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1. The RHPWN and Virasoro-Zamolodchikov-w∞ ∗-Lie algebras. Let at and a†s
be the standard boson white noise functionals with commutator

[at, a†s] = δ(t− s) · 1 (1.1)

where δ is the Dirac delta function. As shown in [1] and [2], using the renormalization

δl(t− s) = δ(s) δ(t− s), l = 2, 3, .... (1.2)

for the higher powers of the Dirac delta function and choosing test functions f : R→ C
that vanish at zero, the symbols

Bnk (f) =
∫

R
f(s) a†s

n
aks ds, n, k ∈ {0, 1, 2, ...} (1.3)

with involution

(Bnk (f))∗ = Bkn(f̄) (1.4)

and

B0
0(f) =

∫
R
f(s) ds (1.5)

satisfy the Renormalized Higher Powers of White Noise (RHPWN) commutation rela-
tions

[Bnk (g), BNK (f)]RHPWN = (kN −K n) Bn+N−1
k+K−1 (gf) (1.6)

where for n < 0 and/or k < 0 we define Bnk (f) = 0. Moreover, for n,N ≥ 2 and k,K ∈ Z
the white noise operators

B̂nk (f) =
∫

R
f(t) e

k
2 (at−a†t )

(
at + a†t

2

)n−1

e
k
2 (at−a†t ) dt (1.7)

satisfy the commutation relations

[B̂nk (g), B̂NK (f)]w∞ = ((N − 1) k − (n− 1)K) B̂n+N−2
k+K (g f) (1.8)

of the Virasoro-Zamolodchikov-w∞ Lie algebra of conformal field theory with involution

(B̂nk (f))∗ = B̂n−k(f̄) (1.9)

In particular, for n = N = 2 we obtain

[B̂2
k(g), B̂2

K(f)]w∞ = (k −K) B̂2
k+K(gf) (1.10)

which are the commutation relations of the Virasoro algebra. The analytic continuation
{B̂nz (f); n ≥ 1, z ∈ C} of the Virasoro-Zamolodchikov-w∞ Lie algebra and the RHPWN

Lie algebra with commutator [·, ·]RHPWN have recently been identified (cf. [3]) providing
a connection between quantum probability and conformal field theory and high-energy
physics.

The first five sections of this paper contain the full proofs of the results outlined in [5]
with the remaining sections focusing on our results on central extensions.
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For a detailed exposition of the motivations behind the theory of the renormalized
higher powers of white noise, as well as its historical development, we refer to [8].

Notation 1. In what follows, for all integers n, k we will use the notation

Bnk = Bnk (χI) (1.11)

where I is some fixed subset of R of finite Lebesgue measure µ = µ(I) > 0.

2. The action of the RHPWN operators on the Fock vacuum vector Φ. Recall
that our strategy to construct a Fock representation for the RHPWN ∗-Lie-algebra
is to define an action of its elements on a single vector (the vacuum) and then prove
that this action uniquely determines a Hilbert space structure. From this point of view,
Lemma 1 and Proposition 1 constitute a heuristic motivation for the action that we begin
to investigate starting from Proposition 2.

2.1. Definition of the RHPWN action on the Fock vacuum vector Φ. To for-
mulate a reasonable definition of the action of the RHPWN operators on Φ we go to the
level of white noise. As it will turn out, Φ must be an eigenvector of the number opera-
tors Bnn(f). The following is a continuous, non-renormalized version of a known formula
in the finite dimensional case. We use it as motivation for the identification proved in
Proposition 1.

Lemma 1. For all t ≥ s ≥ 0 and n ∈ {0, 1, 2, ...}

(a†t)
n (as)n =

n∑
k=0

sn,k (a†t as)
k δn−k(t− s) (2.1)

where sn,k are the Stirling numbers of the first kind with s0,0 = 1 and s0,k = sn,0 = 0 for
all n, k ≥ 1.

Idea of the proof. It is well known (see [4] for a proof) that if [b, b†] = 1 then

(b†)k (b)k =
k∑

m=0

sk,m (b† b)m (2.2)

If [b, b†] = 1 we can represent a†t , at using the formal expressions

δ(t− s)1/2 b† = a†t , and δ(t− s)1/2 b = as (2.3)

Then the result follows by substituting (2.3) into (2.2). The same result follows by in-
duction using (1.1).

The following proposition shows that, if we combine the renormalization (1.2) with
the identity (2.1) then we obtain a new expression for the renormalized powers Bnk (f).

Proposition 1. For all integers n ≥ k ≥ 0 and for all test functions f

Bnk (f) =
∫

R
f(t) (a†t)

n−k (a†t at)
k dt (2.4)

Proof. For n ≥ k we can write

(a†t)
n (as)k = (a†t)

n−k (a†t)
k (as)k
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Multiplying both sides by f(t) δ(t− s) and then taking
∫

R
∫

R ...ds dt of both sides of the
resulting equation we obtain∫

R

∫
R
f(t) (a†t)

n (as)k δ(t− s) ds dt =
∫

R

∫
R
f(t) (a†t)

n−k (a†t)
k (as)k δ(t− s) ds dt

which, after applying (1.3) to its left and Lemma 1 to its right hand side, yields

Bnk (f) =
k∑

m=0

sk,m

∫
R

∫
R
f(t) (a†t)

n−k (a†t as)
m δk−m+1(t− s) ds dt

= sk,k

∫
R

∫
R
f(t) (a†t)

n−k (a†t as)
k δ(t− s) ds dt

+
k−1∑
m=0

sk,m

∫
R

∫
R
f(t) (a†t)

n−k (a†t as)
m δ(s) δ(t− s) ds dt

= sk,k

∫
R
f(t) (a†t)

n−k (a†t at)
k dt + 0

=
∫

R
f(t) (a†t)

n−k (a†t at)
k dt

where we have used the renormalization rule (1.2), f(0) = 0, and sk,k = 1.

Proposition 2. Suppose that there exist a Hilbert space H, a representation of the
RHPWN ∗-Lie-algebra on H (omitted for simplicity from the notations) and a vector
Φ ∈ H such that for all n, k ∈ {0, 1, 2, ...} and test functions f ,

Bnk (f) Φ =


0 if n < k or n · k < 0,

Bn−k0 (f σk) Φ if n > k ≥ 0,∫
R f(t) ρk(t) dtΦ if n = k,

(2.5)

where σk and ρk are complex valued functions. Then there exist a number σ1 ∈ C such
that, for all n ∈ {0, 1, 2, ...}:

σn = σn1 , (2.6)

ρn =
σn1
n+ 1

. (2.7)

Proof. By (2.5) and (1.3) for k = 0, and by (1.5) for n = k = 0 it follows that σ0 = ρ0 = 1.
For n ≥ 1 we have

〈Bn0 (f)Φ, Bn+1
1 (g)Φ〉 = 〈Bn0 (f)Φ, Bn0 (g σ1)Φ〉

= 〈Φ, B0
n(f̄)Bn0 (g σ1) Φ〉

= 〈Φ, (Bn0 (g σ1)B0
n(f̄) + [B0

n(f̄), Bn0 (g σ1)]) Φ〉
= 〈Φ, (0 + n2Bn−1

n−1(f̄ g σ1)]) Φ〉

= n2

∫
R
ρn−1(t)σ1(t) f̄(t) g(t) dt

and also
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〈Bn0 (f)Φ, Bn+1
1 (g)Φ〉 = 〈Φ, B0

n(f̄)Bn+1
1 (g) Φ〉

= 〈Φ, (Bn+1
1 (g)B0

n(f̄) + [B0
n(f̄), Bn+1

1 (g)]) Φ〉
= 〈Φ, (0 + n (n+ 1)Bnn(f̄ g)]) Φ〉

= n (n+ 1)
∫

R
ρn(t) f̄(t) g(t) dt,

i.e., for all test functions h

n2

∫
R
ρn−1(t)σ1(t)h(t) dt = n (n+ 1)

∫
R
ρn(t)h(t) dt

which implies that

ρn =
n

n+ 1
σ1 ρn−1 = ... =

σn1
n+ 1

(2.8)

thus proving (2.7). Similarly,∫
R
ρn(t) f(t) g(t) dt = 〈Φ, Bnn(f g) Φ〉 =

1
n+ 1

〈Φ, [Bn−1
n (f), B2

1(g)] Φ〉

=
1

n+ 1
〈Φ, (Bn−1

n (f)B2
1(g)−B2

1(g)Bn−1
n (f)) Φ〉

=
1

n+ 1
〈Φ, Bn−1

n (f)B2
1(g) Φ〉 =

1
n+ 1

〈Bnn−1(f̄) Φ, B2
1(g) Φ〉

=
1

n+ 1
〈B1

0(σn−1f̄)Φ, B1
0(σ1 g)Φ〉 =

1
n+ 1

〈Φ, B0
1(σ̄n−1f)B1

0(σ1g)Φ〉

=
1

n+ 1
〈Φ, [B0

1(σ̄n−1 f) B1
0(σ1 g)] Φ〉 =

1
n+ 1

〈Φ, B0
0(σ̄n−1 f σ1 g) Φ〉

=
1

n+ 1

∫
R
σ̄n−1(t)σ1(t) f(t) g(t) dt.

Thus, for all test functions h∫
R
ρn(t)h(t) dt =

1
n+ 1

∫
R
σ̄n−1(t)σ1(t)h(t) dt

therefore
(n+ 1) ρn = σ̄n−1 σ1 (2.9)

which combined with (2.7) implies σ̄n−1 = σn−1
1 , which in turn implies that the σn’s are

real and yields (2.6).

