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Abstract. We define spatial CPD-semigroups and construct their Powers sum. We construct

the Powers sum for general spatial CP-semigroups. In both cases, we show that the product

system of that Powers sum is the product of the spatial product systems of its factors. We

show that on the domain of intersection, pointwise bounded CPD-semigroups on the one side

and Schur CP-semigroups on the other, the constructions coincide. This summarizes all known

results about Powers sums and generalizes them considerably.

1. Introduction. At the 2002 AMS-Workshop on ‘Advances in Quantum Dynamics’ in
Mount Holyoke, Powers described a sum operation for spatial E0-semigroups on B(H),
the algebra of bounded operators on a Hilbert space H. The result is a Markov semigroup
and Powers asked for the product system of that Markov semigroup in the sense of Bhat
[Bha96], and if that product system coincides or not with the tensor product of the
Arveson systems of the E0-semigroups. (By Arveson system we shall refer to product
systems of Hilbert spaces as introduced by Arveson [Arv89], while product system refers
to the more general situation of Hilbert modules.)

Still during the workshop (see Skeide [Ske03a]) we could show that the Arveson system
of the Powers sum is our product of spatial product systems introduced in [Ske06] (preprint
2001) immediately for Hilbert modules. In the case of Hilbert spaces, the product is a
subsystem of the tensor product. (For modules there is no tensor product of product
systems.) Liebscher [Lie03] showed that the product may but need not be all of the tensor
product. The question if the subsystem of the tensor product is nevertheless isomorphic
to the full tensor product or not, remained open until Powers [Pow04]: It need not.
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The Powers sum has been generalized in several directions. Powers [Pow04] generalized
it to CP-semigroups that are spatial in his sense (a sense we consider too narrow). In Bhat,
Liebscher and Skeide [BLS08a] we constructed the Powers sum for spatial E0-semigroups
on Ba(E), the algebra of adjointable operators on a Hilbert module E. We also showed
that the product system of the sum is our product.

In Section 2 we introduce spatial CPD-semigroups and construct their spatial product
systems. (This adds several new facts to CPD-semigroups and their GNS-systems as dis-
cussed in [BBLS04]. In particular, like discussed in [BLS08b] for spatial CP-semigroups,
the spatial product system of a CPD-semigroup, in the C∗-case, may be bigger than
the GNS-system.) In Section 3 we construct a Powers sum for them, which is a spatial
CPD-semigroup, too. We show that the product system of the sum is our product of the
spatial product systems of the constituents. In Section 5 we introduce a Powers sum for
spatial strict CP-semigroups acting on (not necessarily equal) Ba(E)s, and show also here
that the spatial product systems of the sum is the product of the spatial product sys-
tems of the constituents. Both sorts of Powers sums include Powers construction [Pow04]
(adding to [Pow04] the identification of the Arveson system of the sum) and general-
ize it considerably. Our second Powers sum for CP-semigroups on Ba(E) includes and
generalizes [BLS08a] and furnishes the case treated there, E0-semigroups, with a more
transparent proof. Finally, in Section 6 we show that the subclass of pointwise bounded
CPD-semigroups and the subclass of Schur CP-semigroups are two sides of the same coin.

The discussion is mainly for C∗-algebras and modules. For the reasons explained in
Section 2, this case is more peculiar. With few modifications, also explained in Section 2,
the case of von Neumann algebras and modules is always included, usually, with simplified
proofs.

It would be interesting to follow the story in the historical order. But for this we would
have to introduce a lot of terminology, needed just to describe the known results, before
we came to new ones. We prefer, therefore, to start immediately with the discussion of
spatial CPD-semigroups and their product systems, followed by the definition of their
Powers sum and the identification of its product system. Only then do we explain how
this specializes to Powers results.

2. Spatial CPD-semigroups and their product systems. Let S denote a set. We
shall consider kernels K : S × S → B(A,B), (s, s′) 7→ Ks,s

′
with values in the bounded

maps between two C∗-algebras A and B. In the case of von Neumann algebras we shall
require the maps Ks,s

′
to be σ-weak. Following the definition in Barreto, Bhat, Liebscher

and Skeide [BBLS04], we say a kernel is completely positive definite (CPD) if∑
i,j

b∗iK
si,sj (a∗i aj)bj ≥ 0 (2.1)

for all choices of finitely many elements si ∈ S, ai ∈ A, bi ∈ B. A typical example of a
CPD-kernel is given by

Ks,s
′

:= 〈ξs, •ξs
′
〉

for a family (ξs)s∈S of elements in a correspondence E from A to B. In fact, if A and
B are unital, then every CPD-kernel can be recovered that way by its Kolmogorov



POWERS SUM OF SPATIAL SEMIGROUPS 249

decomposition . If we require that E is generated by (ξs)s∈S as a correspondence, then
the pair (E, (ξs)s∈S) is unique up to bilinear unitary equivalence. We refer to it as the
Kolmogorov decomposition and to E as the Kolmogorov correspondence of K.

2.1. Remark. If S has exactly one element, then the CPD-kernels on S are precisely
the CP-maps, and the Kolmogorov decomposition is Paschke’s GNS-construction for CP-
maps; see [Pas73]. If S = {1, . . . , n}, then the CPD-kernels on S can be identified with
Schur CP-maps from Mn(A) to Mn(B) that act matrix elementwise as aij 7→ Ki,j(ai,j).
If A = C, then by (s, s′) 7→ Ks,s

′
(1) we establish a one-to-one correspondence with

positive definite B-valued kernels. If also B = C, then we recover the usual Kolmogorov
decomposition for C-valued kernels.

2.2. Remark. Even if A and B are nonunital, we get a correspondence E from A to B
and elements ξa,s such that Ks,s

′
(a∗a′) = 〈ξa,s, ξa′,s′〉. But it is, in general, impossible to

obtain suitable elements ξs. It is possible to unitalize the kernel to the unitalizations Ã
and B̃ by the unitalization procedure in Skeide [Ske08] or, if all Ks,s

′
are strict, to the

multiplier algebras.

