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Abstract. If G is a locally compact group with a compact invariant neighbourhood of the

identity e, the following property (∗) holds: For every continuous positive definite function h ≥ 0

with compact support there is a constant Ch > 0 such that
R
Lxh · g ≤ Ch

R
hg for every

continuous positive definite g ≥ 0, where Lx is left translation by x. In [L], property (∗) was

stated, but the above inequality was proved for special h only. That “for one h” implies “for

all h” seemed obvious, but turned out not to be obvious at all. We fill this gap by means of a

new structure theorem for IN-groups.

For p ∈ N even, property (∗) easily implies the following property (∗)p: For every relatively

compact invariant neighbourhood U of e, there is a constant CU > 0 such that ‖χxU · g‖p ≤
CU‖χU · g‖p for every continuous positive definite function g. For all other p ∈ (1,∞), property

(∗)p fails (see [L]). In the special case of the unit circle, the ‖ ‖p-norm results are essentially

due to N. Wiener, S. Wainger, and H. S. Shapiro. For compact abelian groups they are due to

M. Rains, and for locally compact abelian groups to J. Fournier.

G denotes a locally compact group with identity element e. We assume G to be an
IN-group (IN = “invariant neighbourhood”), i.e. G has a compact neighbourhood of e
which is invariant under inner automorphisms of G. Integrals are taken with respect
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to left Haar measure on G, and subsets of G which we consider are assumed to be
Haar measurable. By P (G) resp. Pc(G) we denote the set of positive definite continuous
functions on G resp. the subset of those f in P (G) whose support supp(f) is compact.
The characteristic function of a set A ⊂ G is denoted χA. Left translation of a function f
by a ∈ G is defined by Laf(x) = f(a−1x) for x ∈ G. As usual, convolution and involution
of functions are written f ∗ g and f∗ respectively. Since IN-groups are unimodular, the
involution is given by f∗(x) = f(x−1) for x ∈ G. The Dirac measure in the point a ∈ G is
δa. If π is a unitary representation of G, we denote its integrated version on the algebra
L1(G) of integrable functions by π again.

Definition. We say that G has property (∗) if for every non-negative h ∈ Pc(G) there is
some Ch > 0 such that

∫
Lxh · g ≤ Ch

∫
hg for all x ∈ G and all non-negative g ∈ P (G).

Lemma 1. Let G be locally compact. Let x ∈ G and U be a relatively compact neighbour-
hood of e such that δx ∗ χU = χU ∗ δx. Then, letting h = χ∗U ∗ χU , we have

(i)
∫
Lxh · g ≤

∫
h · g for all non-negative g ∈ P (G).

In particular, (i) holds if x is in the center of G or U is an invariant neighbourhood of e.

Proof. We may write g in the form g(x) = 〈π(x)ξ, ξ〉 where π is a unitary representation
of G and ξ is a cyclic vector of π. Now∫

Lxh · g = 〈π(Lxh)ξ, ξ〉 = 〈π(x)π(χ∗U )π(χU )ξ, ξ〉 = 〈π(x)π(χU )ξ, π(χU )ξ〉

≤ ‖π(χU )ξ‖2 = 〈π(χ∗U ∗ χU )ξ, ξ〉 =
∫
hg.

Remark. Let f, h ∈ Pc(G) be non-negative and suppose there is Ch > 0 such that∫
Lxh · g ≤ Ch

∫
hg for all x ∈ G and non-negative g ∈ P (G). If f > 0 on supp h,

a corresponding inequality
∫
Lxf · g ≤ Cf

∫
fg holds. This follows from the fact that

there are constants c0, . . . , cn > 0 and elements x1, . . . , xn ∈ G such that h ≤ c0f and
f ≤

∑n
i=1 ciLxi

h.

Lemma 2. Let G be an IN-group and H an open normal subgroup of G. If H has property
(∗), so has G.

Proof. By the Remark, it suffices to prove inequality (i) for functions h = χ∗V ∗ χV

where V is a small compact neighbourhood of e in G. If U is an invariant compact
neighbourhood of e in G, so is U ∩ H. Let f = χ∗U∩H ∗ χU∩H . Let h = χ∗V ∗ χV with
V ⊂ U ∩H. For non-negative g ∈ P (G) and any x ∈ G we have

∫
Lxh · g ≤

∫
Lxf · g ≤∫

fg by Lemma 1. Since f and h have support in H, there are y1, . . . , yn ∈ H and
constants c1, . . . , cn > 0 such that f ≤

∑n
i=1 ciLyi

h. Hence
∫
fg ≤

∑n
i=1 ci

∫
Lyi

h · g ≤∑n
i=1 ciC

H
h

∫
hg, since these integrals are in H and H has property (∗). Altogether we

have
∫
Lxh · g ≤ CH

h

(∑n
i=1 ci

) ∫
hg, which proves property (∗) for G.

Lemma 3. Let G be an IN group, V an open neighbourhood of e, F the system of all
compact invariant neighbourhoods of e, and N =

⋂
U∈F U . Then there are a compact

invariant neighbourhood M of e and elements n1, . . . , nk ∈ N such that M ⊂
⋃k

j=1 njV .
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Proof. Since N is compact, there are n1, . . . , nk ∈ N with N ⊂
⋃k

j=1 njV . This means⋂
U∈F (U\

⋃k
j=1 njV ) = ∅. This being an intersection of compact sets, the finite intersec-

tion property implies that there is a finite subsystem F ′ ⊂ F with
⋂

U∈F ′(U\
⋃k

j=1 njV )

= ∅, that is,
⋂

U∈F ′ ⊂
⋃k

j=1 njV . So take M =
⋂

U∈F ′ U .