We want to keep the interpretation of a†t , at and a†tat as creation, annihilation and
number densities respectively even after their renormalization. From this point of view,
because of the identity (2.4), the first condition in definition 2.5, of the action of Bnk on Φ,
is quite natural. The second condition is equivalent to assuming that Φ is an eigenvector
of the number density with eigenvalue σk(t) and the third condition allows for a different
action of the number density when it appears as a pure number density or when it
multiplies a non zero power of the creation density. In the following we take the function
σ1 (and thus by (2.6) all the σn’s ) appearing in Proposition 2 to be identically equal to
1 and we arrive to the following definition of the action of the RHPWN operators on Φ.
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Definition 1. For n, k ∈ Z and test functions f

Bnk (f) Φ =


0 if n < k or n · k < 0,

Bn−k0 (f) Φ if n > k ≥ 0,
1

n+1

∫
R f(t) dtΦ if n = k.

(2.10)

2.2. The n-th order RHPWN ∗-Lie algebras Ln
Definition 2. In the notation (1.11):

(i) L1 is the ∗-Lie algebra generated by B1
0 and B0

1 , i.e. the linear span of {B1
0 , B

0
1 , B

0
0}.

(ii) L2 is the ∗-Lie algebra generated by B2
0 and B0

2 , i.e. the linear span of {B2
0 , B

0
2 , B

1
1}.

(iii) For n ∈ {3, 4, ...}, Ln is the ∗-Lie algebra generated by Bn0 and B0
n through re-

peated commutations and linear combinations. It consists of linear combinations of cre-
ation/annihilation operators of the form Bxy where x−y = k n, k ∈ Z\{0}, and of number
operators Bxx with x ≥ n− 1.

Remark. In particular, choosing x = n, k = 2, y = 0 in (iii) of Definition 2, one sees
that, for each n ≥ 3, Ln contains also B2n

0 . As shown in the following section, this is the
root of the no-go theorems.

2.3. The Fock representation no-go theorem. We will show that if the RHPWN

action on Φ is that of Definition 1 then the Fock representation no-go theorems of [9] and
[2] can be extended to the RHPWN ∗-Lie algebras Ln where n ≥ 3.

Theorem 1. Let n ≥ 3. If the action of the RHPWN operators on the vacuum vector
Φ is given by Definition 1 then Ln does not admit a Fock representation whenever the
test function space contains characteristic functions of Lebesgue measure strictly smaller
than n2(n+ 1)/2.

Proof. From the remark after Definition 2 we know that, for each n ≥ 3, Ln contains B2n
0 .

Therefore, in the assumptions of the theorem, one must have, ∀a, b ∈ C:

0 ≤ ‖(aB2n
0 + b (Bn0 )2)Φ‖ = 〈(aB2n

0 + b (Bn0 )2)Φ, (aB2n
0 + b (Bn0 )2)Φ〉

and, in the notation (1.11), the RHPWN operators are defined on the same interval I.
Using the notation 〈x〉 = 〈Φ, xΦ〉 this amounts to the positive semi-definiteness of the
matrix

A =
[
〈B0

2nB
2n
0 〉 〈B0

2n (Bn0 )2〉
〈B0

2n (Bn0 )2〉 〈(B0
n)2 (Bn0 )2〉

]
.

Using (1.8) and Definition 1 we find that

〈B0
2nB

2n
0 〉 = 4n2 〈B2n−1

2n−1〉 = 4n2 1
2n

µ(I) = 2nµ(I)

and

〈B0
2n (Bn0 )2〉 = 〈B2n

0 Φ, (Bn0 )2 Φ〉 = 〈B0
nB

2n
0 Φ, Bn0 Φ〉

= 2n2 〈B2n−1
n−1 Φ, Bn0 Φ〉 = 2n2 〈Bn0 Φ, Bn0 Φ〉

= 2n2 〈B0
nB

n
0 〉 = 2n2 n2 〈Bn−1

n−1〉

= 2n4 1
n
µ(I) = 2n3 µ(I)
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and also

〈(B0
n)2 (Bn0 )2〉 = 〈Bn0 Φ, B0

n (Bn0 )2 Φ〉 = 〈Bn0 Φ, (B0
nB

n
0 )Bn0 Φ〉

= 〈Bn0 Φ, (Bn0 B
0
n + n2Bn−1

n−1)Bn0 Φ〉
= 〈Bn0 Φ, Bn0 B

0
nB

n
0 Φ〉+ n2 〈Bn0 Φ, Bn−1

n−1 B
n
0 Φ〉

= 〈B0
nB

n
0 Φ, B0

nB
n
0 Φ〉+ n2 〈Bn0 Φ, (Bn0 B

n−1
n−1 + n (n− 1) B2n−2

n−2 ) Φ〉
= n4〈Bn−1

n−1Φ, Bn−1
n−1Φ〉+ nµ(I)〈Bn0 Φ, Bn0 Φ〉+ n3 (n− 1)〈Bn0 Φ, B2n−2

n−2 Φ〉
= n2 µ(I)2 + nµ(I) 〈B0

nB
n
0 〉+ n3 (n− 1) 〈B0

nB
2n−2
n−2 〉

= n2 µ(I)2 + n3 µ(I) 〈Bn−1
n−1〉+ n4 (n− 1) (2n− 2) 〈B2n−3

2n−3〉
= n2 µ(I)2 + n2 µ(I)2 + n4 (n− 1)µ(I)

= 2n2 µ(I)2 + n4 (n− 1)µ(I).

Thus

A =
[

2nµ(I) 2n3 µ(I)
2n3 µ(I) 2n2 µ(I)2 + n4 (n− 1)µ(I)

]
is a symmetric matrix so it is positive semi-definite if and only if its minors are non-
negative. The minor determinants of A are

d1 = 2nµ(I)

which is always nonnegative, and

d2 = 2n3 µ(I)2 (2µ(I)− n2 − n3)

which is nonnegative if and only if µ(I) ≥ n2(n+ 1)/2. This proves the statement.

3. The n-th order truncated RHPWN (or TRHPWN) Fock space Fn

3.1. Truncation of the RHPWN Fock kernels. The generic element of the ∗-Lie al-
gebras Ln of Definition 2 is Bn0 . All other elements of Ln are obtained by taking adjoints,
commutators, and linear combinations. It thus makes sense to consider (Bn0 (f))k Φ as
basis vectors for the n-th particle space of the Fock space Fn associated with Ln. A cal-
culation of the “Fock kernel” 〈(Bn0 )k Φ, (Bn0 )m Φ〉 reveals that it is the terms containing
B2n

0 Φ that prevent the kernel from being positive definite. Since L1 and L2 do not con-
tain B2

0 and B4
0 respectively, that problem exists for n ≥ 3 only and the Fock spaces F1

and F2 are actually not truncated. In what follows we will compute the Fock kernels by
applying Definition 1 and by truncating “singular” terms of the form

〈(Bn0 )k Φ, (Bn0 )mBxy Φ 〉 (3.1)

where nk = nm + x − y and x − y = 2n, i.e. k −m = 2. This amounts to truncating
the action of the principal Ln number operator Bn−1

n−1 on the “number vectors” (Bn0 )k Φ
which by commutation relations (1.6) and Definition 1 is of the form

Bn−1
n−1 (Bn0 )k Φ =

(µ
n

+ k n (n− 1)
)

(Bn0 )k Φ +
∑
i≥1

∏
j≥1

ci,j B
λi,j n
0 Φ
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(where for each i not all positive integers λi,j are equal to 1) by omitting the∑
i≥1

∏
j≥1 ci,jB

λi,jn
0 Φ part. We thus arrive at the following:

Definition 3. For integers n ≥ 1 and k ≥ 0,

Bn−1
n−1 (Bn0 )k Φ :=

(µ
n

+ k n (n− 1)
)

(Bn0 )k Φ, (3.2)

i.e., the number vectors (Bn0 )k Φ are eigenvectors of the principal Ln number operator
Bn−1
n−1 with eigenvalues

(
µ
n + k n (n− 1)

)
.

In agreement with Definition 1, for k = 0 Definition 3 yields Bn−1
n−1 Φ = µ

n Φ.

3.2. Outline of the Fock space construction method. We will construct the
TRHPWN Fock spaces by using the following method (cf. Chapter 3 of [18]):

(i) Compute
‖(Bn0 )k Φ‖2 = 〈(Bn0 )k Φ, (Bn0 )k Φ〉 = πn,k(µ) (3.3)

where k = 0, 1, 2, ..., Φ is the RHPWN vacuum vector, and πn,k(µ) is a polynomial in µ
of degree k.

(ii) Using the fact that if k 6= m then 〈(Bn0 )k Φ, (Bn0 )m Φ〉 = 0, for a, b ∈ C compute

〈eaB
n
0 Φ, ebB

n
0 Φ〉 =

∞∑
k=0

(ā b)k

(k!)2
〈(Bn0 )k Φ, (Bn0 )k Φ〉

=
∞∑
k=0

(ā b)k

k!
πn,k(µ)
k!

=
∞∑
k=0

(ā b)k

k!
hn,k(µ) (3.4)

where

hn,k(µ) =
πn,k(µ)
k!