A CPD-semigroup is a family T = (Tt)t∈R+ of B(B)-valued CPD-kernels on S such
that for all s, s′ ∈ S the maps Ts,s

′

t form a semigroup on B. If all these semigroups are
continuous in a certain topology, then we say the CPD-semigroup is continuous in that
topology.

The same way CPD-kernels are related to correspondences via Kolmogorov decom-
position, CPD-semigroups are related to product systems of correspondences via a GNS-
type construction. Following Bhat and Skeide [BS00], a product system is a family
E� = (Et)t∈R+ of correspondences over B such that E0 = B, with a family of bilinear
unitaries us,t : Es �Et → Es+t such that the product xsyt := us,t(xs � yt) is associative,
and such that u0,t and ut,0 are the canonical identifications. If B is unital, a unit for
E� is a family ξ� = (ξt)t∈R+ of elements ξt ∈ Et such that ξ0 = 1 and ξsξt = ξs+t. If
(ξs�)s∈S is a family of units for E�, then by the definition of the internal tensor product
Es � Et it follows that the maps

Ts,s
′

t := 〈ξst , •ξs
′

t 〉

form a semigroup. Clearly, the family of kernels (s, s′) 7→ Ts,s
′

t forms a CPD-semigroup.
By [BBLS04], every CPD-semigroup for unital B arises in that way. If E� is generated
as a product system by the family of units (ξs�)s∈S , then the pair (E�, (ξs�)s∈S) is
determined up to suitable isomorphism. We refer to it as the GNS-construction and
to E� as the GNS-system of T.

2.3. Remark. If S has one element, then the CPD-semigroups on S are precisely the
CP-semigroups and the GNS-construction is that from [BS00].

2.4. Observation. If E� is the GNS-system of a CPD-semigroup T and if (ξs�)s∈S is
the generating family of units, then

Et = span{bnξsn
tn � . . .� b1ξ

s1
t1 b0 |n ∈ N; s1, . . . , sn ∈ S; b0, . . . , bn ∈ B; t1 + . . .+ tn = t}.
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This will help us to identify, later on, the spatial product system of the Powers sum of
spatial CPD-semigroups on B or spatial CP-semigroups on Ba(E).

The definitions and results repeated so far were for (unital) C∗-algebras and C∗-mod-
ules or correspondences. They adapt easily to von Neumann algebras, modules, and
correspondences, if: 1) We require maps on or between von Neumann algebras to be
σ-weak. 2) We replace the tensor product by its strongly closed version. Without further
mention, we assume these conventions when we speak about the von Neumann case.

The following definition generalizes Arveson’s [Arv97] for (normal) CP-semigroups
on B(G) (G some Hilbert space). It is new, except for the part on domination of CPD-
semigroups from [BBLS04]. The version for CP-semigroups on C∗-algebras is from Bhat,
Liebscher and Skeide [BLS08b]; that for von Neumann algebras B ⊂ B(G) from Skeide
[Ske09a].

2.5. Definition. Let B be a unital C∗-algebra (a von Neumann algebra) and let S be
a set.

A CPD-semigroup T on S with values in B(B) dominates another S if the kernels
Tt −St are CPD for all t ∈ R+. In this situation we write T ≥ S.

A CPD-semigroup S is elementary if it has the form Ss,s′

t = cst
∗ • cs′t for a family

(cs)s∈S of (strongly) continuous semigroups cs = (cst )t∈R+ in B.
A unit for a CPD-semigroup T is an elementary CPD-semigroup S such that T ≥ S.
A CPD-semigroup T is spatial if it admits a unit. If we wish to emphasize the choice

of the unit, we will also speak of the pair (T,S) as a spatial CPD-semigroup.

2.6. Remark. As pointed out in [BLS08b], semigroups of elements ct in a unital
C∗-algebra that are continuous in any of the natural topologies are uniformly contin-
uous automatically. Indeed, if ct is weakly continuous, then the semigroup b 7→ bct of
maps in B(B) it is weakly continuous and, therefore, strongly continuous. In particular,
the family ct = 1ct ∈ B is norm continuous. (If B is nonunital, then it makes no sense to
speak of a semigroup in B indexed by t ≥ 0, but only t > 0.) The strong topology of a von
Neumann algebra B ⊂ B(G) is much weaker and allows for semigroups with unbounded
generator.

Note, too, that spatiality without continuity conditions on the unit S is a trivial issue.
In fact, the zero-semigroup O defined by Os,s′

t = 0 for all s, s ∈ S and all t > 0 would
be a unit for every CPD-semigroup on S.

In the sequel, ‘strongly continuous’ for a semigroup T of maps on a C∗-algebra B
that is not represented as an algebra of operators on a Hilbert space or, more generally,
on a Hilbert module, means that t 7→ Tt(b) is norm continuous for every b ∈ B. If T acts
on a von Neumann algebra B ⊂ B(G), then it means that t 7→ Tt(b)g is norm continuous
for all b ∈ B, g ∈ G. The same convention applies to semigroups acting on Ba(E). We see
in a minute that spatial strongly continuous CPD-semigroups on an abstract C∗-algebra
are even uniformly continuous. So, in these notes, where we are interested only in spatial
CPD-semigroups, we will, usually, use ‘strongly continuous’ only when we speak about
operator algebras B ⊂ B(G) or Ba(E).
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2.7. Definition ([Ske06]). A spatial product system is a pair (E�, ω�) consisting of a
product system and a central unital reference unit ω� (that is, all ωt commute with all
b ∈ B and all ωt are unit vectors in the sense that 〈ωt, ωt〉 = 1).

In general, we will call a product system spatial if it has central unital units. Note,
however, that the spatial structure may depend on the choice of the reference unit.
Spatial product systems and their product (see Section 3) have been introduced in Skeide
[Ske06]. They form a subcategory of product systems which behaves best in analogy with
Arveson’s classification scheme for Arveson systems. (There is an index for spatial product
systems and the index behaves additively under the product of spatial product systems;
see [Ske06]. A tensor product of product systems does, in general, not exist.)

