t) : x ∈ R, t ∈ [0,∞)} ∈ R2

containing smooth arcs γi = {(x, t) : Si(x, t) = 0}, Si ∈ C1, Si x 6= 0, i ∈ I, and I is a
finite set. By I0 we denote a subset of I such that an arc γk for k ∈ I0 starts from points
of the x-axis. Denote by Γ0 = {x0

k : k ∈ I0} the set of initial points of arcs γk, k ∈ I0.
Here arcs of a graph have the orientation corresponding to increasing time t. Consider
the δ-shock type initial data

(u0(x), v0(x)), where v0(x) = v̂0(x) + e0δ(Γ0), (10)

u0, v̂0 ∈ L∞
(
R; R

)
, e0δ(Γ0)

def
=
∑
k∈I0 e

0
kδ(x− x0

k), e0
k are constants, k ∈ I0.

Definition 2.1 ([4], [5]). A pair of distributions (u, v) and a graph Γ, where v(x, t) has
the form of the sum

v(x, t) = v̂(x, t) + e(x, t)δ(Γ),

u, v̂ ∈ L∞
(
R × (0,∞); R

)
, e(x, t)δ(Γ)

def
=
∑
i∈I ei(x, t)δ(γi), ei(x, t) ∈ C(Γ), i ∈ I,

is called a δ-shock wave type solution of the Cauchy problem (1), (10) if the integral
identities ∫ ∞

0

∫
(uϕt + F (u, v̂)ϕx) dx dt+

∫
u0(x)ϕ(x, 0) dx = 0,∫ ∞

0

∫
(v̂ϕt +G(u, v̂)ϕx) dx dt+

∑
i∈I

∫
γi

ei(x, t)
δϕ(x, t)
δt

dl√
1 + u2

δ

+
∫
v̂0(x)ϕ(x, 0) dx+

∑
k∈I0

e0
kϕ(x0

k, 0) = 0,

(11)

hold for all test functions ϕ(x, t) ∈ D(R× [0,∞)), where

δϕ

δt

∣∣∣∣
γi

=
(
∂ϕ

∂t
− Si t
Si x

∂ϕ

∂x

)∣∣∣∣
Si(x,t)=0

(12)

is a δ-derivative with respect to time [7, 5.2.(15)], which is the tangential derivative on
the graph γi;

uδ(x, t)
∣∣
γi

= − Si t
Si x

∣∣∣∣
γi

, i ∈ I, (13)

is the velocity of a δ-shock on γi;
∫
γi
· dl is the line integral over the arc γi. Here the

delta function δ(γi) on the curve γi is defined as in [7, 5.3].

The integral identities (11) differ from the standard L∞-integral identities by the
additional terms

∑
i∈I
∫
γi
ei(x, t)

δϕ(x,t)
δt

dl√
1+u2

δ

in the second identity which appear due

to the delta function in v.
If arcs of the graph Γ = {γi : i ∈ I} have the form γi = {(x, t) : x = φi}, φi(t) ∈

C1(0,+∞), i ∈ I, then

δϕ

δt

∣∣∣∣
γi

=
√

1 + (φ̇i(t))2
∂ϕ(x, t)
∂l

∣∣∣∣
γi

=
dϕ(φi(t), t)

dt
, (14)
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where ∂ϕ
∂l is the tangential derivative on the graph γi along the unit vector l = (−ν2, ν1) =

(φ̇i(t),1)√
1+(φ̇i(t))2

, n = (ν1, ν2) = (1,−φ̇i(t))√
1+(φ̇i(t))2

is the unit oriented normal to γi.

Now, by using Definition 2.1, we derive the δ-shock Rankine–Hugoniot conditions for
system (1).

Theorem 2.2 ([1], [15]). Let us assume that Ω ⊂ R× (0,∞) is a region cut by a smooth
curve Γ = {(x, t) : S(x, t) = 0} into the left- and right-hand parts Ω∓. Let (u, v), Γ be a
δ-shock wave type solution of system (1), and suppose that u, v are smooth in Ω± and have
one-sided limits u±, v± on Γ. Then the Rankine–Hugoniot conditions for the δ-shock

uδ =
[F (u, v)

[u
] ∣∣∣∣

Γ

,
δe(x, t)
δt

∣∣∣∣
Γ

= ([G(u, v)]Γ − [v]Γuδ)
Sx
|Sx|

, (15)

where uδ(x, t) is the velocity (13) of a δ-shock, [a(u, v)] = a(u−, v−) − a(u+, v+) is, as
usual, the jump of the function a(u(x, t), v(x, t)) across the discontinuity curve Γ.