(3.5)

(iii) Look for a function Gn(u, µ) such that

Gn(u, µ) =
∞∑
k=0

uk

k!
hn,k(µ) (3.6)

Using the Taylor expansion of Gn(u, µ) in powers of u

Gn(u, µ) =
∞∑
k=0

uk

k!
∂k

∂uk
Gn(u, µ)

∣∣∣∣
u=0

(3.7)

by comparing (3.7) and (3.6) we see that

∂k

∂uk
Gn(u, µ)

∣∣∣∣
u=0

= hn,k(µ). (3.8)

Equation (3.8) plays a fundamental role in the search for Gn in what follows.

(iv) Reduce to single intervals and extend to step functions: For u = ā b, assuming that

Gn(u, µ) = eµ Ĝn(u) (3.9)
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which is typical for “Bernoulli moment systems” (cf. Chapter 5 of [18] ), equation (3.6)
becomes

eµ Ĝn(ā b) =
∞∑
k=0

(ā b)k

k!
hn,k(µ). (3.10)

Take the product of (3.10) over all sets I, for test functions f =
∑
i ai χIi and g =∑

i bi χIi with Ii ∩ Ij = � for i 6= j, and end up with an expression like

e
R

R Ĝn(f(t) g(t)) dt =
∏
〈eaB

n
0 Φ, ebB

n
0 Φ〉 (3.11)

which we take as the definition of the inner product 〈ψn(f), ψn(g)〉n of the “exponential
vectors”

ψn(f) =
∏
i

eai B
n
0 (χIi ) Φ (3.12)

of the TRHPWN Fock space Fn. Notice that Φ = ψn(0).

3.3. Construction of the TRHPWN Fock spaces Fn

Lemma 2. Let n ≥ 1 be fixed. Then for all integers k ≥ 0

B0
n (Bn0 )k+1 Φ = n (k + 1)

(
µ+ k

n2 (n− 1)
2

)
(Bn0 )k Φ. (3.13)

Proof. For k = 0 we have

B0
nB

n
0 Φ = (Bn0 B

0
n + [B0

n, B
n
0 ]) Φ = 0 + n2Bn−1

n−1 Φ

= n2 µ

n
Φ = nµΦ = n (0 + 1)

(
µ+ 0

n2 (n− 1)
2

)
(Bn0 )0 Φ.

Assuming (3.13) to be true for k we have

B0
n (Bn0 )k+2 Φ = (B0

nB
n
0 ) (Bn0 )k+1 Φ = (Bn0 B

0
n + n2Bn−1

n−1) (Bn0 )k+1 Φ

= Bn0 B
0
n (Bn0 )k+1 Φ + n2Bn−1

n−1 (Bn0 )k+1 Φ

= Bn0 n (k + 1)
(
µ+ k

n2 (n− 1)
2

)
(Bn0 )k Φ + n2Bn−1

n−1 (Bn0 )k+1 Φ

=
(
n (k + 1)

(
µ+ k

n2 (n− 1)
2

)
+ n2

(µ
n

+ (k + 1)n (n− 1)
))

(Bn0 )k+1 Φ

= n (k + 2)
(
µ+ (k + 1)

n2 (n− 1)
2

)
(Bn0 )k+1 Φ,

which proves (3.13) to be true for k + 1 also, thus completing the induction.

Proposition 3. For all n ≥ 1

πn,k(µ) = 〈(Bn0 )k Φ, (Bn0 )k Φ〉 = k!nk
k−1∏
i=0

(
µ+

n2 (n− 1)
2

i

)
. (3.14)

Proof. Let n ≥ 1 be fixed. Define

ak = k!nk
k−1∏
i=0

(
µ+

n2 (n− 1)
2

i

)
.
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Then a1 = nµ and for k ≥ 1

ak+1 = n (k + 1)
(
µ+ k

n2 (n− 1)
2

)
ak.

Similarly, define
bk = 〈(Bn0 )k Φ, (Bn0 )k Φ〉.

Then
b1 = 〈Bn0 Φ, Bn0 Φ〉 = 〈Φ, B0

nB
n
0 Φ〉 = n2〈Φ, Bn−1

n−1 Φ〉 = n2 µ

n
= nµ

and for k ≥ 1, using Lemma 2

bk+1 = 〈(Bn0 )k Φ, B0
n (Bn0 )k+1 Φ〉 = n (k + 1)

(
µ+ k

n2 (n− 1)
2

)
〈(Bn0 )k Φ, (Bn0 )k Φ〉

= n (k + 1)
(
µ+ k

n2 (n− 1)
2

)
bk.

Thus ak = bk for all k ≥ 1.

Corollary 1. The functions hn,k appearing in (3.5) are given by

h1,k = µk (3.15)

and for n ≥ 2

hn,k = nk
k−1∏
i=0

(
µ+

n2 (n− 1)
2

i

)
. (3.16)

Proof. The proof follows from Proposition 3 and (3.5).

Corollary 2. The functions Gn appearing in (3.6) are given by

G1(u, µ) = euµ (3.17)

and for n ≥ 2

Gn(u, µ) =
(

1− n3 (n− 1)
2

u

)− 2
n2 (n−1)

µ

= e
− 2
n2 (n−1)

µ ln

„
1−n

3 (n−1)
2 u

«
(3.18)

where ln denotes logarithm with base e.

Proof. The proof follows from the fact that for Gn given by (3.17) and (3.18), in accor-
dance with (3.8), we have

∂k

∂uk
Gn(u, µ)

∣∣∣∣
u=0

= nk
k−1∏
i=0

(
µ+

n2 (n− 1)
2

i

)
.

Corollary 3. The functions Ĝn appearing in (3.7) are given by

Ĝ1(u) = u (3.19)

and for n ≥ 2

Ĝn(u) = − 2
n2 (n− 1)

ln
(

1− n3 (n− 1)
2

u

)
. (3.20)

Proof. The proof follows directly from Corollary 2.
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Corollary 4. The Fn inner products are given by

〈ψ1(f), ψ1(g)〉1 = e
R

R f̄(t) g(t) dt (3.21)

and for n ≥ 2

〈ψn(f), ψn(g)〉n = e
− 2
n2 (n−1)

R
R ln

„
1−n

3 (n−1)
2 f̄(t) g(t)

«
dt

(3.22)

where |f(t)| < 1
n

√
2

n (n−1) and |g(t)| < 1
n

√
2

n (n−1) .

Proof. The proof follows from (3.11) and Corollary 2.

The function G1 of (3.17) and the Fock space inner product (3.21) are associated
with the Heisenberg algebra and the quantum stochastic calculus of [22]. For n = 2 the
function Gn of (3.18) and the associated Fock space inner product (3.22) have appeared
in the study of the Finite-Difference algebra and the Square of White Noise algebra in
[12], [13], [16], and [17]. The functions Gn of (3.18) can also be found in Proposition 5.4.2
of Chapter 5 of [18].

Definition 4. The n-th order TRHPWN Fock space Fn is the Hilbert space completion
of the linear span of the exponential vectors ψn(f) of (3.12) under the inner product 〈·, ·〉n
of Corollary 4. The full TRHPWN Fock space F is the direct sum of the Fn’s.

3.4. Fock representation of the TRHPWN operators

Proposition 4. For all test functions f =
∑
i ai χIi and g =

∑
i bi χIi with Ii ∩ Ij = �

for i 6= j, and for all n ≥ 1

B0
n(f)ψn(g) = n

∫
R
f(t) g(t) dt ψn(g) +

n3 (n− 1)
2

∂

∂ ε

∣∣∣∣
ε=0

ψn(g + ε f g2), (3.23)

Bn0 (f)ψn(g) =
∂

∂ ε

∣∣∣∣
ε=0

ψn(g + ε f). (3.24)

Proof. By (3.12), the fact that [B0
n(χIi), e

Bn0 (χIj )] = 0 whenever Ii ∩ Ij = �, and by
Lemma 2 we have

B0
n(f)ψn(g) =

m∑
i=1

aiB
0
n(χIi)

m∏
j=1

ebj B
n
0 (χIj ) Φ

=
m∑
i=1

ai

m∏
j=1

B0
n(χIi) e

bj B
n
0 (χIj ) Φ

=
m∑
i=1

ai

( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

)
B0
n(χIi) e

bi B
n
0 (χIi ) Φ

=
m∑
i=1

ai

( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

) ∞∑
k=0

bki
k!
B0
n(χIi) (Bn0 (χIi))

k Φ
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=
m∑
i=1

ai

( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

) ∞∑
k=0

bki
k!
nk

(
µ(Ii) + (k − 1)

n2 (n− 1)
2

)
(Bn0 (χIi))

k−1 Φ

=
m∑
i=1

ai

( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

) ∞∑
k=1

bki
(k − 1)!

nµ(Ii) (Bn0 (χIi))
k−1 Φ

+
m∑
i=1

ai

( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

) ∞∑
k=2

bki
(k − 2)!

n3 (n− 1)
2

(Bn0 (χIi))
k−1 Φ

= n

m∑
i=1

ai bi µ(Ii)
( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

)
ebi B

n
0 (χIi ) Φ

+
n3 (n− 1)

2

m∑
i=1

ai b
2
i B

n
0 (χIi)

( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

)
ebi B

n
0 (χIi ) Φ

= n

m∑
i=1

ai bi µ(Ii)
( m∏
j=1

ebj B
n
0 (χIj )

)
Φ

+
n3 (n− 1)

2

m∑
i=1

ai b
2
i B

n
0 (χIi) e

bi B
n
0 (χIi )

( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

)
Φ

= n

∫
R
f(t) g(t) dt ψn(g) +

n3 (n− 1)
2

m∑
i=1

∂

∂ ε

∣∣∣∣
ε=0

e(ε ai b
2
i+bi)B

n
0 (χIi )

( m∏
j=1
j 6=i

ebj B
n
0 (χIj )

)
Φ

= n

∫
R
f(t) g(t) dt ψn(g) +

n3 (n− 1)
2

∂

∂ ε

∣∣∣∣
ε=0

( m∏
i=1

e(ε ai b
2
i+bi)B

n
0 (χIi )

)
Φ

= n

∫
R
f(t) g(t) dt ψn(g) +

n3 (n− 1)
2

∂

∂ ε

∣∣∣∣
ε=0

ψn(g + ε f g2).