2.8. Theorem. For a strongly continuous CPD-semigroup T on S with values in B(B)
for a unital C∗-algebra B the following conditions are equivalent:

1. T is spatial.
2. The (continuous) GNS-system of T embeds into a (continuous) spatial product sys-

tem. In particular, T is uniformly continuous.
3. T has a Christensen-Evans generator, that is, Ls,s

′
:= dTs,s′

dt

∣∣
t=0

exists for all
s, s′ ∈ S and there are a CPD-kernel L0 and elements βs ∈ B such that

Ls,s
′
(b) = Ls,s

′

0 (b) + bβs′ + β∗s b.

Proof. The proof is very much like the proofs of [BLS08b, Theorem 3.4 and Corollary
3.7], just with more indices. (The number of indices is #S + 1.) In so far, we need to
explain only the construction of the extended CPD-semigroup on S0 := S ∪ {0}, and we
say a word on what continuous product systems means.

We start with the latter. If a CPD-semigroup is strongly continuous, then its product
system is continuous in the sense of Skeide [Ske03b]. By [Ske03b, Theorem 7.7], if a
continuous product system has a single unit ξ� such that the CP-semigroup 〈ξt, •ξt〉 is
uniformly continuous, then all semigroups 〈ξt, •ξ′t〉 are uniformly continuous. And the
reference unit ω� generates the trivial semigroup which is uniformly continuous.

The basic observation for constructing the spatial product system into which the
GNS-system embeds, is the following. Let S be an elementary CPD-semigroup on S

generated by semigroups cs in B, and suppose that T dominates S. Then the semigroup
T̂ on S0 defined by setting

T̂s,s
′

t := Ts,s
′

t , T̂0,s
t := •ct, T̂s,0t := c∗t •,

is CPD. (It can be written as the sum of the extension of Tt−St from S to S0 by 0, and
a suitable elementary CPD-semigroup on S0; see [BLS08b].) Clearly, the GNS-system of
T̂ is spatial (the unit ξ0� is central and unital), and it contains the GNS-system of T;
see [BLS08b] for details.

2.9. Remark. In general, the generators of uniformly continuous CPD-semigroups with
values in B(B) are precisely the conditionally completely positive definite (CCPD)
B(B)-valued kernels (that is, the kernel fulfills (2.1) under the condition that

∑
i aibi = 0);

see [BBLS04]. Like for CP-semigroups on a C∗-algebra, boundedness of the generator is
not sufficient for having Christensen-Evans form.
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It is an open problem whether or not the spatial extension of the GNS-system of T

constructed in the proof of Theorem 2.8 depends on the choice of the unit S. On the other
hand, it is easy to see that it does not depend on the choice of the implementing semigroup
c. (In fact, two semigroups in B implementing the same elementary CP-semigroup on B
can differ at most by a unitary semigroup in the center of B. Using this, it is more or
less obvious to see that the GNS-system of the extended kernel T̂ does not change under
such a variation.) Henceforth, we call it the spatial extension of the GNS-system
based on the unit S. Fortunately, the Powers sum of CPD-semigroups depends from the
beginning on the choice of units. So, it is not tragic if also the spatial extensions of their
GNS-systems would depend on that choice.

For von Neumann algebras the situation is much better:

2.10. Theorem. For a strongly continuous CPD-semigroup T on S with values in B(B)
for a von Neumann algebra B ⊂ B(G) the following conditions are equivalent:

1. T is spatial.
2. The GNS-system of T is spatial.

Proof. The proof is the same as in Skeide [Ske09a] for CP-semigroups. It cannot be repro-
duced here for reasons of space. (Very roughly, the idea is that for von Neumann algebras
there is an order isomorphism from the partially ordered set of positive contraction en-
domorphisms of the GNS-system of a CPD-semigroup T to the partially ordered set of
CPD-semigroups dominated by T; see [BBLS04]. And the range of the positive contrac-
tion morphism corresponding to a unit S is just the one-dimensional product system
(B)t∈R+ , which contains the central unital unit (1)t∈R+ .)

3. The Powers sum of spatial CPD-semigroups. Let T1 and T2 be spatial CPD-se-
migroups on sets S1 and S2, respectively, with values in B(B). Choose units S1 and S2

for them implemented by semigroups c1 and c2, respectively, in B. Define a semigroup
T := T1 � T2 on S := S1 ] S2 (disjoint union), by setting

(T1 � T2)s,s
′

:= (Ti)s,s
′

(i = 1, 2; s, s′ ∈ Si),

(T1 � T2)si,sj := (ci)si
∗ • (cj)sj (i 6= j, si ∈ Si, sj ∈ Sj).

Observe that each Si is itself a spatial CPD-semigroup with unit Si. Therefore, the
definition applies also to S := S1 �S2.

3.1. Theorem. T is a spatial CPD-semigroup with unit S. Clearly, T is (strongly) con-
tinuous if and only if each Ti is (strongly) continuous.

Proof. We shall show T ≥ S. This settles both that Tt is CPD (as sum of the CPD-kernels
Tt −St and St) and that S is a unit for T. We find

(Tt −St)s,s
′

= (Tit −Si
t)
s,s′ (i = 1, 2; s, s′ ∈ Si),

(Tt −St)si,sj = 0 (i 6= j, si ∈ Si, sj ∈ Sj).

Since each Tit − Si
t is CPD on Si and since all mixing terms si ∈ Si, sj ∈ Sj (i 6= j)

disappear, this shows that Tt −St is CPD.
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3.2. Definition. We refer to (T,S) := (T1,S1) � (T2,S2) as the Powers sum of
(T1,S1) and (T2,S2).

We now wish to identify the spatial extension of the GNS-system of (T,S) as the
product of the spatial extensions of the GNS-systems of (Ti,Si). To that goal we repeat
the characterization in Skeide [Ske06] of the product in terms of a universal property.

3.3. Theorem and Definition ([Ske06, Theorem 5.1 and Definition 5.2]). Let (E1�, ω1�)
and (E2�, ω2�) denote spatial product systems. Then there exists a spatial product system
(F�, ω�) fulfilling the following properties:

1. (F�, ω�) contains (Ei�, ωi�) (i = 1, 2) as spatial subsystems and is generated by
them, that is, Ft is spanned by expressions like

xntn � . . .� x
1
t1 ,

n ∈ N, t1 + . . .+ tn = t, and xjtj ∈ E
1
tj ∪ E

2
tj .