If Γ = {(x, t) : x = φ(t)}, φ(t) ∈ C1(0,+∞), then (15) reads

φ̇(t) =
[F (u, v)]

[u]

∣∣∣∣
x=φ(t)

, ė(t) =
(

[G(u, v)]− [v]
[F (u, v)]

[u]

)∣∣∣∣
x=φ(t)

, (16)

where e can be treated as a function of the single variable t, so that e(t)
def
= e(φ(t), t).

Proof. Let n = (ν1, ν2) = (Sx,St)
|∇(x,t)S|

be the unit normal to the curve Γ oriented from Ω−

to Ω+, l = (−ν2, ν1) = (−St,Sx)
|∇(x,t)S|

be a unit tangential vector to Γ, ∇(x,t)Si = (Six, Sit).

For any test function ϕ ∈ D(Ω) we have ϕ(x, t) = 0, if (x, t) 6∈ G, G ⊂ Ω. Selecting
ϕ(x, t) with compact support in Ω±, we deduce from (11) that (1) holds in Ω±, respec-
tively. Now, choosing ϕ(x, t) with support in Ω, we deduce from the first identity of (11)
that∫ ∞

0

∫
(uϕt + F (u, v̂)ϕx) dx dt

=
∫ ∫

Ω−∩G
(uϕt + F (u, v̂)ϕx) dx dt+

∫ ∫
Ω+∩G

(uϕt + F (u, v̂)ϕx) dx dt.

Since ut +
(
F (u, v)

)
x

= 0 for (x, t) ∈ Ω±, integrating by parts, we obtain∫ ∫
Ω±∩G

(uϕt + F (u, v̂)ϕx) dx dt

= ∓
∫

Γ

(ν2u± + ν1F (u±, v±))ϕdl −
∫

Ω±∩G∩R
u0(x)ϕ(x, 0) dx.

Adding the latter relations, we have∫ ∞
0

∫
(uϕt + F (u, v̂)ϕx) dx dt+

∫
u0(x)ϕ(x, 0) dx

=
∫

Γ

([F (u, v)]ν1 + [u]ν2)ϕ(x, t) dl = 0
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for all ϕ(x, t) ∈ D(Ω). This implies the first relation in (15). In the same way we obtain∫ ∞
0

∫
(v̂ϕt +G(u, v̂)ϕx) dx dt+

∫
v̂0(x)ϕ(x, 0) dx

=
∫

Γ

([G(u, v)]ν1 + [v]ν2)ϕ(x, t) dl. (17)

Next, integrating by parts, it is easy to see that∑
i∈I

∫
γi

ei(x, t)
δϕ(x, t)
δt

dl√
1 + u2

δ

= −
∑
i∈I

∫
γi

δei(x, t)
δt

ϕ(x, t)
dl√

1 + u2
δ

−
∑
k∈I0

e0ϕ(x, 0)
∣∣
Sk(x,0)=0

, (18)

where the δ-derivative δϕ
δt is defined in (12). Adding (17) and (18), we obtain∫

Γ

(
[G(u, v)]ν1 + [v]ν2 −

δe(x, t)
δt

1√
1 + u2

δ

)
ϕ(x, t) dl = 0, ∀ϕ(x, t) ∈ D(Ω).

Thus the second relation in (15) holds.
If Γ = {(x, t) : x = φ(t)}, φ(t) ∈ C1(0,+∞), in view of (14), condition (15) can be

rewritten as (16).

The first equation in (15) (or (16)) is the standard Rankine–Hugoniot condition for
shock. The left-hand side of the second equation in (15) (or the right-hand side of the
second equation in (16)) is called the Rankine–Hugoniot deficit in v.

3. δ′-Shock type solutions and the Rankine–Hugoniot conditions. Denote by
C̃
(
R × (0,∞); R

)
the class of piecewise-smooth functions. Let Γ = {γi : i ∈ I} be the

graph introduced in Sec. 2. The initial data

(u0(x), v0(x), w0(x)), where v0(x) = v̂0(x) + e0δ(Γ0)
w0(x) = ŵ0(x) + g0δ(Γ0) + h0δ′(Γ0),

(19)

and u0, v̂0, ŵ0 ∈ C̃
(
R; R

)
, will be called δ′-shock type initial data. Here, by definition,

e0δ(Γ0)
def
=
∑
k∈I0

e0
kδ(x− x0

k),

g0δ(Γ0)
def
=
∑
k∈I0

g0
kδ(x− x0

k),

h0δ(Γ0)
def
=
∑
k∈I0

h0
kδ
′(x− x0

k),

where e0
k, g0

k, h0
k are constants, k ∈ I0.