Theorem 1. Every IN-group G contains an open normal subgroup H such that the
intersection of all compact H-invariant neighbourhoods of the identity of H is contained
in the center of H.

Proof. Let G be an arbitrary IN-group with NG the intersection of all its compact in-
variant neighbourhoods of the identity. The group G/NG is SIN and therefore—according
to theorem 2.13 in [GM]—an extension: {1} → V ×K → G/NG → D → {1}, in which D

is discrete, V a vector subgroup and K compact. The inverse image of V ×K under the
canonical group homomorphism G→ G/NG is an open normal IN-subgroup H of G with
G/H ' D.

In particular NH ⊂ NG EH and

H/NG = V ×K.

Let L be the inverse image of K under the canonical group homomorphism H → H/NG.
Then L is a compact normal subgroup of H with H/L ' H/NG/L/NG = V×K/K = V .

The component of the identity of locally compact groups is fully characteristic (Lem-
ma 7 in [H]). Thus

V = V0 = (H/L)0 = H0L/L

⇒ H/H0L ' H/L/H0L/L = V/V0 = {e} ⇒ H = H0L

⇒ H/H0 = H0L/H0 ' L/L∩H0 which is compact.

The group H therefore meets the requirements of Theorem XII in [H] which implies the
following:

– H contains a compact group C and a solvable connected group S such that:

H/S∩C = S/S∩C n C/S∩C.

S/S∩C is a normal vector subgroup of H/NH .
– S ∩ C is the intersection of all compact invariant neighbourhoods of e in H, i.e.
S ∩ C = NH .

– H contains a subgroup H1 of finite index. H1 contains the component of the identity
H0 and H1/NH is the centralizer of S/NH (proof in [H] page 53). Moreover NH is in
the center of H1.

Theorem 2.13 in [GM] says that H is [FC]−. Thus H/NH ∈ [FC]− (being the continuous
homomorphic image of an [FC]− group ). Application of 3.4 in [GM] yields that the
normal vector subgroup S/NH has to be central in H/NH . In particular its centralizer H1/NH

is the whole group H/NH . So H1 is a subgroup of H containing NH and intersecting every
NH orbit. Therefore H1 = H and NH is contained in the center of H1 = H.

Remark. In the special case that G is connected (then one has H = G), the theorem is
due to Iwasawa [I].
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Theorem 2. Every IN-group has property (∗).
Proof Let G be an IN-group and let H be as in Theorem 1. By Lemma 2, it suffices to
prove property (∗) for H. If W is a fixed compact invariant neighbourhood of e in G,
W ′ = W ∩H is a compact invariant neighbourhood of e in H, so H is an IN-group, too.
Let N be the intersection of all compact (H-) invariant neighbourhoods of e in H. If V
is an open relatively compact neighbourhood of e in H, then, by Lemma 3, there are a
compact invariant neighbourhood U of e in H and elements n1, . . . , nk ∈ N such that
U ⊂

⋃k
i=1 niV . On the other hand, there are y1, . . . , y` ∈ H such that V ⊂

⋃`
i=1 yiU .

Taking into account that the ni and χU are central in H and L1(H), respectively, we
obtain

(i) χ∗U ∗ χU ≤
( k∑

i=1

LniχV

)∗
∗
( k∑

i=1

LniχV

)
=

k∑
i,j=1

Ln−1
i nj

χ∗V ∗ χV ,

(ii) χ∗V ∗ χV ≤
(∑̀

i=1

Lyi
χU

)∗
∗
(∑̀

i=1

Lyi
χU

)
=
∑̀
i,j=1

Lyi
−1yj

χ∗U ∗ χU .

For y ∈ H and non-negative g ∈ P (H) we obtain from (ii) and (i) by Lemma 1

(iii)
∫
Lyχ

∗
V ∗ χV · g ≤

∫ ∑̀
i,j=1

Lyy−1
i yj

χ∗U ∗ χU · g ≤ `2
∫
χ∗U ∗ χU · g,

(iv)
∫
χ∗U ∗ χU · g ≤

∫ k∑
i,j=1

Ln−1
i nj

χ∗V ∗ χV · g ≤ k2

∫
χ∗V ∗ χV · g.

So
∫
Lyχ

∗
V ∗χV · g ≤ k2`2

∫
χ∗V ∗χV · g. Considering small V and using the Remark after

Lemma 1 one sees that H has property (∗).
Finally, the statement of Theorem 1.6 in [L] is correct:

Corollary. If G is an IN-group, (∗)p holds for all even natural numbers p and fails for
all other p ∈ (1,∞).

The proof for even p is an easy consequence of Theorem 2, using the fact that |g|p =
gp/2 · ḡp/2 ∈ P (G) for g ∈ P (G) and that every χU can be sandwiched between two
nonzero non-negative functions h, h′ ∈ Pc(G). For the proof that property (∗)p fails for
all non-even p ∈ (1,∞), see [L].
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