To prove (3.24) we notice that for n = 1 (3.23) yields

B0
1(f)ψ1(g) =

∫
R
f(t) g(t) dt ψ1(g),

i.e., B0
1(f) = A(f) where A(f) is the annihilation operator of Hudson-Parthasarathy

calculus (cf. [22]) and so

B1
0(f)ψ1(g) = A†(f)ψ1(g) =

∂

∂ ε

∣∣∣∣
ε=0

ψ1(g + ε f)

where A†(f) is the creation operator of Hudson-Parthasarathy calculus thus proving
(3.24) for n = 1. To prove (3.24) for n ≥ 2 we notice that by the duality condition (1.4)
for all test functions f, g, φ

〈Bn0 (f)ψn(φ), ψn(g)〉n = 〈ψn(φ), B0
n(f̄)ψn(g)〉n

= n

∫
R
f̄(t) g(t) dt 〈ψn(φ), ψn(g)〉n +

n3 (n− 1)
2

∂

∂ ε

∣∣∣∣
ε=0

〈ψn(φ), ψn(g + ε f̄ g2)〉n
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= n

∫
R
f̄(t) g(t) dt 〈ψn(φ), ψn(g)〉n

+
n3 (n− 1)

2
∂

∂ ε

∣∣∣∣
ε=0

e
− 2
n2 (n−1)

R
R ln

„
1−n

3 (n−1)
2 φ̄(t) (g+ε f̄ g2)(t)

«
dt

= n

∫
R
f̄(t) g(t) dt 〈ψn(φ), ψn(g)〉n

+
n3 (n− 1)

2
〈ψn(φ), ψn(g)〉n

(
− 2
n2 (n− 1)

∫
R

−n
3 (n−1)

2 φ̄ f̄ g2

1− n3 (n−1)
2 φ̄ g

(t) dt

)

=

(
n

∫
R
f̄(t) g(t) dt+

n4 (n− 1)
2

∫
R

φ̄ f̄ g2

1− n3 (n−1)
2 φ̄ g

(t) dt

)
〈ψn(φ), ψn(g)〉n

= n

∫
R

f̄ g

1− n3 (n−1)
2 φ̄ g

(t) dt 〈ψn(φ), ψn(g)〉n

=
∂

∂ ε

∣∣∣∣
ε=0

e
− 2
n2 (n−1)

R
R ln(1−n

3 (n−1)
2 (φ̄+ε f̄)(t) g(t)) dt

=
∂

∂ ε

∣∣∣∣
ε=0

〈ψn(φ+ ε f), ψn(g)〉n

=
〈
∂

∂ ε

∣∣∣∣
ε=0

ψn(φ+ ε f), ψn(g)
〉
n

,

which implies (3.24).

Corollary 5. For all n ≥ 1 and test functions f, g, h

Bn−1
n−1(f g)ψn(h) =

1
n

∫
R
f(t) g(t) ψn(h)

+
n (n− 1)

2
∂2

∂ ε ∂ ρ

∣∣∣∣
ε=ρ=0

(ψn(h+ ε g + ρ f (h+ ε g)2)− ψn(h+ ε f h2 + ρ g)). (3.25)

Proof.

Bn−1
n−1(f g)ψn(h) =

1
n2

[B0
n(f), Bn0 (g)]ψn(h)

=
1
n2

(
B0
n(f)Bn0 (g)−Bn0 (g)B0

n(f)
)
ψn(h)

=
1
n2

(B0
n(f)

∂

∂ ε

∣∣∣∣
ε=0

ψn(h+ ε g)−Bn0 (g) (n
∫

R
f(t)h(t) dt ψn(h)

+
n3 (n− 1)

2
∂

∂ ε

∣∣∣∣
ε=0

ψn(h+ ε f h2)))

=
1
n2

∂

∂ ε

∣∣∣∣
ε=0

B0
n(f)ψn(h+ ε g)− 1

n

∫
R
f(t)h(t) dt Bn0 (g)ψn(h)

− n (n− 1)
2

∂

∂ ε

∣∣∣∣
ε=0

Bn0 (g)ψn(h+ ε f h2)
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=
1
n2

∂

∂ ε

∣∣∣∣
ε=0

(n
∫

R
f(t) (h+ ε g)(t) dt ψn(h+ ε g)

+
n3 (n− 1)

2
∂

∂ ρ

∣∣∣∣
ρ=0

ψn(h+ ε g + ρ f (h+ ε g)2))

− 1
n

∫
R
f(t)h(t) dt

∂

∂ ε

∣∣∣∣
ε=0

ψn(h+ ε g)− n (n− 1)
2

∂

∂ ε

∣∣∣∣
ε=0

∂

∂ ρ

∣∣∣∣
ρ=0

ψn(h+ ε f h2 + ρ g)

=
1
n

(∫
R
f(t) g(t) dt ψn(h) +

∫
R
f(t)h(t) dt

∂

∂ ε

∣∣∣∣
ε=0

ψn(h+ ε g)
)

+
n (n− 1)

2
∂2

∂ ε ∂ ρ

∣∣∣∣
ε=ρ=0

ψn(h+ ε g + ρ f (h+ ε g)2)

− 1
n

∫
R
f(t)h(t) dt

∂

∂ ε

∣∣∣∣
ε=0

ψn(h+ ε g)

− n (n− 1)
2

∂2

∂ ε ∂ ρ

∣∣∣∣
ε=ρ=0

ψn(h+ ε f h2 + ρ g)

=
1
n

∫
R
f(t) g(t) dt ψn(h)

+
n (n− 1)

2
∂2

∂ ε ∂ ρ

∣∣∣∣
ε=ρ=0

(ψn(h+ ε g + ρ f (h+ ε g)2)− ψn(h+ ε f h2 + ρ g)).

Using the method described in Corollary 5, i.e. using the prescription

Bn+N−1
k+K−1 (gf) =

1
kN −K n

(Bnk (g)BNK (f)−BNK (f)Bnk (g)) (3.26)

and suitable linear combinations, we obtain the representation of the Bxy (and there-
fore of the RHPWN and Virasoro-Zamolodchikov-w∞ commutation relations) on the
appropriate Fock space Fn.

4. Classical stochastic processes on Fn
Definition 5. A quantum stochastic process x = {x(t) / t ≥ 0} is a family of Hilbert
space operators. Such a process is said to be classical if for all t, s ≥ 0, x(t) = x(t)∗ and
[x(t), x(s)] = x(t)x(s)− x(s)x(t) = 0.

In the case of a Fock representation, the equation x(t) = x(t)∗ holds on the exponential
domain (the linear span of the exponential vectors).

Proposition 5. Let m > 0 and let a quantum stochastic process x = {x(t)/ t ≥ 0} be
defined by

x(t) =
∑
n,k∈Λ

cn,k B
n
k (t) (4.1)

where cn,k ∈ C− {0}, Λ is a finite subset of {0, 1, 2, ...} and
Bnk (t) = Bnk (χ[0,t]) ∈ Fm (4.2)

If for each n, k ∈ Λ
cn,k = c̄k,n (4.3)

then the process x = {x(t) / t ≥ 0} is classical.
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Proof. By (1.4), x(t) = x∗(t) for all t ≥ 0. Moreover, by (1.6), [x(t), x(s)] = 0 for
all t, s ≥ 0 since each term of the form cN,K cn,k [BNK (t), Bnk (s)] is canceled out by the
corresponding term of the form cn,k cN,K [Bnk (s), BNK (t)]. Thus the process x = {x(t) /
t ≥ 0} is classical.