2. The inner product of members x1 ∈ E1
t ⊂ F and x2 ∈ E2

t ⊂ F is given by

〈x1, x2〉 = 〈x1, ω1
t 〉〈ω2

t , x
2〉.

Moreover, every spatial product system fulfilling these properties is canonically isomorphic
to (F�, ω�). We call (F�, ω�) the product of the factors (Ei�, ωi�) and we denote it
by ((E1 } E2)�, ω�).

Note that, by Property 2, in the product the two reference units ωi� of the factors
get identified with the reference unit ω�.

3.4. Theorem. The spatial extension of the GNS-system of (T,S) := (T1,S1)�(T2,S2)
is (spatially) isomorphic to the product of the spatial extensions of the GNS-systems of
(T1,S1) and (T2,S2).

Proof. Recall that spatially isomorphic means that the isomorphism identifies also the
reference units.

In Observation 2.4 we indicated a spanning subset of the GNS-system of a CPD-
semigroup. We apply this to the GNS-system of the spatial extension of (T,S). Observe
that the pieces of units ξjtj come either from the GNS-system of T1 or from the GNS-
system of T2 or from the component 0 in S ∪ {0}, that is from the reference unit of the
GNS-system of the spatial extension of (T,S). One easily verifies that the inner product
does not change if instead we replace that reference unit with one (no matter which) of
the reference units of the spatial extensions of the GNS-systems of one of the factors.
This shows that the spatial extension of the GNS-system of (T,S) contains the spatial
extensions of the GNS-systems of the factors as subsets and is generated by them, as
required in Property 1 of Theorem 3.3. It is also easy to check that the inner products
of elements from different factors are those required by Property 2 of Theorem 3.3.

3.5. Remark. Notation and formulation of the results is for the C∗-case. But this case
is the more complicated one because the GNS-system of a spatial CPD-semigroup need
not be spatial. With the standard topological conventions we applied in the preceding
section, all statements (some of them in a simpler form) remain valid in the von Neumann
case.
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3.6. Remark. It is clear that both product of spatial product systems and Powers
sum of spatial CPD-semigroups may be carried out for families of products systems
or of CPD-semigroups indexed by arbitrary sets. For spatial product systems this is
mentioned in [Ske06, Remark 5.7]. For spatial CPD-semigroups this means that for a
family (Tα,Sα)α∈A there is a Powers sum �α∈ATα. Of course, also the statement of
the theorem remains valid for such families: The spatial extension of the GNS-system
of the Powers sum is the product of the spatial extensions of the GNS-systems of the
constituents.

4. Some special cases. In this section we discuss some examples. We have a look
at how Schur semigroups of positive definite kernels are included. In Remark 4.2, we
explain why such semigroups do not make sense in a noncommutative context, under-
lining CPD-semigroups as the correct generalization. In Example 4.3 we discuss how the
case of finite sets can be described equivalently in terms of Schur CP-semigroups on
matrix algebras. This includes all variants discussed by Powers for the case B = B(G)
and even generalizes them in that case. It does not cover the case studied in Bhat,
Liebscher and Skeide [BLS08a], but it gives us a hint what to do in the following sec-
tion.

4.1. Example (Semigroups of positive definite kernels). If B = C, we recover the notion
of positive definite (PD) C-valued kernels and their Schur semigroups. In fact, a
map Ks,s

′
on C is determined by the value ks,s

′
:= Ks,s

′
(1) and a C-valued kernel k on S

defines a B(C)-valued kernel K by setting Ks,s
′
(z) := ks,s

′
z. Clearly, K is CPD if and only

if k is PD.
The Schur product of two C-valued kernels on S is simply the pointwise product

of functions on S × S. Clearly, the Schur product is reflected by the composition of
the corresponding B(C)-valued kernels. Everything we know about CPD-semigroups has,
thus, an immediate interpretation in terms of PD-semigroups: 1) The Schur product
preserves PD. 2) PD-semigroups have a product system of Hilbert spaces (that is, an
Arveson system) as GNS-system. 3) This Arveson system is generated by its units and,
therefore, Fock. This fact has already been noted by Parthasarathy and Schmidt [PS72].
They applied this knowledge to the PD-semigroup ks,s

′

t :=
∫
ei(s−s

′)µt(dt) on R that
arises from the convolution semigroup (µt)t∈R+ of distributions of a Lévy process, which
enabled them to represent every Lévy process on the Fock space.

The product of Arveson systems of Fock type (so-called type I Arveson systems) is
simply their tensor product. (This need not be so for non-type I spatial Arveson systems,
so-called type II Arveson systems.) Tensor products of units in the factors give rise to
units in the tensor product, and every unit in the tensor product arises that way. In order
to understand the PD-semigroup on S1 ] S2 it is better to assume that in each factor a
reference unit has been distinguished, that corresponds to 0 ∈ Si∪{0}. The set S1]S2 is
identified with the subset (S1×{0})∪({0}×S2) of the generating set (S1∪{0})×({0}∪S2)
of units in the product. If both kernels come from Lévy processes, then the product simply
describes the two processes as a pair of independent Lévy processes (or a two-dimensional
Lévy process) on the same probability space (the product space).
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The structure of the units as products of the units of the factors remains valid for the
product of arbitrary spatial product systems; see [Ske06, Theorem 5.6]. That the disjoint
union of two sets S1 and S2 is, by the very definition of disjoint union, a subset of product
of dotted sets S1 ∪{0} and {0}∪S2, is reflected in a striking way by the structure of the
set of units in the product.

4.2. Remark. It is natural to ask for a notion of PD-semigroups of B-valued kernels,
sitting somehow in between C-valued PD-kernels and general CPD-kernels. However,
among PD-kernels there is no product operation whatsoever that would respect the PD-
condition, as soon as the algebra B is noncommutative.

This is a central thread of positivity in a noncommutative setting: If we wish to com-
pose positive noncommuting things in a positivity preserving way then composition must
be composition of maps on the ∗-algebra. Almost never can it be based on multiplication
of positive elements in a ∗-algebra.