Definition 3.1 ([13]). A triple of distributions (u, v, w) and a graph Γ, where v(x, t)
and w(x, t) have the form of the sums

v(x, t) = v̂(x, t) + e(x, t)δ(Γ), w(x, t) = ŵ(x, t) + g(x, t)δ(Γ) + h(x, t)δ′(Γ),
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and u, v̂, ŵ ∈ C̃
(
R× (0,∞); R

)
,

eδ(Γ)
def
=
∑
i∈I

eiδ(γi),

gδ(Γ)
def
=
∑
i∈I

giδ(γi),

hδ′(Γ)
def
=
∑
i∈I

hi(x, t)δ′(γi),

where ei(x, t), gi(x, t), hi(x, t) ∈ C1(Γ), i ∈ I, is called a δ′-shock wave type solution of
the Cauchy problem (7), (19) if the integral identities∫ ∞

0

∫
(uϕt + f(u)ϕx) dx dt+

∫
u0(x)ϕ(x, 0) dx = 0,∫ ∞

0

∫
v̂(ϕt + f ′(u)ϕx) dx dt+

∑
i∈I

∫
γi

ei(x, t)
δϕ(x, t)
δt

dl√
1 + u2

δ

+
∫
v̂0(x)ϕ(x, 0) dx+

∑
k∈I0

e0
kϕ(x0

k, 0) = 0,

∫ ∞
0

∫
(ŵϕt + (f ′′(u)v̂2 + f ′(u)ŵ)ϕx) dx dt

+
∑
i∈I

(∫
γi

gi(x, t)
δϕ(x, t)
δt

dl√
1 + u2

δ

+
∫
γi

hi(x, t)
δϕx(x, t)

δt

dl√
1 + u2

δ

+
∫
γi

δe2i (x,t)
δt − hi(x, t) δ[u(x,t)]

δt

[u(x, t)]
ϕx(x, t)

dl√
1 + u2

δ

)
+
∫
ŵ0(x)ϕ(x, 0) dx+

∑
k∈I0

g0
kϕ(x0

k, 0) +
∑
k∈I0

h0
kϕx(x0

k, 0) = 0,

(20)

hold for all ϕ(x, t) ∈ D(R × [0,∞)). The derivative of the delta function δ′(γi) on the
curve γi is defined in [7, 5.3; 5.5].

The integral identities (20) differ from the standard L∞-integral identities by the
additional terms in the second and third identities. The terms∑

i∈I

∫
γi

ei(x, t)
δϕ(x, t)
δt

dl√
1 + u2

δ

,
∑
i∈I

∫
γi

gi(x, t)
δϕ(x, t)
δt

dl√
1 + u2

δ

appear due to the delta functions in v w, and the terms∑
i∈I

(∫
γi

hi(x, t)
δϕx(x, t)

δt

dl√
1 + u2

δ

+
∫
γi

δe2i (x,t)
δt − hi(x, t) δ[u(x,t)]

δt

[u(x, t)]
ϕx(x, t)

dl√
1 + u2

δ

)
appear due to the derivative of the delta function in w.

Theorem 3.2 ([13]). Let us assume that Ω ⊂ R × [0,∞) is some region cut by a curve
Γ = {(x, t) : x = φ(t)}, φ(t) ∈ C1(0,+∞) into left- and right-hand parts Ω± = {(x, t) ∈
Ω : ±(x−φ(t)) > 0}. Let (u(x, t), v(x, t), w(x, t)), Γ be a generalized δ′-shock wave type
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solution of system (7). Assume that (u, v, w) are smooth in the domains Ω± and have
one-sided limits u±, v±, w± on Γ, which are supposed to be continuous functions on Γ.
Then the Rankine–Hugoniot conditions for the δ′-shock

φ̇(t) =
[f(u)]

[u]

∣∣∣∣
x=φ(t)

, (21)

ė(t) =
(

[f ′(u)v]− [v]
[f(u)]

[u]

)∣∣∣∣
x=φ(t)

, (22)

ġ(t) =
(

[f ′′(u)v2 + f ′(u)w]− [w]
[f(u)]

[u]

)∣∣∣∣
x=φ(t)

, (23)

d

dt
(h(t)[u(φ(t), t)]) =

de2(t)
dt

(24)

hold along Γ. Here e(t)
def
= e(φ(t), t), g(t)

def
= g(φ(t), t), h(t)

def
= h(φ(t), t).

