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Abstract. Let X,X1, . . . , Xn be independent identically distributed random variables taking

values in a measurable space (Θ,<). Let h(x, y) and g(x) be real valued measurable functions

of the arguments x, y ∈ Θ and let h(x, y) be symmetric. We consider U-statistics of the type

T (X1, . . . , Xn) = n−1
X

1≤i<k≤n

h(Xi, Xk) + n−1/2
X

1≤i≤n

g(Xi).

Let qi (i ≥ 1) be eigenvalues of the Hilbert-Schmidt operator associated with the kernel h(x, y),

and q1 be the largest in absolute value one. We prove that

∆n = ρ(T (X1, . . . , Xn), T (G1, . . . , Gn)) ≤ cβ′1/6p
|q1|n1/12

,

where Gi, 1 ≤ i ≤ n, are i.i.d. Gaussian random vectors, ρ is the Kolmogorov (or uniform)

distance and β′ := E |h(X,X1)|3 + E |h(X,X1)|18/5 + E |g(X)|3 + E |g(X)|18/5 + 1 <∞.

1. Introduction and formulation of the main result. Let X,X1, . . . , Xn be in-
dependent identically distributed random variables taking values in a measurable space
(Θ,<). Let h : Θ2 → R and g : Θ→ R be real-valued measurable functions. Let h be sym-
metric, that is, h(x, y) = h(y, x) for all x, y ∈ Θ. Assume that Eg(X) = 0, Eh(x,X) = 0,
for all x ∈ Θ. Let us consider the U-statistic

T = T (X1, . . . , Xn) = n−1
∑

1≤i<k≤n

h(Xi, Xk) + n−1/2
∑

1≤i≤n

g(Xi). (1)
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Let Z,Z1, . . . , Zn be independent identically distributed random variables taking values
in a measurable space (Θ,<), for which the conditions

Eg(Z) = 0, Eh(x, Z) = 0, Eg2(Z) = Eg2(X), (2)

Eh(x, Z)h(y, Z) = Eh(x,X)h(y,X),

Eh(x, Z)g(Z) = Eh(x,X)g(X) for all x ∈ Θ

are satisfied. Denote by L(Y ) the distribution of a random variable Y . We shall prove in
this work that L(T (X1, . . . , Xn)) approaches L(T (Z1, . . . , Zn)) as n → ∞ if conditions
(2), (3) and (4) are satisfied. We also find the rate of convergence. Thus it is proved
that in view of the conditions mentioned above, the limit distribution of the second-
order U-statistic possesses the property of stability in the sense that it is independent
of the distribution of the initial random variable X. This result can be regarded as
being intermediate in determining the rate of convergence of T -statistic to its own limit
distribution. Note that the rate of convergence of second-order random polynomials was
investigated by Yanushkevichiene (1998, 2006).

We are going to use the notation

∆n = ρ(L(T (X1, . . . , Xn)),L(T (Z1, . . . , Zn))),

where ρ is the Kolmogorov (or uniform) metric.
Let q1, q2, . . . be the eigenvalues of the Hilbert-Schmidt operator Q, associated with

the kernel h and measure µ = L(X) (see Section 2 for detailed definitions), and q̄1, q̄2, . . .

be eigenvalues of the Hilbert-Schmidt operator Q, associated with the kernel h and
measure µ̄ = L(Z). Without loss of generality, we assume that |q1| ≥ |q2| ≥ . . . and
|q̄1| ≥ |q̄2| ≥ . . . .

Assume also that
qi = q̄i, i = 1, 2, . . . , (3)

and denote

γs = E |g(X)|s, γ̄s = E |g(Z)|s, βs = E |h(X,X1)|s, β̄s = E |h(Z,Z1)|s,
where s > 0,

β′ := β3 + β18/5 + γ3 + γ18/5 + 1, β̄ = β̄3 + β̄18/5 + γ̄3 + γ̄18/5 + 1, β := max(β′, β̄),

and suppose that
β <∞, β2 > 0, β̄2 > 0. (4)

The conditions β2 > 0, β̄2 > 0 ensure that the quadratic part of the statistic T is not
asymptotically negligible and therefore T is not asymptotically normal.

In the sequel, we denote by c some positive absolute constants which may differ from
line to line or from formula to formula. The following theorem is our main result.