The basic feature of positive things is that they possess some kind of square root.
A positive element a in a C∗-algebra can be written as b∗b. But, if there is another one
a′ = b′∗b′, then aa′ = b∗bb′∗b′ is almost never positive. An element that is positive, is
b∗b′∗b′b. However, this element depends manifestly on the choice of the square roots b
and b′.

A way out is to consider, from the beginning, the map T = b∗ • b instead of a = T (1).
The knowledge of T (1) is only rarely a suitable substitute for the whole map T . But, once
we have that map, we may compose it with T ′, and, in fact, we get T ◦T ′ = (b′b)∗ • (b′b).

Going one step further to CP-type maps (for instance, CPD-kernels), one sees that the
related GNS-constructions play the role of the square roots which may be multiplied. The
multiplication is simply the tensor product of the associated GNS-correspondences; see
[BS00, Observation 2.17] or [BBLS04, Observation 3.4.3]. To say it more provocatively:
GNS-systems are square roots of the CPD-semigroups they stem from.

4.3. Example (Schur CP-semigroups on Mn(B)). Recall that the case of a CPD-semi-
group on a one-point set S is precisely the case of a CP-semigroup. More generally, a
CPD-semigroup on an n-point set S = {1, . . . , n} gives rise to a CP-semigroup Tn on
Mn(B), by setting

(Tnt (A))ij = Ti,jt (aij).

Clearly, we do not obtain all CP-semigroups on Mn(B) in that way. In fact, Tn is a Schur

semigroup, that is, it acts matrix elementwise on the matrix A = (aij). So, what we
really have is a one-to-one correspondence between CPD-semigroups on a fixed n-point
set S and Schur CP-semigroups on Mn(B).

The elementary CP-semigroups on Mn(B) which are also Schur semigroups are pre-
cisely those that are generated as Snt = C∗t • Ct by semigroups C = (Ct)t∈R+ in Mn(B)
with diagonal matrices Ct ∈ Mn(B). It is easy to check that a Schur CP-semigroup is
spatial if and only if the corresponding CPD-semigroup T on the n-point set S is spatial.
(The entries of the diagonal generate the elementary CPD-semigroup S dominated by T,
and vice versa.)
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We see that there is a Powers sum of spatial Schur CP-semigroups Tni on Mni(B)
that provides a Schur CP-semigroup Tn1 � Tn2 acting on Mn1+n2(B).

The special case n1 = n2 = 1 (semigroups on B having a semigroup on M2(B) as
sum) includes all cases discussed by Powers with B = B(G). (In that case, when G is
infinite-dimensional and separable, M2(B(G)) = B(G⊕G) and G⊕G ∼= G. This abuse,
mixing a true binary operation among semigroups on B(G) with a binary operation among
conjugacy classes, is quite common. For more general algebras where, usually, M2(B) � B,
this is no longer possible.) At the Mount Holyoke meeting, Powers proposed the case when
the CP-semigroups are spatial semigroups of unital endomorphisms where the units are
isometric. In [Pow04], he generalized it to spatial CP-semigroups, but still with isometric
units. He even calls these CP-semigroups spatial. But, we think that Arveson’s (much)
wider definition in [Arv97] is the adequate one, and our discussion does already extend
the Powers sum to that case.

In the preceding example we did not say a word about the product systems of the
semigroups involved. In fact, the product system of Tn consists of correspondences over
Mn(B), while the product system of the corresponding CPD-semigroup T consists of
correspondences over B. For spatial product systems of correspondences over the same
algebra B, there is the product of spatial product systems. But, the algebras Mn(B) may
be nonisomorphic for different n. How are the product system of Tn and of T related, so
that the product operation of the product system in the CPD-picture can be applied? Also
the question whether Example 4.3 can be generalized to arbitrary index sets is interesting.
We answer these and other questions in the more general setting of the following section.

5. The Powers sum of CP-semigroups on Ba(E). Observe that Mn(B) = Ba(Bn).
In this section we will replace Bn with a general full Hilbert B-module (that is, span〈E,E〉
= B, respectively, spans〈E,E〉 = B in the von Neumann case). But, then the terminology
Schur CP-semigroup makes no longer sense. (This is something which makes sense only
with respect to an ONB, like the canonical ONB of Bn, or possibly a quasi ONB.) On
the other hand, for the C∗-case in this setting it is indispensable that we require the CP-
semigroups T on Ba(E) to be strict , that is, each Tt is ∗-strongly continuous on bounded
subsets. (In the von Neumann case our standard hypothesis, normality, is sufficient.) The
result that on Mn(B) the strict topology coincides with the norm topology (B is assumed
unital!), is standard. This is why, in Example 4.3, we did not worry about strictness.

Before we study spatial CP-semigroups on Ba(E), we first repeat some results from
Bhat, Liebscher, and Skeide [BLS08a] about general strict CP-semigroups on Ba(E). We
will also derive some new results on spatiality of such semigroups.

In [BLS08a] we showed that the product system F� of a strict CP-semigroup T on
Ba(E) (consisting of correspondences over Ba(E)!) may be transformed into a product
system E� consisting of correspondences over B in the following way: For each Ft define
the B-correspondence Et := E∗�Ft�E, where E∗ is a correspondence from B to Ba(E)
with inner product 〈x∗, y∗〉 := xy∗ (the rank-one operator that maps z to x〈y, z〉)
and bimodule action bx∗a := (a∗xb∗)∗. (Note that both tensor products are over Ba(E).
Note, too, that E∗ � E = B via x∗ � y = 〈x, y〉 and E � E∗ = K(E), the C∗-algebra
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of compact operators on E, via x � y∗ = xy∗. Since all Tt are strict, the left action of
K(E) on Ft is nondegenerate.) The Et form a product system E� via

Es � Et = E∗ � Fs � E � E∗ � Ft � E = E∗ � Fs � Ft � E = E∗ � Fs+t � E = Es+t.