The system of the Rankine–Hugoniot conditions (21)–(24) determines the trajectory
x = φ(t) of a δ′-shock wave and the coefficients e(t), g(t), h(t) of the singularities.
The first equation in this system is the “standard” Rankine–Hugoniot condition for the
shock, while the first and second equations are the “standard” Rankine–Hugoniot con-
ditions for the δ-shock (cf. (16)). The right-hand sides of equalities (22), (23) are the
first Rankine-Hugoniot deficits, while the right-hand side of (24) is the second Rankine-
Hugoniot deficit.

4. The Cauchy problems admitting δ- and δ′-shocks

4.1. Weak asymptotic solutions. We are going to introduce a notion of weak asymp-
totic solution, which is one of the most important in the weak asymptotics method.

Let α ∈ R. Denote by OD′(εα), ε→ +0 a collection of distributions (with respect to
x) f(x, t, ε) ∈ D′(Rx), x ∈ R, t ∈ [0, T ], ε > 0 such that

〈f(·, t, ε), ψ(·)〉 = O(εα), ε→ +0,

for any test function ψ(x) ∈ D(R), x ∈ R. Moreover, 〈f(·, t, ε), ψ(·)〉 is a continuous
function in t, and the estimate O(εα) is understood in the standard sense being uniform
with respect to t in [0, T ]. The notation oD′(εα), ε→ +0 is understood correspondingly.

Definition 4.1 ([4], [5]). A pair of functions
(
uε(x, t), vε(x, t)

)
which are smooth as

ε > 0, t ∈ [0, T ] is called a weak asymptotic solution of the Cauchy problem (1), (10) if

L1[uε(x, t), vε(x, t)] = oD′(1),

L2[uε(x, t), vε(x, t)] = oD′(1),

uε(x, 0) = u0(x) + oD′(1),

vε(x, 0) = v0(x) + oD′(1), ε→ +0,

(25)

where the first two estimates are uniform in t ∈ [0, T ].
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Definition 4.2 ([13]). A triple of functions
(
uε(x, t), vε(x, t), wε(x, t)

)
, smooth as ε > 0,

t ∈ [0, T ] is called a weak asymptotic solution of the Cauchy problem (7), (19) if

L1[uε(x, t)] = oD′(1),
L2[uε(x, t), vε(x, t)] = oD′(1),

L3[uε(x, t), vε(x, t), wε(x, t)] = oD′(1),
uε(x, 0) = u0(x) + oD′(1),
vε(x, 0) = v0(x) + oD′(1),
wε(x, 0) = w0(x) + oD′(1), ε→ +0,

(26)

where the first three estimates are uniform in t ∈ [0, T ].

In (25) and (26) all distributions in u, v, w depend on t as a parameter.
Recall that one of the methods for studying singular solutions to systems of con-

servation laws is the vanishing viscosity method which introduces viscosity terms in the
right-hand sides of a system of conservation laws. In this case viscosity terms admit esti-
mates of the form oD′(1), and, consequently, a viscosity solution can be considered as a
weak asymptotic solution. Thus a viscosity solution is a particular case of a weak asymp-
totic solution of the Cauchy problem, and our notation oD′(1) in the right-hand sides of
the equations (25) and (26) can be interpreted as a small viscosity.

4.2. Solving the Cauchy problems. In the framework of the weak asymptotics
method, we find a δ- or δ′-shock wave type solution of the Cauchy problem as the weak
limit

u(x, t) = lim
ε→+0

uε(x, t), v(x, t) = lim
ε→+0

vε(x, t), w(x, t) = lim
ε→+0

wε(x, t), (27)

of the weak asymptotic solution (uε, vε) or (uε, vε, wε) to the corresponding Cauchy prob-
lem.

Let (uε, vε) be a weak asymptotic solution of the Cauchy problem (1), (10), and
(uε, vε, wε) be a weak asymptotic solution of the Cauchy problem (7), (19). According
to (25) and (26), for all ϕ(x, t) ∈ D(R× [0,∞)) we have

lim
ε→+0

∫ ∞
0

∫
L1[uε(x, t), vε(x, t)]ϕ(x, t) dx dt = 0,

lim
ε→+0

∫ ∞
0

∫
L2[uε(x, t), vε(x, t)]ϕ(x, t) dx dt = 0

and

lim
ε→+0

∫ ∞
0

∫
L1[uε(x, t)]ϕ(x, t) dx dt = 0,

lim
ε→+0

∫ ∞
0

∫
L2[uε(x, t), vε(x, t)]ϕ(x, t) dx dt = 0,

lim
ε→+0

∫ ∞
0

∫
L3[uε(x, t), vε(x, t), wε(x, t)]ϕ(x, t) dx dt = 0.