In the remaining of this section we will study the classical process x = {x(t) / t ≥ 0}
whose Fock representation as a family of operators on Fn is

x(t) = Bn0 (t) +B0
n(t). (4.4)

By Proposition 4

Bn0 (t)ψn(g) =
∂

∂ ε

∣∣∣∣
ε=0

ψn(g + ε χ[0,t]), (4.5)

B0
n(t)ψn(g) = n

∫ t

0

g(s) ds ψn(g) +
n3 (n− 1)

2
∂

∂ ε

∣∣∣∣
ε=0

ψn(g + ε χ[0,t] g
2). (4.6)

In particular, for g = 0

Bn0 (t)ψn(0) =
∂

∂ ε

∣∣∣∣
ε=0

ψn(ε χ[0,t]), (4.7)

B0
n(t)ψn(0) = 0. (4.8)

Lemma 3 (Splitting formula). Let s ∈ R. Then for n = 1

es (B1
0+B0

1) Φ = e
s2
2 µesB

1
0 Φ (4.9)

and for n ≥ 2

es (Bn0 +B0
n) Φ =

(
sec

(√
n3 (n− 1)

2
s

)) 2nµ
n3 (n−1)

e

q
2

n3 (n−1)
tan

„q
n3 (n−1)

2 s

«
Bn0 Φ. (4.10)

Proof. We will use the “differential method” of Proposition 4.1.1, Chapter 1 of [18]. So
let

E Φ = es (Bn0 +B0
n) Φ = eV (s)Bn0 eW (s) Φ (4.11)

where W,V are real-valued functions with W (0) = V (0) = 0. Then
∂

∂ s
E Φ = (Bn0 +B0

n)E Φ = Bn0 E Φ +B0
nE Φ. (4.12)

By Lemma 2 we have

B0
nE Φ = B0

n e
V (s)Bn0 eW (s) Φ = eW (s)B0

n e
V (s)Bn0 Φ

= eW (s)
∞∑
k=0

V (s)k

k!
B0
n (Bn0 )k Φ

= eW (s)
∞∑
k=0

V (s)k

k!
nk

(
µ+ (k − 1)

n2 (n− 1)
2

)
(Bn0 )k−1 Φ

= (nµV (s) +
n3 (n− 1)

2
V (s)2Bn0 ) eV (s)Bn0 eW (s) Φ

= (nµV (s) +
n3 (n− 1)

2
V (s)2Bn0 )E Φ.
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Thus (4.12) becomes

∂

∂ s
E Φ =

(
Bn0 + nµV (s) +

n3 (n− 1)
2

V (s)2Bn0

)
E Φ. (4.13)

From (4.11) we also have

∂

∂ s
E Φ = (V ′(s)Bn0 +W ′(s)) E Φ. (4.14)

From (4.13) and (4.14), by equating coefficients of 1 and Bn0 , we have

W ′(s) = nµV (s), (4.15)

V ′(s) = 1 +
n3 (n− 1)

2
V (s)2 (Riccati equation). (4.16)

For n = 1 we find V (s) = s and W (s) = s2

2 µ. For n ≥ 2 by separating the variables we
find

V (s) =

√
2

n3 (n− 1)
tan

(√
n3 (n− 1)

2
s

)
and so

W (s) = − 2nµ
n3 (n− 1)

ln
(

cos
(√

n3 (n− 1)
2

s

))
which implies that

eW (s) =
(

sec
(√

n3 (n− 1)
2

s

)) 2nµ
n3 (n−1)

thus completing the proof.

In the theory of Bernoulli systems and the Fock representation of finite-dimensional
Lie algebras (cf. Chapter 5 of [18]) the Riccati equation (4.16) has the general form

V ′(s) = 1 + 2αV (s) + β V (s)2

and the values of α and β determine the underlying classical probability distribution and
the associated special functions. For example, for α = 1− 2 p and β = −4 p q we have the
binomial process and the Krawtchouk polynomials, for α = p−1 − 1

2 and β = q p−2 we
have the negative binomial process and the Meixner polynomials, for α 6= 0 and β = 0 we
have the Poisson process and the Poisson-Charlier polynomials, for α2 = β we have the
exponential process and the Laguerre polynomials, for α = β = 0 we have Brownian mo-
tion with moment generating function e

s2
2 t and associated special functions the Hermite

polynomials, and for α2 − β < 0 we have the continuous binomial and Beta processes
(cf. Chapter 5 of [18] and also [20] ) with moment generating function (sec s)t and as-
sociated special functions the Meixner-Pollaczek polynomials. In the infinite-dimensional
TRHPWN case the underlying classical probability distributions are given in the fol-
lowing.

Proposition 6 (Moment generating functions). For all s ≥ 0

〈es (B1
0(t)+B0

1(t)) Φ,Φ〉1 = e
s2
2 t, (4.17)
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i.e. {B1
0(t) +B0

1(t) / t ≥ 0} is Brownian motion (cf. [18], [22]) while for n ≥ 2

〈es (Bn0 (t)+B0
n(t)) Φ,Φ〉n =

(
sec
(√

n3 (n− 1)
2

s

)) 2n t
n3 (n−1)

, (4.18)

i.e. {Bn0 (t) +B0
n(t) / t ≥ 0} is for each n a continuous binomial/Beta process (see propo-

sition 7 in the next section) corresponding to the density

µt,n(x) = p 2n
n3 (n−1)

t(x) =
2

2n
n3 (n−1)

t−1

2π
B

( 2n
n3 (n−1) t+ i x

2
,

2n
n3 (n−1) t− i x

2

)
(4.19)

where B(a, c) is the Beta function with parameters a, c as in (5.2) below.

Proof. The proof follows from Lemma 3, µ([0, t]) = t, and the fact that for all n ≥ 1 we
have B0

n(t) Φ = 0.

5. The continuous binomial and Beta processes. Let

bn,k(x) =
(
n

k

)
xk (1− x)n−k, n, k ∈ {0, 1, 2, ...}, n ≥ k, x ∈ (0, 1), (5.1)

be the standard binomial distribution. Using the Gamma function we can analytically
extend from n, k ∈ {0, 1, 2, ...} to z, w ∈ C with < z ≥ <w > −1 and we have

bz,w(x) =
Γ(z + 1)

Γ(z − w + 1) Γ(w + 1)
xw (1− x)z−w

=
1

z + 1
Γ(z + 2)

Γ(z − w + 1) Γ(w + 1)
xw (1− x)z−w

=
1

z + 1
Γ(z + 2)

Γ(z − w + 1) Γ(w + 1)
x(w+1)−1 (1− x)(z−w+1)−1

=
1

z + 1
1

B(z − w + 1, w + 1)
x(w+1)−1 (1− x)(z−w+1)−1

=
1

z + 1
βw+1, z−w+1(x)

where

B(a, c) =
Γ(a) Γ(c)
Γ(a+ c)

=
∫ 1

0

xa−1 (1− x)c−1 dx, <a > 0, <c > 0, (5.2)

is the Beta function and βw+1, z−w+1 is the analytic continuation to < a > 0 and < c > 0
of the standard Beta distribution

βa,c(x) =
Γ(a+ c)
Γ(a) Γ(c)

xa−1 (1− x)c−1, a > 0, c > 0. (5.3)

Proposition 7. For each t > 0 let Xt be a random variable with distribution given by
the density

pt(x) =
2t−1

2π
B

(
t+ i x

2
,
t− i x

2

)
(5.4)

where B is the Beta function. Then the moment generating function of Xt is

〈esXt〉 =
∫ ∞
−∞

es x pt(x) dx = (sec s)t, ∀ t > 0, s ∈ R. (5.5)
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Proof. See Proposition 4.1.1, Chapter 5 of [18].

Corollary 6. With Xt and pt as in Proposition 7, let

Yt =

√
n3 (n− 1)

2
Xt. (5.6)

Then the moment generating function of Yt with respect to the density

qt = p 2n
n3 (n−1)

t (5.7)

where n ∈ {1, 2, ...}, is

〈es Yt〉 =
(

sec
(√

n3 (n− 1)
2

s

)) 2n t
n3 (n−1)

. (5.8)

Proof. Since pt is for each t > 0 a probability density function we have∫ ∞
−∞

pt(x) dx = 1, ∀ t > 0,

and so for t := 2n
n3 (n−1) t ∫ ∞

−∞
p 2n
n3 (n−1)

t(x) dx = 1, ∀ t > 0,

i.e. ∫ ∞
−∞

qt(x) dx = 1, ∀ t > 0,

so qt is for each t > 0 a probability density function. Moreover, letting t := 2n
n3 (n−1) t and

s :=
√

n3 (n−1)
2 s in (5.5) we obtain∫ ∞

−∞
es
q
n3 (n−1)

2 x qt(x) dx =
(

sec
(√

n3 (n− 1)
2

s

)) 2n t
n3 (n−1)

,

which is precisely the moment generating function 〈es Yt〉 of Yt with respect to qt.

6. Central extensions of RHPWN and w∞. The detailed proofs of all results pre-
sented in this section can be found in [6].

6.1. Basic concepts. If L and L̃ are two complex Lie algebras, we say that L̃ is a
one-dimensional central extension of L with central element E if there is a Lie algebra
exact sequence 0 → CE → L̃ → L → 0, where CE is the one-dimensional trivial Lie
algebra and the image of CE is contained in the center of L̃. It is well-known that L̃ is
a one-dimensional central extension of L if and only if L̃ is the direct sum of L and CE
as vector spaces with

[l1, l2]eL = [l1, l2]L + φ(l1, l2)E (6.1)

and
[l1, E]eL = 0 (6.2)

for all l1, l2 ∈ L where [·, ·]eL and [·, ·]L are the Lie brackets in L̃ and L, respectively,
and φ : L× L → C is a bilinear (i.e. linear in both arguments) form on L satisfying the
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skew-symmetry condition

φ(l1, l2) = −φ(l2, l1) (6.3)

and the Jacobi identity

φ([l1, l2]L, l3) + φ([l2, l3]L, l1) + φ([l3, l1]L, l2) = 0. (6.4)

In particular, (6.3) implies that φ(l, l) = 0 for all l ∈ L. The bilinear form φ is called a
2-cocycle on L. A central extension is trivial if L̃ is the direct sum of a subalgebra M

and CE as Lie algebras, where the subalgebra M is isomorphic to L. Two extensions are
equivalent if each one of them is a trivial extension of the other, i.e. if their difference
is a trivial cocycle. A 2-cocycle φ corresponding to a trivial central extension is called
a 2-coboundary or a trivial 2-cocycle and it is given by a linear function f : L → C
satisfying

φ(l1, l2) = f([l1, l2]L) (6.5)

for all l1, l2 ∈ L.