Note that when making disappear the part E � E∗ = K(E) in the middle, we did
use strictness of the left action on Ft. The right action of K(E) on Fs will rarely be
nondegenerate:

5.1. Remark. The transition F�  E� is very close to an operation of Morita equiv-
alence of product systems, as defined in Skeide [Ske09b]. In fact, E may be viewed as
Morita equivalence from K(E) to B. The inverse operation, conjugation of Et with E,
gives E � Et � E∗ = span K(E)FtK(E). The left action of K(E) is nondegenerate by
strictness. But, there is no reason why the inner product of Ft should assume values only
in K(E). In fact, if T was a Markov semigroup, then each Ft has a unit vector and K(E)
is rarely unital.

When T is an E-semigroup (that is, the maps Tt are endomorphisms of Ba(E)), or
even an E0-semigroup (that is, the endomorphisms are also unital), then the product
system is the one associated in Skeide [Ske09b] with a strict E-semigroup. (See Skeide
[Ske02] for the first construction for E0-semigroup when E has a unit vector, and Bhat
and Lindsay [BL05] for an E-semigroup under the same hypothesis.) When E = H

is a Hilbert space, we recover Bhat’s construction [Bha96] of the Arveson system of a
normal E0-semigroup on B(H). When T is a normal CP-semigroup on B(G), we obtain
a direct construction of its Arveson system. (In Bhat [Bha96], it is constructed via the
so-called minimal dilation of T to an E-semigroup on B(H) as the Arveson system of
that E-semigroup.)

The product system E� has no relation with T as direct as the GNS-system F�.
(There is no unit for E� that would allow one to recover the CP-semigroup T . In fact,
if E = H is a Hilbert space, then it is known that E� can be unitless. In [BLS08a,
Theorem 3.4] we have shown that the product system of the minimal dilation is E�.)
But the following theorem shows that spatiality is preserved. For von Neumann modules
this is a new result in the classification of product systems up to Morita equivalence; see
Remark 5.4.

5.2. Theorem. Let E be a full Hilbert module over a unital C∗-algebra B. Suppose F�

is a product system of correspondences Ft over Ba(E) with strict left actions. Define the
product system E� as above by setting Et = E∗ � Ft � E.

If F� is spatial, then so is E�. More precisely, if Ω� is the central unital reference
unit of F�, then by it : 〈x, y〉 7→ x∗ �Ωt � y ∈ Et for each t ∈ R+, we define an injective
morphism from the trivial product system (B)t∈R+ into E�. In particular, the image of
the central unital unit (1)t∈R+ is a central unital unit ω� for E�.

Proof. For each t ∈ R+, the map it is an isometry. Indeed,

〈x∗�Ωt� y, x′∗�Ωt� y′〉 = 〈Ωt� y, xx′∗Ωt� y′〉 = 〈Ωt� y,Ωt� xx′∗y′〉 = 〈y, x〉〈x′, y′〉.

Clearly, it is bilinear. Since B is unital and E is full, by [Ske09b, Lemma 3.2] there
exist n ∈ N and x1, . . . , xn ∈ E such that

∑n
i=1〈xi, xi〉 = 1. So, for ωt := it(1) =
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i=1 x

∗
i � Ωt � xi we find

ωs � ωt =
n∑

i,j=1

x∗i � Ωs � xi � x∗j � Ωt � xj =
n∑

i,j=1

x∗i � Ωs � xix∗jΩt � xj

=
n∑

i,j=1

x∗i � Ωs � Ωt � xix∗jxj =
n∑
i=1

x∗i � Ωs+t � xi = ωs+t,

so that the ωt form a unit ω� for E�. By bilinearity of it, the unit ω� is unital and
central. By the same reason, the it form a morphism, that is, is � it = is+t.

5.3. Remark. A similar result is true for von Neumann modules. We just refer to
[Ske09b, Lemma 4.2], where the sum is no longer finite and, in general, only strongly
convergent.

5.4. Remark. Note that the converse statement may fail. The simplest reason is that the
correspondences Ft of F� need not allow for unit vectors. More concretely, Ft need not be
strictly complete. (Otherwise, choose a bounded approximate unit for K(E) that consists
of finite-rank operators

∑n
i=1 xiy

∗
i . Then the corresponding net of elements

∑n
i=1 xi �

ωt�y∗i is strictly Cauchy in Ft. If the limits Ωt exist, then they form a unital central unit
for F�.) For von Neumann modules also the converse statement is true: E� is spatial
if and only if F� is spatial. (Von Neumann modules are not only strictly complete but
even ∗-strongly.) In the sense of Morita equivalence of product systems of von Neumann
correspondences [Ske09b], one may rephrase this as follows: Morita equivalence of product
systems of von Neumann correspondences preserves spatiality.

Now, since we know what is the product system E� of correspondences over B of a
strict CP-semigroup T on Ba(E) for some full Hilbert B-module E, and since we know
that spatiality of T is reflected by spatiality of (some spatial extension of) E�, we can
ask whether there possibly is a Powers sum for spatial CP-semigroups such that the sum
operation is reflected by the product operation of their spatial product systems of corre-
spondences over B. For E0-semigroups we proved the affirmative answer in [BLS08a]. For
spatial CP-semigroups the result is new. The proof also simplifies the proof of [BLS08a].

We start with a simple consequence of Observation 2.4.

5.5. Lemma. Let E be a full Hilbert module over a unital C∗-algebra B. Let T be a
spatial strict CP-semigroup on Ba(E) and choose a unit S implemented by a semigroup
c in Ba(E). Denote by F� the spatial extension of the GNS-system associated with that
unit as in the proof of Theorem 2.8 (considering T a CPD-semigroup on a one-point set),
so that F� is generated by the unit ζ� that gives back Tt = 〈ζt, •ζt〉 and by the central
unital reference unit Ω�. Denote by E� and ω� product system and central unit as in
Theorem 5.2.

Then the product system E� is generated by elements of the form ωt and x∗ � ζt � y
in the sense that

Et = span{zn � . . .� z1 : n ∈ N, t1 + . . .+ tn = t, zi = ωti or zi = x∗i � ζti � yi}.
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We omit the obvious proof. Note, howewer, that

〈x∗ � ζt � y, x′∗ � ζt � y′〉 = 〈y, Tt(xx′∗)y′〉,
〈x∗ � ζt � y, x′∗ � Ωt � y′〉 = 〈y, c∗tx〉〈x′, y〉,

so that 〈x∗ � ζt � y, ωt〉 = 〈y, c∗tx〉. Note, too, that the pair (E�, ω�) is determined by
these properties up to spatial isomorphism.