According to the weak asymptotic method, to prove that the limiting distributions
(27) constitute a solution of the corresponding Cauchy problem, we multiply the first
two relations in (25) (or the first three relations in (26)) by a test function ϕ(x, t) ∈
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D(R × [0, ∞)), integrate these relations by parts and then pass to the limit as ε → +0.
Next, we must prove that the pair of distributions (u, v) in Definition 2.1 (or the triple
of distributions (u, v, w) in Definition 3.1) satisfies the integral identities (11) (or (20)),
correspondingly.

In [1], [4], [5], [14]– [15], by using the weak asymptotics method, the Cauchy problems
(2), (5); (3), (5); (4), (5); admitting δ-shocks were solved. In [13], [16], by using the
weak asymptotics method, for the case f(u) = u2 the Cauchy problem (7), (8) admitting
δ′-shocks was solved.

5. Algebraic aspects of singular solutions

5.1. The problem of multiplication of distributions. As was already mentioned
above, to introduce singular solutions to a nonlinear system, we need to solve the problem
of multiplication of distributions. One of the approaches to this problem is the theory
of nonconservative product [10], [2]. This approach generalizes the concept of Volpert’s
averaged superposition. In [2], a general framework for the nonconservative product

g(u)
du

dx
(28)

was introduced, where g : Rn → Rn is a locally bounded Borel function, and u : (a, b)→
Rn is a discontinuous function of bounded variation. In [10], by using this approach, a
δ-shock in system (2) for the case g(u) = f ′(u) was constructed. Another approach is the
well-known Colombeau theory. Applications of this approach to nonlinear equations are
described in many papers and books (see [11], [12]).

5.2. Singularities of flux-functions. It seems natural to introduce the product of
the Heaviside function and the delta function as the weak limit of the product of their
regularizations. In order to construct the regularization f(x, ε) of a distribution f ∈ D′(R)
we use the representation

f(x, ε) = f(x) ∗ 1
ε
ω

(
x

ε

)
, ε > 0, (29)

where ∗ is the convolution, and the mollifier ω has the following properties: (a) ω ∈
C∞(R), (b) ω(η) has a compact support or decreases sufficiently rapidly, as |η| → ∞,
(c)
∫
ω(η) dη = 1, (d) ω(η) ≥ 0, (e) ω(−η) = ω(η). It is known that

lim
ε→+0

〈f(·, ε), ϕ(·)〉 = 〈f(·), ϕ(·)〉 for all ϕ(x) ∈ D(R).

According to (29), δ(x, ε) = 1
εωδ
(
x
ε

)
is a regularization of the delta function, and

H(x, ε) = ω0

(
x

ε

)
=
∫ x

ε

−∞
ω(η) dη,

is a regularization of the Heaviside function, x ∈ R, where ω0(z) ∈ C∞(R), and
limz→+∞ ω0(z) = 1, limz→−∞ ω0(z) = 0. Here the mollifiers ωδ, ω have properties (a)–
(e). Since the function ωδ(η)ω0(η) decreases sufficiently rapidly as |η| → ∞, we have for
ψ(x) ∈ D(R)〈

1
ε
ωδ

(
·
ε

)
ω0

(
·
ε

)
, ψ(·)

〉
=
∫
ωδ(η)ω0(η)ψ(εη) dη = Aψ(0) +O(ε), ε→ +0.
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Thus one can define the product as︷ ︸︸ ︷
H(x)δ(x)

def
= lim

ε→+0
H(x, ε)δ(x, ε) = Aδ(x),

where A = A(ω0, ωδ) =
∫
ω0(η)ωδ(η) dη. The product defined in this way depends on the

mollifiers ω, ωδ, i.e., on the regularizations of the distributions H(x), δ(x).
In a similar way, we can introduce the singular superpositions for flux-functions

F (u, v), G(u, v) associated with system (1). Let u(x, t, ε), v(x, t, ε) be the regulariza-
tions of the distributions u(x, t), v(x, t) in (6). Then we define singular superpositions by
the formulas: ︷ ︸︸ ︷

F (u, v)
def
= lim

ε→+0
F (u(x, t, ε), v(x, t, ε)),︷ ︸︸ ︷

G(u, v)
def
= lim

ε→+0
G(u(x, t, ε), v(x, t, ε)),

if the limits exist in the weak sense. Similarly we can introduce singular superpositions

for the flux-functions
︷ ︸︸ ︷
f ′(u)v,

︷ ︸︸ ︷
f ′′(u)v2 + f ′(u)w associated with system (7).