Notation 2. In the rest of this section we take all test functions to be the characteristic
function of a fixed interval I and we will from now on write Bnk instead of Bnk (χI).

6.2. Central extensions of the Heisenberg algebra. The Heisenberg closed ∗-Lie
subalgebra Heis of RHPWN is generated by B1

0 , B0
1 and B0

0 with non-zero commutation
relations

[B0
1 , B

1
0 ]Heis = B0

0 (6.6)

and involution (
B1

0

)∗
= B0

1 ,
(
B0

1

)∗
= B1

0 ,
(
B0

0

)∗
= B0

0 . (6.7)

Proposition 8. (i) Let a 2-cocycle φ be defined on Heis × Heis through a bilinear
skew-symmetric extension of

φ(B0
1 , B

1
0) = λ, (6.8)

φ(B0
0 , B

0
1) = z, (6.9)

φ(B1
0 , B

0
0) = z̄, (6.10)

φ(B0
0 , B

0
0) = 0, (6.11)

φ(B1
0 , B

1
0) = 0, (6.12)

φ(B0
1 , B

0
1) = 0, (6.13)

where λ ∈ R and z ∈ C. Then φ defines a central extension of Heis.
(ii) All 2-cocycles φ corresponding to a central extension of Heis are of the form (6.8)-
(6.13).
(iii) A central extension of Heis is trivial if and only if z = 0.

In section 7 we discuss the non-trivial central extensions of the Heis ∗-Lie algebra in
more detail.
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6.3. Central extensions of the Oscillator algebra. The Oscillator closed ∗-Lie sub-
algebra OSC of RHPWN is generated by B1

0 , B0
1 , B0

0 , and B1
1 with non-zero commuta-

tion relations

[B0
1 , B

1
0 ]OSC = B0

0 , (6.14)

[B0
1 , B

1
1 ]OSC = B0

1 , (6.15)

[B1
1 , B

1
0 ]OSC = B1

0 , (6.16)

and involution

(B1
0)∗ = B0

1 , (B0
1)∗ = B1

0 , (B0
0)∗ = B0

0 , (B1
1)∗ = B1

1 . (6.17)

Proposition 9. (i) Let a 2-cocycle φ be defined on OSC × OSC through a bilinear
skew-symmetric extension of

φ(B0
1 , B

1
0) = λ, (6.18)

φ(B0
0 , B

1
0) = 0, (6.19)

φ(B0
1 , B

0
0) = 0, (6.20)

φ(B0
1 , B

1
1) = z, (6.21)

φ(B1
1 , B

1
0) = z̄, (6.22)

φ(B0
0 , B

1
1) = 0, (6.23)

where z ∈ C, λ ∈ R. Then φ defines a central extension of OSC.
(ii) All 2-cocycles φ corresponding to a central extension of OSC are of the form (6.18)-
(6.23).
(iii) All central extensions of OSC are trivial.

6.4. Central extensions of the Square of White Noise algebra. The Square of
White Noise closed ∗-Lie subalgebra SWN of RHPWN is generated by B2

0 , B0
2 , and B1

1

with non-zero commutation relations

[B0
2 , B

1
1 ]SWN = 2B0

2 , (6.24)

[B1
1 , B

2
0 ]SWN = 2B2

0 , (6.25)

[B0
2 , B

2
0 ]SWN = 4B1

1 , (6.26)

and involution
(B2

0)∗ = B0
2 , (B0

2)∗ = B2
0 , (B1

1)∗ = B1
1 . (6.27)

Proposition 10. (i) Let a 2-cocycle φ be defined on SWN × SWN through a bilinear
skew-symmetric extension of

φ(B0
2 , B

2
0) = λ, (6.28)

φ(B0
2 , B

1
1) = z, (6.29)

φ(B1
1 , B

2
0) = z̄, (6.30)

where z ∈ C, λ ∈ R. Then φ defines a central extension of SWN .
(ii) All 2-cocycles φ corresponding to a central extension of SWN are of the form (6.28)-
(6.30).
(iii) All central extensions of SWN are trivial.
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6.5. Central extensions of RHPWN . Let ˜RHPWN be a central extension of
RHPWN such that on the RHPWN generators

[Bnk , B
N
K ] ˜RHPWN

= [Bnk , B
N
K ]RHPWN + c(n, k;N,K)E (6.31)

= (kN −K n) Bn+N−1
k+K−1 + c(n, k;N,K)E

with
c(n, k;N,K) = φ(Bnk , B

N
K ) ∈ C (6.32)

where φ is a cocycle as in (6.1).

Proposition 11. (i) For all nonnegative integers n, k,N,K with n + N = S + 1 and
k +K = M + 1, where S,M ∈ {−1, 0, 1, 2, ...} are given,

c(n, k;N,K) = zS,M · (kN −K n) (6.33)

where zS,M ∈ R.
(ii) All central extensions (6.31) of RHPWN are trivial.

6.6. Central extensions of w∞. Let w̃∞ be a central extension of w∞ such that on
the w∞ generators

[B̂nk , B̂
N
K ]gw∞ = [B̂nk , B̂

N
K ]w∞ + c(n, k;N,K)E

= (k (N − 1)−K (n− 1)) B̂n+N−2
k+K + c(n, k;N,K)E (6.34)

where n,N ≥ 2 and k,K ∈ Z, and

c(n, k;N,K) = φ(B̂nk , B̂
N
K ) ∈ C (6.35)

where φ is a cocycle as in (6.1).

Proposition 12. (i) For all integers n, k,N,K with n,N ≥ 2 and n + N = S + 2,
k + K = M , where S ≥ 3 (thus excluding the Witt-Virasoro sector S = 2) and M ∈ Z
are given,

c(n, k;N,K) = zS,M · (k (N − 1)−K (n− 1)) (6.36)

where zS,M ∈ R.
(ii) All central extensions of w∞ are trivial.

The triviality of the central extensions of w∞ was first discussed in [14].
For the Witt-Virasoro sector of w∞ (corresponding to S = 2 in proposition 12) we

have the well-known non-trivial extension

[B̂2
m, B̂

2
n]w∞ = (m− n) B̂2

m+n + δm+n,0m (m2 − 1)E. (6.37)

7. The centrally extended Heisenberg algebra. In this section (a continuation of
subsection 6.2 above) we present our recently obtained results on the non-trivial central
extensions of the Heisenberg algebra. Detailed proofs can be found in [7]. For convenience
we replace B0

1 , B1
0 and B0

0 by a, a† and h respectively and consider the (one mode)
Heisenberg algebra Heis satisfying the Lie algebra commutation relations

[a, a†]Heis = h, [a, h]Heis = [h, a†]Heis = 0 (7.1)
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and the duality relations
(a)∗ = a†, h† = h. (7.2)

As discussed in subsection 6.2, the Heisenberg algebra commutation relations can be
centrally extended to

[a, a†]CEHeis = h+ λE, [h, a†]CEHeis = z E, [a, h]CEHeis = z̄ E, (7.3)

where E 6≡ 0 is the self-adjoint central element and where, here and in the following,
all omitted commutators among generators are assumed to be equal to zero. The central
extension is non-trivial if and only if z 6= 0.

Renaming h+λE by just h in (7.3) we obtain the equivalent commutation relations

[a, a†]CEHeis = h, [h, a†]CEHeis = z E, [a, h]CEHeis = z̄ E. (7.4)

From now on we will use (7.4) and (7.2) as the defining commutation relations and duality
relations of the centrally extended Heisenberg algebra denoted by CEHeis. For z = 0 we
are back in the usual Heisenberg algebra.

For λ ∈ R and z ∈ C \ {0} commutation relations (7.4) define a solvable four-
dimensional ∗-Lie algebra CEHeis with generators a, a†, h and E. Defining p, q and
H by

a† = p+ i q, a = p− i q, H = −ih/2, (7.5)

we have that p, q, E are self-adjoint and H is skew-adjoint. Moreover p, q, E and H are
the generators of a real four-dimensional solvable ∗-Lie algebra RCEHeis with central
element E and commutation relations

[p, q] = H, [q,H] = cE, [H, p] = bE, (7.6)

where b, c are (not simultaneously zero) real numbers given by

c =
Re z

2
, b =

Imz

2
. (7.7)

Conversely, if p, q,H,E are the generators (with p, q, E self-adjoint and H skew-adjoint)
of a real four-dimensional solvable ∗-Lie algebra with central element E and commutation
relations (7.6) where b and c are (not simultaneously zero) real numbers then, defining
z by (7.7), the operators defined by (7.5) are the generators of the nontrivial central
extension CEHeis of the Heisenberg algebra defined by (7.4), (7.2).