5.6. Theorem. For i = 1, 2, let Ei be full Hilbert modules over a unital C∗-algebra B,
and let T i be a spatial strict CP-semigroup on Ba(Ei). Choose units Si for T i imple-
mented by semigroups ci in Ba(Ei). Then, by setting

(T 1 � T 2)t

 
a11 a12

a21 a22

!
:=

 
T 1

t (a11) c1
t
∗
a12c

2
t

c2
t
∗
a21c

1
t T 2

t (a22)

!
,

we define a spatial CP-semigroup on Ba(E1 ⊕ E2) with a unit S1 � S2 implemented
by c = c1 ⊕ c2, the Powers sum (T 1 � T 2, S1 � S2) of (T 1, S1) and (T 2, S2). More-
over, if (E�, ω�) denotes the spatial product system of correspondences over B associated
with (T 1 � T 2, S1 � S2), and if (Ei�, ωi�) denote those associated with (T i, Si), then
(E�, ω�) = (E1 } E2, ω�).

Proof. The proof that T 1 � T 2 is a CP-semigroup, and that it is spatial with unit c =
c1 ⊕ c2 in Ba(E1 ⊕ E2), is similar to that of Theorem 3.1.

To prove that E� is the product of E1� and E2�, we observe that by the lemma
Ei
� is generated by expressions ωit and xi

∗ � ζi � yi. Therefore the product E1 } E2

is generated by expressions ωt, x1∗ � ζ1 � y1, and x2∗ � ζ2 � y2, where the only yet
unspecified inner product is

〈x1∗�ζ1�y1, x2∗�ζ2�y2〉 = 〈x1∗�ζ1�y1, ω1
t 〉〈ω2

t , x
2∗�ζ2�y2〉 = 〈y1, c1t

∗
x1〉〈c2t

∗
x2, y2〉.

On the other hand, E� is generated by expressions ωt and
 

x1

x2

!∗
�ζt�

 
y1

y2

!
. By calculating

the norm, one easily verifies that
„

x1

0

«∗ � ζt �
„

0
y2

«
=

„
0

x2

«∗ � ζt �
„

y1

0

«
= 0, while〈„

x1

0

«∗
� ζt �

„
y1

0

«
,
„
x′1

0

«∗
� ζt �

„
y′1

0

«〉
= 〈x1∗ � ζ1

t � y1, x′1
∗ � ζ1

t � y′1〉,〈„
0
x2

«∗
� ζt �

„
0
y2

«
,
„

0
x′2

«∗
� ζt �

„
0
y′2

«〉
= 〈x2∗ � ζ2

t � y2, x′2
∗ � ζ2

t � y′2〉,〈„
x1

0

«∗
� ζt �

„
y1

0

«
,
„

0
x2

«∗
� ζt �

„
0
y2

«〉
= 〈x1∗ � ζ1

t � y1, ω1
t 〉〈ω2

t , x
2∗ � ζ2

t � y2〉.

So, E� is isomorphic to E1 } E2, via

ωt 7→ ωt,
„
x1

0

«∗
� ζt �

„
y1

0

«
7→ x1∗ � ζ1

t � y1,
„

0
x2

«∗
� ζt �

„
0
y2

«
7→ x2∗ � ζ2

t � y2.

5.7. Remark. The algebras Ba(E1) and Ba(E2) have the property that they may be
considered as subalgebras of the matrix algebra (see Skeide [Ske00] for details about
matrix algebras) Ba(E1 ⊕ E2) =

 
Ba(E1) Ba(E2, E1)

Ba(E1, E2) Ba(E2)

!
. The interesting property is that

both Ba(E1) and Ba(E2) are generated from products of the off-diagonal entries in the
strict topology. (Note that this may fail if E1 and E2 are not both full, up to the point
where Ba(E1, E2) = {0}.) In the case of von Neumann modules that means that Ba(E1)
and Ba(E2) are Morita equivalent as von Neumann algebras. (In fact, both are Morita
equivalent to B as von Neumann algebras.) For C∗-modules one might say they are
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strictly Morita equivalent. (We do not know whether there exists a systematic study of
Morita equivalence for multiplier algebras. This would be useful for our purposes, as the
multiplier algebra of K(E) is Ba(E). We met already several times, in [Ske09b, BLS08a],
situations where we had to develop at least parts of such a theory.)

5.8. Remark. The case when T i are E0-semigroups has been discussed in [BLS08a].
The proof here, restricted to that case, differs considerably from that in [BLS08a] and,
actually, appears simpler. The case of E0-semigroups acting on B(H)s is the one proposed
by Powers 2002 in Mount Holyoke; see also Example 4.3. The Arveson system of the
Powers sum in that case has been identified as product in [Ske03a]. The case of CP-
semigroups acting on B(H)s has been discussed in [Pow04] with a much less general notion
of spatiality for CP-semigroups. [Pow04] also does not identify the Arveson system of the
sum as product of spatial Arveson systems. But, he proves that it need not be isomorphic
to the tensor product. (The tensor product is available only for Arveson systems but not
for modules.)

5.9. Remark. Of course, like in Remark 3.6, also here all statements remain true for
families of spatial CP-semigroups and the spatial extensions of their GNS-systems.

6. CPD-semigroups versus Schur CP-semigroups. In Example 4.3 we pointed
out that B(B)-valued CPD-semigroups on a finite set S with cardinality n, say, are in
one-to-one correspondence with Schur CP-semigroups on Mn(B) and that this one-to-one
correspondence behaves well with respect to the respective Powers sums. After Theorem
5.6, we can say that this one-to-one correspondence also behaves well with respect to the
products of the respective spatial extensions of the product systems of correspondences
over B. (They simply coincide.)

In this section we wish to see to what extent we can generalize that one-to-one corre-
spondence to arbitrary sets S. The idea in Example 4.3 was to let the semigroups Ts,s

′

act on the matrix elements as,s′ of a finite #S×#S-matrix with entries in B. We simply
try now to do the same with #S ×#S-matrices for a set S of arbitrary cardinality #S.