It is easy to see that these singular superpositions either depend on the regularizations
of the distributions H, δ, δ′ or do not exist in the sense of distributions (see [1], [4], [5],
[13], [15]). This fact implies that the above introduced singular superpositions are not
unique. However, in the context of constructing δ- and δ′-shock solutions to the Cauchy
problems we can define explicit formulas for the “right” unique singular superpositions.
They are unique Schwartz distributions.

Theorem 5.1. Let (u, v) be a δ-shock type solution (6) to the Cauchy problem (1), (5),
and let (uε, vε) be its weak asymptotic solution (see Definition 4.1). Then for t ∈ [0, T )
we can define the explicit formulas for the “right” singular superpositions:

F (u, v)
def
= lim

ε→+0
F (uε, vε) = F (u+, v+) + [F (u, v)]H(−x+ φ(t)), (30)

G(u, v)
def
= lim

ε→+0
G(uε, vε)

= G(u+, v+) + [G(u, v)]H(−x+ φ(t)) + e(t)φ̇(t)δ(−x+ φ(t)), (31)

where the limits are understood in the weak sense, φ̇(t), ė(t) are given by (16).

Proof. Let (uε(x, t), vε(x, t)) be a weak asymptotic solution to the Cauchy problem (1),
(5). In view of (25), we have

uε t + (F (uε, vε))x = oD′(1), vε t + (G(uε, vε))x = oD′(1), ε→ +0. (32)

Moreover, relations (27) hold, where (u(x, t), v(x, t)) is a δ-shock wave type solution (6)
of the Cauchy problem (1), (5). By definition, the “right” singular superpositions are
defined as the weak limits

F (u, v)
def
= lim

ε→+0
F (uε, vε), G(u, v)

def
= lim

ε→+0
G(uε, vε), (33)

where the pair of distributions (u, v) is given by (6). Next, according to (32), (27), we
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have
lim
ε→+0

〈uε t, ϕ〉+ lim
ε→+0

〈(F (uε, vε))x, ϕ〉 = lim
ε→+0

〈oD′(1), ϕ〉 = 0,

lim
ε→+0

〈vε t, ϕ〉+ lim
ε→+0

〈(G(uε, vε))x, ϕ〉 = lim
ε→+0

〈oD′(1), ϕ〉 = 0,
(34)

for all ϕ ∈ D(R× [0,∞)). Thus (34), (33) for all ϕ(x, t) ∈ D(R× [0, ∞)) imply

〈(F (u, v))x, ϕ〉 = lim
ε→+0

〈(F (uε, vε))x, ϕ〉 = −〈ut, ϕ〉,

〈(G(u, v))x, ϕ〉 = lim
ε→+0

〈(G(uε, vε))x, ϕ〉 = −〈vt, ϕ〉.
(35)

Since u, v are distributions, the (F (u, v))x, (G(u, v))x are distributions as well.
Using (35) and (6), we obtain in the weak sense

(F (u, v))x = −ut = −(u+ + [u]H(−x+ φ(t)))t
= −u+t − [ut]H(−x+ φ(t))− [u]φ̇(t)δ(−x+ φ(t)) (36)

and

(G(u, v))x = −vt = −(v+ + [v]H(−x+ φ(t)) + e(t)δ(−x+ φ(t)))t
= −v+t − [vt]H(−x+ φ(t))

− ([v]φ̇(t) + ė(t))δ(−x+ φ(t))− e(t)φ̇(t)δ′(−x+ φ(t)). (37)

Taking into account that for ±x > ±φ(t) we have

u± t + (F (u±, v±))x = 0, v± t + (G(u±, v±))x = 0

and substituting the last relations into (36), (37), we derive

(F (u, v))x = (F (u+, v+))x + ([F (u, v)]H(−x+ φ(t)))x
+ ([F (u, v)]− [u]φ̇(t))δ(−x+ φ(t))

and

(G(u, v))x = (G(u+, v+))x + ([G(u, v)]H(−x+ φ(t)))x
+ ([G(u, v)]− [v]φ̇(t)− ė(t))δ(−x+ φ(t))− e(t)φ̇(t)δ′(−x+ φ(t)).