Real four-dimensional solvable Lie algebras are fully classified. There are exactly fif-
teen isomorphism classes and they are listed, for example, in proposition 2.1 of [25] (see
references therein for additional information). One of the fifteen Lie algebras that appear
in the above mentioned classification list is the Lie algebra η4 with generators ξ1, ξ2, ξ3, ξ4
and (non-zero) commutation relations among generators

[ξ4, ξ1] = ξ2, [ξ4, ξ2] = ξ3. (7.8)

The real four-dimensional solvable Lie algebra RCEHeis described above can be iden-
tified to η4. The Lie algebra η4 and the corresponding Lie group have also been studied
by Feinsilver and Schott in [19]. But it is the first time that its connection with the
non-trivial central extensions of an important Lie algebra such as the Heisenberg one has
been pointed out.
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The generators a, a†, h and E of CEHeis can be expressed in terms of the generators
b, b†, b2, b†2, b† b and 1 of the Schrödinger algebra. Here b†, b and 1 are the generators of
a Boson Heisenberg algebra with

[b, b†] = 1, (b†)
∗

= b. (7.9)

More precisely

(i) If z ∈ C with Re z 6= 0 then for arbitrary ρ, r ∈ R with r 6= 0 the quadruple
{a+, a, h, E = 1} where:

a =
(

4 ρ Imz − r2

4Re z
+ i ρ

)
(b− b†)2 − i z̄

2 r
(b+ b†), (7.10)

a† =
(

4 ρ Imz − r2

4Re z
− i ρ

)
(b− b†)2 +

i z

2 r
(b+ b†), (7.11)

and

h = i r (b† − b), (7.12)

satisfies the commutation relations (7.4) and the duality relations (7.2) of CEHeis.

(ii) If z ∈ C with Re z = 0 then for arbitrary ρ, r ∈ R with r 6= 0 the quadruple
{a+, a, h, E = 1} where:

a =
(
ρ− i Im z

16 r2

)
(b− b†)2 + r (b+ b†), (7.13)

a† =
(
ρ+

i Im z

16 r2

)
(b− b†)2 + r (b+ b†), (7.14)

and

h =
i Im z

2 r
(b† − b), (7.15)

satisfies the commutation relations (7.4) and the duality relations (7.2) of CEHeis.
We can therefore represent the generators a, a†, h and E of CEHeis on the usual

Heisenberg Fock space (with vacuum vector Φ such that bΦ = 0 and ||Φ|| = 1) defined
as the Hilbert space completion of the linear span of the exponential vectors {y(λ) =
eλ b

†
Φ ; λ ∈ C} with respect to the inner product

〈y(λ), y(µ)〉 = eλ̄ µ (7.16)

using the well-known representation, for non-negative integers n and k,

b†
n
bk y(λ) = λk

∂n

∂ εn

∣∣∣∣
ε=0

y(λ+ ε). (7.17)

In fact:

(i) If z ∈ C with Re z 6= 0 then
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a y(λ) =
((

4 ρ Imz − r2

4Re z
+ i ρ

)
(λ2 − 1)− i z̄

2 r
λ

)
y(λ)

+
((

4 ρ Imz − r2

4Re z
+ i ρ

)
∂2

∂ ε2

∣∣∣∣
ε=0

−
((

4 ρ Imz − r2

4Re z
+ i ρ

)
2λ+

i z̄

2 r

)
∂

∂ ε

∣∣∣∣
ε=0

)
y(λ+ ε), (7.18)

a† y(λ) =
((

4 ρ Imz − r2

4Re z
− i ρ

)
(λ2 − 1) +

i z

2 r
λ

)
y(λ)

+
((

4 ρ Imz − r2

4Re z
− i ρ

)
∂2

∂ ε2

∣∣∣∣
ε=0

−
((

4 ρ Imz − r2

4Re z
− i ρ

)
2λ− i z

2 r

)
∂

∂ ε

∣∣∣∣
ε=0

)
y(λ+ ε), (7.19)

h y(λ) = i r

(
∂

∂ ε

∣∣∣∣
ε=0

y(λ+ ε)− λ y(λ)
)
, (7.20)

and
E y(λ) = y(λ). (7.21)

(ii) If z ∈ C with Re z = 0 then

a y(λ) =
((

ρ− i Im z

16 r2

)
(λ2 − 1) + r λ

)
y(λ)

+
((

ρ− i Im z

16 r2

)
∂2

∂ ε2

∣∣∣∣
ε=0

+
(
r −

(
ρ− i Im z

16 r2

)
2λ
)

∂

∂ ε

∣∣∣∣
ε=0

)
y(λ+ ε), (7.22)

a† y(λ) =
((

ρ+
i Im z

16 r2

)
(λ2 − 1) + r λ

)
y(λ)

+
((

ρ+
i Im z

16 r2

)
∂2

∂ ε2

∣∣∣∣
ε=0

+
(
r −

(
ρ+

i Im z

16 r2

)
2λ
)

∂

∂ ε

∣∣∣∣
ε=0

)
y(λ+ ε), (7.23)

h y(λ) =
i Im z

2 r

(
∂

∂ ε

∣∣∣∣
ε=0

y(λ+ ε)− λ y(λ)
)
, (7.24)

and
E y(λ) = y(λ). (7.25)

Remark 1. CEHeis can also be represented in terms of two independent CCR copies.
In fact, for j, k ∈ {1, 2} letting [qj , pk] = i

2 δj,k and [qj , qk] = [pj , pk] = 0 with p†j = pj ,
q†j = qj and i2 = −1, we have:

(i) If z ∈ C with Re z 6= 0 and Imz 6= 0 then

a = i Re z q1 +
1

Re z
p2

1 − Imz p2 −
i

Im z
q2
2 , (7.26)

a† = −i Re z q1 +
1

Re z
p2

1 − Imz p2 +
i

Im z
q2
2 , (7.27)

h = −2 (p1 + q2), (7.28)
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and E = 1 satisfy the commutation relations (7.4) and the duality relations (7.2) of
CEHeis.
(ii) If z ∈ C with Re z = 0 and Imz 6= 0 then for arbitrary r ∈ R and c ∈ C

a = c p2
1 − Imz p2 +

(
r − i

Im z

)
q2
2 , (7.29)

a† = c̄ p2
1 − Imz p2 +

(
r +

i

Im z

)
q2
2 , (7.30)

h = −2 q2, (7.31)

and E = 1 satisfy the commutation relations (7.4) and the duality relations (7.2) of
CEHeis.
(iii) If z ∈ C with Re z 6= 0 and Imz = 0 then for arbitrary r ∈ R and c ∈ C

a = i Re z q1 +
(

1
Re z

+ i r

)
p2

1 + c q2
2 , (7.32)

a† = −i Re z q1 +
(

1
Re z

− i r
)
p2

1 + c̄ q2
2 , (7.33)

h = −2 p1, (7.34)

and E = 1 satisfy the commutation relations (7.4) and the duality relations (7.2) of
CEHeis.

8. Random variables in CEHeis. Self-adjoint operators X on the Heisenberg Fock
space correspond to classical random variables with moment generating function 〈Φ, esXΦ〉
where s ∈ R. In this section we compute the moment generating function of the self-
adjoint operator X = a+ a† + h. All proofs can be found in [7].

Lemma 4 (Splitting formula). Let L ∈ R and M,N ∈ C. Then for all s ∈ R such that
2Ls+ 1 > 0

es (L b2+L b†
2−2L b† b−L+M b+N b†) Φ = ew1(s) b†

2

ew2(s) b† ew3(s) Φ (8.1)

where

w1(s) =
Ls

2Ls+ 1
, (8.2)

w2(s) =
L (M +N) s2 +N s

2Ls+ 1
, (8.3)

and

w3(s) =
(M +N)2 (L2 s4 + 2Ls3) + 3M N s2

6 (2Ls+ 1)
− ln (2Ls+ 1)

2
(8.4)

are respectively the solutions of

w′1(s) = 4Lw1(s)2 − 4Lw1(s) + L (Riccati differential equation), (8.5)

w′2(s) = (4Lw1(s)− 2L)w2(s) + 2M w1(s) +N (Linear differential equation), (8.6)

w′3(s) = 2Lw1(s) + Lw2(s)2 − L+M w2(s), (8.7)

with w1(0) = w2(0) = w3(0) = 0.
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Remark 2. For L 6= 0 the Riccati equation

w′1(s) = 4Lw1(s)2 − 4Lw1(s) + L (8.8)

can be put in the canonical form

V ′(s) = 1 + 2αV (s) + β V (s)2 (8.9)

of the theory of Bernoulli systems of chapters 5 and 6 of [18], where V (s) = w1(s)/L,
α = −2L and β = 4L2. Then δ2 := α2 − β = 0 which is characteristic of exponential
and Gaussian systems ([18], Proposition 5.3.2). For L = 0 we obtain classical Brownian
motion (see proposition 13 below).

Proposition 13 (Moment Generating Function). For all s ∈ R such that 2Ls+ 1 > 0

〈Φ, es (a+a†+h) Φ〉 = (2Ls+ 1)−1/2 e
(M+N)2 (L2 s4+2L s3)+3M N s2

6 (2L s+1) (8.10)

where in the notation of (7.10)-(7.15)

(i) if Re z 6= 0 then

L =
4 ρ Imz − r2

2Re z
, (8.11)

M = −
(
Imz

r
+ i r

)
, (8.12)

N = −
(
Imz

r
− i r

)
, (8.13)

(ii) if Re z = 0 then

L = 2 ρ, (8.14)

M = 2 r − i Im z

2 r
, (8.15)

N = 2 r + i
Im z

2 r
. (8.16)

Remark 3. If L = 0 (corresponding to ρ Imz > 0 and r2 = 4 ρ Imz in the case when
Re z 6= 0 and to ρ = 0 in the case when Re z = 0) then (8.10) becomes

〈Φ, es (a+a†+h) Φ〉 = e
M N s2

2 =

e
„

(Im z)2

2 r2
+ r2

2

«
s2

if Re z 6= 0 ,

e

„
2 r2+

(Im z)2

8 r2

«
s2

if Re z = 0,

(8.17)

which means that a+ a† + h is a Gaussian random variable.
For L 6= 0 the term (2Ls + 1)−1/2 appearing in (8.10) is the moment generating

function of a gamma random variable.