Of course, the matrices should continue to form a C∗-algebra, so we cannot allow
arbitrary matrices. A canonical candidate is the C∗-algebra Ba(BS) where BS is the
#S-dimensional column space space of B. BS consists of all families B = (bs)s∈S such
that the net

∑
s∈S′ b∗sbs converges over the finite subsets S′ of S. The inner product is

〈B,B′〉 :=
∑
s∈S b

∗
sb
′
s.

Let es := (δss′1)s′∈S . The elements es form an orthonormal basis of BS in the obvious
way:

∑
s∈S eie

∗
i = idBS strongly and, therefore, ∗-strongly in Ba(BS) over the finite

subsets of S, and since the approximating net is bounded by 1, also strictly. It follows
that an arbitrary element A ∈ Ba(BS) can be written as

A =
∑
s,s′∈S

esas,s′e
∗
s′ ,

where as,s′ := 〈es, Aes′〉 ∈ B. (We resist the temptation to denote Ba(BS) as MS(B),
because the latter, usually, rather refers to K(BS).)
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A Schur CP-map on Ba(BS) is a CP-map T on Ba(BS) such that

T (ese∗sAes′e
∗
s′) = ese

∗
sT (A)es′e∗s′

for all A ∈ Ba(BS) and all s, s′ ∈ S. Without its simple proof, we state the following:

6.1. Proposition. A Schur CP-map necessarily leaves K(BS) invariant and is strict.

Obviously, if T is a Schur CP-map, then Ks,s
′
:=〈es, T (es•e∗s′)es′〉 defines a B(B)-valued

CPD-kernel K on S. Moreover, T can be recovered from K as

T (esbe∗s′) = esK
s,s′(b)e∗s′ . (6.1)

However, not all CPD-kernels give rise to Schur CP-map in that way. A CPD-kernel is
bounded if there is a constant M such that ‖Ks,s′‖ ≤M for all s, s′ ∈ S.

6.2. Proposition. Let K be a B(B)-valued CPD-kernel K on S. Then K gives rise to a
(unique) Schur CP-map on Ba(BS) fulfilling (6.1) if and only if K is bounded.

Proof. Clearly, a kernel K fulfilling (6.1) for some CP-map T , is bounded by M = ‖T‖.
So, for the other direction let us suppose that K is bounded (by M , say). Instead of
showing directly that under this condition the map defined by (6.1) on finite matrices
(that is, operators A ∈ Ba(BS) with only finitely many matrix entries as,s′ different
from 0) extends suitably to a CP-map T , we shall construct a candidate for the GNS-
construction of T .

Let (E, (ξs)s∈S) denote the Kolmogorov decomposition for K. Define F := BS�E�BS ,
where BS := BS∗, the #S-dimensional row space of B. Recall that an element y ∈ F
may be interpreted as a map B 7→ y�B from BS to F �BS = BS�E. We claim that the
sum

∑
s∈S es � ξs � e∗s converges ∗-strongly in Ba(BS ,BS � E) to an operator Z. Once

we have convergence, it is clear that the CP-map T (A) := Z∗(A� idE)Z fulfills (6.1).
Let B = (bs)s∈S ∈ BS . Then for every finite subset S′ ⊂ S we have∣∣∣∑

s∈S′

(es � ξs � e∗s)B
∣∣∣2 =

∣∣∣∑
s∈S′

es � ξsbs
∣∣∣2 =

∑
s∈S′

b∗s〈ξs, ξs〉bs ≤M
∑
s∈S′

b∗sbs.

From this, two things follow. Firstly,
∑
s∈S′(es � ξs � e∗s)B is a Cauchy net in BS � E.

Secondly, the net
∑
s∈S′ es � ξs � e∗s is bounded by

√
M . From boundedness it follows

that strong convergence of the adjoint net may be checked on the total subset es � x of
BS � E. But this is clear because

∑
s∈S′(es � ξs � e∗s)∗(es′ � x) = es′〈ξs

′
, x〉 if s′ ∈ S′

and 0 otherwise.

6.3. Corollary. Fix a set S and a unital C∗-algebra B. Then the formula (6.1), when
applied to all members of a semigroup, establishes a one-to-one correspondence between
pointwise bounded B(B)-valued CPD-semigroups T on S (that is, each Tt is bounded)
and Schur CP-semigroups T on BS. Moreover, T and T have the same product systems
of correspondences over B.

Proof. We omit the proof of the only open statement, that about the product systems. (It
follows from the observation that the unit ζ� of the GNS-system of T is a diagonal matrix
with the unit ξs� of the GNS-system of T as s, s-entry; see also [BBLS04, Appendix B].)
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6.4. Theorem. T is spatial if and only if T is spatial. In that case, the one-to-one
correspondence also respects units and the spatial extensions of the GNS-systems based
on them. Therefore, it must also respect Powers sums (and obviously products of the
product systems, because the product systems coincide, anyway).

We omit the obvious proof also here.

6.5. Remark. The formulation is for C∗-algebras and modules. A similar correspondence
has been proved for von Neumann algebras and modules in [BBLS04, Appendix B],
however, only for uniformly continuous semigroups, and without paying attention to the
one-to-one aspect and the related notion of Schur CP-semigroup. (Recall that uniform
continuity is automatic only for spatial semigroups. The statements that are valid also
in the nonspatial case, do not require any continuity in time.) Anyway, all statements
remain true also in the von Neumann case, some of them simpler, because no spatial
extension is needed.

6.6. Remark. Note that for pointwise bounded CPD-semigroups, the results in Section
3 may be obtained from those in Section 5 via the one-to-one correspondence. (The only
exception is the spatial extension of the GNS-system of a spatial CP-semigroup. But this
can easily be added to Section 5, to make it independent of Section 3.) The non-pointwise
bounded case can also be reduced to the pointwise bounded case, by rescaling the CPD-
semigroup with scalar semigroups. But this discussion is somewhat cumbersome and not
at all instructive. We prefer to leave Section 3 as a separate one, which in its general form
is not included in Section 5.
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