Integrating the last relations with respect to x, we have

F (u, v) = F (u+, v+) + [F (u, v)]H(−x+ φ(t))

− ([F (u, v)]− [u]φ̇(t))|x=φ(t)H(−x+ φ(t)) + C1(t) (38)

and

G(u, v) = G(u+, v+) + [G(u, v)]H(−x+ φ(t))

− ([G(u, v)]− [v]φ̇(t)− ė(t))|x=φ(t)H(−x+ φ(t))

+ e(t)φ̇(t)δ(−x+ φ(t)) + C2(t), (39)

where C1(t), C2(t) are functions. Taking into account that for ±x > ±φ(t)

lim
ε→+0

F (uε(x, t), vε(x, t)) = F (u±, v±), lim
ε→+0

G(uε(x, t), vε(x, t)) = G(u±, v±),

and using the Rankine–Hugoniot conditions for the δ-shocks (16), we conclude that (38),
(39) imply C1(t) = C2(t) = 0 and the fact that relations (30) and (31) hold.
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Theorem 5.2. Let (u, v, w) be a δ′-shock type solution (9) of the Cauchy problem (7),
(8), and let (uε, vε, wε) be its weak asymptotic solution (see Definition 4.2). Then for
t ∈ [0, T ) we can define the explicit formulas for the “right” singular superpositions:

f(u)
def
= lim

ε→+0
f(uε) = f(u+) + [f(u)]H(−x+ φ(t)), (40)

f ′(u)v
def
= lim

ε→+0
(f ′(uε)vε)

= f ′(u+)v+ + [f ′(u)v]H(−x+ φ(t)) + e(t)φ̇(t)δ(−x+ φ(t)), (41)

f ′′(u)v2 + f ′(u)w
def
= lim

ε→+0
(f ′′(uε)v2

ε + f ′(uε)wε)

= f ′′(u+)v2
+ + f ′(u+)w+ + [f ′′(u)v2 + f ′(u)w]H(−x+ φ(t))

+ (g(t)φ̇(t) + ḣ(t))δ(−x+ φ(t)) + h(t)φ̇(t)δ′(−x+ φ(t)), (42)

where the limits are understood in the weak sense, φ̇(t), ė(t), ġ(t), ḣ(t) are given by
(21)–(24).

Proof. Let (uε(x, t), vε(x, t)) be a weak asymptotic solution of the Cauchy problem (7),
(8). In view of (25), we have

uε t + (f(uε))x = oD′(1),

vε t + (f ′(uε)vε)x = oD′(1),

wε t + (f ′′(uε)v2
ε + f ′(uε)wε)x = oD′(1), ε→ +0.

(43)

Moreover, relations (27) hold, where (u(x, t), v(x, t), w(x, t)) is a δ′-shock wave type solu-
tion (9) of the Cauchy problem (7), (8). By Theorem 5.1, relations (40), (41) hold. Just
as above, using the third equation from (43) and the third relation from (9), we obtain
in the weak sense

(f ′′(u)v2 + f ′(u)w)x = lim
ε→+0

(f ′′(uε)v2
ε + f ′(uε)wε)x = − lim

ε→+0
wε t = −wt

= −((w+)t + [wt]H(−x+ φ(t)) + [w]φ̇(t)δ(−x+ φ(t))

+ ġ(t)δ(−x+ φ(t)) + g(t)φ̇(t)δ′(−x+ φ(t))

+ ḣ(t)δ′(−x+ φ(t)) + h(t)φ̇(t)δ′′(−x+ φ(t))). (44)

Taking into account that w± t + (f ′′(u±)v2
± + f ′(u±)w±)x = 0, for ±x > ±φ(t), and

substituting the latter relation into (44), we obtain

(f ′′(u)v2 + f ′(u)w)x = (f ′′(u+)v2
+ + f ′(u+)w+)x + ([f ′′(u)v2 + f ′(u)w]H(−x+ φ(t)))x

+ ([f ′′(u)v2 + f ′(u)w]− [w]φ̇(t)− ġ(t))δ(−x+ φ(t))

− (g(t)φ̇(t) + ḣ(t))δ′(−x+ φ(t))− h(t)φ̇(t)δ′′(−x+ φ(t)).

Integrating the last relations with respect to x, we have

f ′′(u)v2 +f ′(u)w = f ′′(u+)v2
+ +f ′(u+)w+ +[f ′′(u)v2 +f ′(u)w]H(−x+φ(t))

−([f ′′(u)v2 +f ′(u)w]− [w]φ̇(t)− ġ(t))|x=φ(t)H(−x+φ(t))

+(g(t)φ̇(t)+ ḣ(t))δ(−x+φ(t))+h(t)φ̇(t)δ′(−x+φ(t))+C(t), (45)

where C(t) is a function. Since according to (9), limε→+0(f ′′(uε)v2
ε + f ′(uε)wε) =
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f ′′(u±)v2
± + f ′(u±)w± for ±x > ±φ(t), we conclude that (45) implies C(t) = 0 and

the fact that relation (42) holds.

5.3. Two significant examples. In order to illustrate the “strange” and specific prop-
erties of the “right” singular superpositions, we consider two particular cases of Theo-
rem 5.1.