9. The centrally extended Heisenberg Lie group. By exponentiating the elements
of CEHeis we obtain the elements of the centrally extended Heisenberg Lie group. In
this section we provide the group law. All proofs can be found in [7].

Lemma 5. For all X,Y ∈ span{a, a†, h, E}

eX+Y = eX eY e−
1
2 [X,Y ] e

1
6 (2 [Y,[X,Y ]]+[X,[X,Y ]]). (9.1)
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Lemma 6. For all λ, µ ∈ C

eλ a eµa
†

= eµa
†
eλ a eλµh e

λµ
2 (µ z−λ z̄), (9.2)

a eµa
†

= eµa
†
(
a+ µh+

µ2 z

2

)
, (9.3)

eλ a eµh = eµh eλ a eλµ z̄, (9.4)

eµh eλ a
†

= eλ a
†
eµh eλµ z, (9.5)

a eµh = eµh (a+ µ z̄), (9.6)

h eλ a
†

= eλ a
†

(h+ λ z). (9.7)

Proposition 14 (Group Law). For u, v, w, y ∈ C define

g(u, v, w, y) = eu a
†
ev h ew aeyE . (9.8)

Then the family of operators of the form (9.8) is a group with group law given by

g(α, β, γ, δ) g(A,B,C,D)

= g(α+A, β +B + γ A, γ + C,

(
γ A2

2
+ β A

)
z +

(
γ2A

2
+ γ B

)
z̄ + δ +D). (9.9)

The family of operators of the form (9.8) with u, v, w ∈ R and y ∈ C is a sub-group. The
group R3 × C endowed with the composition law:

(α, β, γ, δ) (A,B,C,D)

=
(
α+A, β +B + γ A, γ + C,

(
γ A2

2
+ β A

)
z +

(
γ2A

2
+ γ B

)
z̄ + δ +D

)
(9.10)

is called the centrally extended Heisenberg group.

10. Matrix representation of CEHeis. In example (ix) of [19], Feinsilver and Schott
considered the Lie algebra η4 generated by {ξi / i = 1, 2, 3, 4} where

[ξ4, ξ1] = ξ2 ; [ξ4, ξ2] = ξ3 (10.1)

and all other commutators (between the generators) are equal to zero. This is precisely
the Lie algebra η4 mentioned in section 7 above.

Remark 4. As mentioned in [19], the generators ξ1, ξ2, ξ3, ξ4 can be represented on the
space of smooth functions f(x) as x2/2, x, 1 and D = d/dx respectively, with [D,x] = 1.
However, this representation does not allow us to view η4 as a ∗-Lie algebra since by
taking the adjoint of commutation relations (10.1) (this is the “left dual” of [19] denoted
by †) we have that

[D,x2/2]† = x†, [D,x]† = 1†, (10.2)

i.e.
[D2/2, x] = D ; [D,x] = 1, (10.3)

and so, with this representation, η4 is not closed under taking adjoints.
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A matrix representation of η4 was given by Feinsilver and Schott to be

4∑
i=1

αi ξi =


0 α4 0 α3

0 0 α4 α2

0 0 0 α1

0 0 0 0

 (10.4)

where αi ∈ C for i = 1, 2, 3, 4 and

e
P4
i=1 αi ξi =


1 α4

α2
4

2
α2

4 α1
6 + α4 α2

2 + α3

0 1 α4
α4 α1

2 + α2

0 0 1 α1

0 0 0 1

 . (10.5)

Defining group elements g(a, b, c, d) = ea ξ1 eb ξ2 ec ξ3 ed ξ4 through matrix multiplication
they verified the group law

g(a, b, c, d) g(A,B,C,D) = g(a+A, b+B + dA, c+ C + dB +
1
2
d2A, d+D) (10.6)

since both sides are equal to
1 d+D d2

2 + dD + D2

2 c+ d2 A
2 + dB + C

0 1 d+D b+ dA+B

0 0 1 a+A

0 0 0 1

 . (10.7)

To connect η4 with CEHeis we let

z = 2 c+ 2 b i (10.8)

where b and c are not simultaneously zero and we distinguish the following cases:

Case (i). b = 0 and c 6= 0: Take q = ξ4, p = ξ1, H = −ξ2 and E = − 1
c ξ3 and define

a = p− i q, a† = p+ i q and h = 2 iH.

Case (ii). b 6= 0 and c = 0: Take p = ξ4, q = ξ1, H = ξ2 and E = − 1
b ξ3 and define

a = p− i q, a† = p+ i q and h = 2 iH.

Case (iii). b 6= 0 and c 6= 0: Take p = β ξ4, q = 1
β ξ1 − α ξ4, H = ξ2 and E = −βb ξ3,

where α, β ∈ R \ {0} are such that βc− αb = 0, and define a = p− i q, a† = p+ i q and
h = 2 iH.

In all cases (i)-(iii) p, q,H and E satisfy commutation relations (7.6) and a+, a, h

and E satisfy the commutation relations (7.4) of CEHeis. If we introduce the duality
relations

ξ∗1 = ξ1 ; ξ∗2 = −ξ2 ; ξ∗3 = ξ3 ; ξ∗4 = ξ4 (10.9)

we conclude that a+, a, h and E also satisfy the duality relations (7.2) of CEHeis.
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Using (10.4) we can obtain a matrix representation of CEHeis (satisfying commuta-
tion relations (7.4) but not duality relations (7.2)) in each of the cases (i)-(iii) described
above.

Case (i). z = 2 c where c ∈ R \ {0}:

α1 a+ α2 a
† + α3 h+ α4E = (α1 + α2) ξ1 − 2 i α3 ξ2 −

1
c
α4 ξ3 + i (α2 − α1) ξ4

=


0 i (α2 − α1) 0 − 1

c α4

0 0 i (α2 − α1) −2 i α3

0 0 0 α1 + α2

0 0 0 0

 (10.10)

and

eα1 a+α2 a
†+α3 h+α4 E = e(α1+α2) ξ1−2 i α3 ξ2− 1

c α4 ξ3+i (α2−α1) ξ4

=



1 i (α2 − α1) − 1
2 (α2 − α1)2 1

6 (α2 − α1) (α2
1 − α2

2 + 6 a3)− 1
c a4

0 1 i (α2 − α1) i
2 (α2

2 − α2
1 − 4 a3)

0 0 1 α1 + α2

0 0 0 1


. (10.11)

Case (ii). z = 2 b i where b ∈ R \ {0}:

α1 a+ α2 a
† + α3 h+ α4E = i (α2 − α1) ξ1 + 2 i α3 ξ2 −

1
b
α4 ξ3 + (α1 + α2) ξ4

=


0 α1 + α2 0 − 1

b α4

0 0 α1 + α2 2 i α3

0 0 0 i (α2 − α1)
0 0 0 0

 (10.12)

and

eα1 a+α2 a
†+α3 h+α4 E = ei (α2−α1) ξ1+2 i α3 ξ2− 1

b α4 ξ3+(α1+α2) ξ4

=



1 α1 + α2
1
2 (α1 + α2)2 i

6 (α1 + α2) (α2
2 − α2

1 + 6 a3)− 1
b α4

0 1 α1 + α2
i
2 (α2

2 − α2
1 + 4 a3)

0 0 1 i (α2 − α1)

0 0 0 1


. (10.13)

Case (iii). z = 2 c + 2 b i, where b, c ∈ R \ {0}: For arbitrary α, β ∈ R \ {0} such that
βc− αb = 0 we have
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α1 a+ α2 a
† + α3 h+ α4E

=
i

β
(α2 − α1) ξ1 + 2 i α3 ξ2 −

β

b
α4 ξ3 + (β (a1 + a2) + i α (α1 − α2)) ξ4

=


0 β (a1 + a2) + i α (α1 − α2) 0 −βb α4

0 0 β (a1 + a2) + i α (α1 − α2) 2 i α3

0 0 0 i
β (α2 − α1)

0 0 0 0


(10.14)

and

eα1 a+α2 a
†+α3 h+α4 E = e

i
β (α2−α1) ξ1+2 i α3 ξ2− βb α4 ξ3+(β (a1+a2)+i α (α1−α2)) ξ4

=



1 (α1 + α2)β + i (α1 − α2)α − 1
2 ((α1 − α2)α− i (α1 + α2)β)2 Aα,β,b(α1, α2, α3)

0 1 (α1 + α2)β + i (α1 − α2)α Bα,β(α1, α2, α3)

0 0 1 i
β (α2 − α1)

0 0 0 1


(10.15)

where

Aα,β,b(α1, α2, α3)

=
iα2

6β
(α1 − α2)3 − β

b
α4 +

α

3
(α1 − α2)(α2

1 − α2
2 − 3α3) +

iβ

6
(α1 + α2)(α2

2 − α2
1 − 6α3)

(10.16)

and
Bα,β(α1, α2, α3) = (α1 − α2)2 α

2β
+
i

2
(α2

2 − α2
1 + 4α3). (10.17)

Defining group elements g(u, v, w, y) = eu a
†
ev h ew aeyE we can use matrix multiplication

to verify the group law (9.9) in all three cases.
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