(a) In [4], [5], a δ-shock wave type solution (6) of the Cauchy problem (2), (5) was
constructed. According to the formulas (30), (31), for this Cauchy problem we have:

f(u) = f(u+) + [f(u)]H(−x+ φ(t)), (46)

vg(u) = v+g(u+) + [vg(u)]H(−x+ φ(t)) + e(t)
[f(u)]

[u]
δ(−x+ φ(t)), (47)

where the distributions u, v are given by (6).
(b) The Cauchy problems (3), (5) and (4), (5) for the Keyfitz-Kranzer system and

its generalization were solved in [14], [1]. According to the formulas (30), (31), for the
Cauchy problem (4), (5) we have:

f(u(x, t))− v(x, t) = f(u+)− v+ + [f(u)− v]H(−x+ φ(t)), (48)

g(u(x, t)) = g(u+) + [g(u)]H(−x+ φ(t)) + e(t)
[f(u)− v]

[u]
δ(−x+ φ(t)), (49)

where u, v are given by (6). For the Keyfitz-Kranzer system (3) formulas (48), (49) imply

u2 − v = u2
+ − v+ + [u2 − v]H(−x+ φ(t)), (50)

1
3
u3 − u =

1
3
u3

+ − u+ +
[

1
3
u3 − u

]
H(−x+ φ(t)) + e(t)

[u2 − v]
[u]

δ(−x+ φ(t)). (51)

Note that the unique “right” singular superpositions (46), (47) are essentially differ-
ent from the unique “right” singular superpositions (48), (49) and (50), (51). The main
distinction between them is the following.

Taking into account that H(x) ·H(x) = H(x), one can see that in fact, by (47), the
unique “right” product of the step function and the delta function is defined by:

e(t)δ(−x+φ(t))u(x, t) = e(t)δ(−x+φ(t)) ·
{
u−, x < φ(t),
u+, x > φ(t),

= e(t)
[f(u)]

[u]
δ(−x+φ(t)).

In the case of the Keyfitz–Kranzer system (3) and its generalization (4), formulas
(48), (49) and (50), (51) do not define (!) the product of the Heaviside function and
the δ-function. Moreover, although according to (6), u(x, t) does not depend on the terms
e(t)δ(−x+φ(t)) and [v(x, t)]|x=φ(t), the “right” singular superposition g(u(x, t)) (or 1

3u
3−

u) determined by (49) (or (51)) does depend (!) on these terms. Thus one can say that the
term e(t) [f(u)−v]

[u] δ(−x+φ(t)) or e(t) [u2−v]
[u] δ(−x+φ(t)) “appears from nothing”. Similarly,

the left-hand sides of relations (48) and (50) depend on the term e(t)δ(−x+ φ(t)) while
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the right-hand sides in (48) and (50) are independent of this term. Nevertheless, in the
context of solving the Cauchy problem, the flux-function is determined uniquely.

Since the nonlinear terms in systems (3), (4), and (7) can not be reduced to terms of
the form (28), it is impossible to construct δ-shocks for systems (3), (4) and δ′-shocks for
system (7) by using the nonconservative product [10], [2].

In [6], the system of conservation laws

ut +
(
u2

2

)
x

= 0, vt + (uv)x = 0, wt +
(
v2

2
+ uw

)
x

= 0 (52)

was studied. This system has repeated eigenvalues. As stated in [6], system (52) cannot be
solved in the classical distributional sense, therefore it is necessary to define a generalized
solution in the Colombeau sense. In [6] this is motivated by the following arguments:
if v− + v+ 6= 0 then the v component contains a δ measure along x = 0. Though the
product uv does not make sense in the classical theory of distributions, it can be defined
in the sense of the approach [2], but v2 contains a square of δ measure and thus cannot
be defined in this sense. It is clear that by the change of variables u → 2u, v → 2v,
w → w system (52) can be transformed into system (7), where f(u) = u2. Thus, contrary
to the assertion from the paper [6], according to [13], system (52) admits a δ′-shock wave
type solution. This solution considered in the sense of Definition 3.1 is a distributional
solution. Thus we can see that the problem of introducing singular solutions to system
(52) is reduced to the problem of the “right” definition of singular solutions. In the
above-mentioned case a generalized solution of system (52) is represented by Schwartz
distributions but not Colombeau generalized functions.

Due to the above facts, it is important to describe systems of conservation laws whose
singular solutions can be defined only in terms of the Colombeau generalized functions
(while they can not be defined in the sense of Schwartz distributions). It is important
also to develop the theory of flux-function singularities of systems of conservation laws.
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