Theorem 1.1. If conditions (2), (3) and (4) are satisfied then

∆n ≤ cβ1/6|q1|−1/2
n−1/12. (5)

The order of this upper bound cannot be improved, since Senatov (1996) has shown
that, in the CLT in multidimensional Euclidian space for balls, whose center is not at
zero, the respective rates of convergence are defined by the expression O( n−k/12

(q1...qk)1/2 ),
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under the condition that |qk| > 0 and k ≤ 6. In our case, we have only some information
about the first eigenvalue, therefore the order of the bound is equal to 1/12.

Example. Let

T = T (X1, . . . , Xn) = n−1
∑

1≤i<k≤n

XiXk + n−1/2
∑

1≤i≤n

Xi,

and X,X1, . . . , Xn be independent identically distributed one-dimensional random vari-
ables with EX = 0, EX2 = 1. In this case conditions (2) are satisfied and the Theorem
1.1 holds for all one-dimensional Z with moments EZ = 0, EZ2 = 1.

2. Special representations of bivariate U-statistics. The following representation
of bivariate U -statistics goes back to Dunford and Schwartz (1963). Consider the measur-
able space (Θ,<, µ) with measure µ = L(X) where X ∈ Θ. Let L2 = L2(Θ,<, µ) denote
the real Hilbert space of square integrable real functions. The Hilbert-Schmidt operator
Q is defined via

Qf(x) =
∫

Θ

h(x, y)f(y)µ(dy), f ∈ L2.

Let {ej : j ≥ 1} denote an orthonormal complete system of eigenfunctions of Q ordered
by decreasing absolute values of the corresponding eigenvalues |q1| ≥ |q2| ≥ . . . . Then

Eh2(X,X1) =
∑
j≥1

q2
j <∞, h(x, y) =

∑
j≥1

qjej(x)ej(y). (6)

Consider the subspace L2(g, h) ⊂ L2 generated by g, h and eigenfunctions ej correspond-
ing to nonzero eigenvalues qj 6= 0. Introducing, if necessary, a normalized eigenfunction,
say e0, such that Qe0 = 0, we can assume that e0, e1, . . . is an orthonormal basis of
L2(g, h). Thus, we can write

g(X) =
∑
j≥0

ajej(X), γ2 = E g2(X) =
∑
j≥0

a2
j , (7)

with aj = E g(X)ej(X). It is easy to see that E ej(X) = 0, for all j. Therefore (ej(X))j≥0

is an orthonormal system of mean zero random variables.
Throughout the rest of the paper we shall assume that all random variables and

vectors are totally independent, if the contrary is not clear from the context.
Bentkus and Götze (1999) modified the representation of Dunford and Schwartz in the

following way. Let R∞ denote the space of all real sequences x = (x0, x1, x2, . . . ), xj ∈ R.
The Hilbert space l2 ⊂ R∞ consists of x ∈ R∞ such that

|x|2 def
= 〈x, x〉, |x| <∞, 〈x, y〉 =

∑
j≥0

xjyj .

Consider a random vector
X

def
= (e0(X), e1(X), . . . ),

which takes values in R∞. Since {ej(X)}j≥0 is a system of mean zero uncorrelated random
variables with variances 1, the random vector X has identity covariance and mean zero.
Using (6) and (7), we can write

h(X,X1) = 〈QX,X1〉, g(X) = 〈a,X〉, (8)
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where we define Qx = (0, q1x1, q2x2, . . . ), for x ∈ R∞, and a = (aj)j≥0 ∈ R∞. Equalities
(8) allow us to assume that the measurable space Θ is R∞, the random variable X is a
random vector taking values in R∞ with mean zero and identity covariance, and that

h(X,X1) = 〈QX,X1〉, g(X) = 〈a,X〉.

In particular, without loss of generality, we shall assume throughout that the kernels
h(x, y) and g(x) are linear functions in each of their arguments.

Let G,Gi, 1 ≤ i ≤ n be i.i.d. Gaussian random vectors Gi = (G1,i, G2,i, . . . ) with
values in R∞, where G1,i, G2,i, . . . denote i.i.d. standard normal random variables. We
assume throughout the rest of the paper that

Eg(G) = 0, Eh(x,G) = 0, Eg2(G) = Eg2(X), (9)

Eh(x,G)h(y,G) = Eh(x,X)h(y,X),

Eh(x,G)g(G) = Eh(x,X)g(X), x ∈ Θ.

Note that the possibility of selecting Gaussian random variables in such way that equal-
ities (9) are satisfied was proven by Bentkus and Götze (1999).

3. Lemma. To prove the theorem we need the following lemma.

Lemma 3.1. Let η be a standard Gaussian random variable and q1 > 0. Then the distri-
bution function H(x) = P{q1η

2 < x} satisfies the Lipschitz condition

sup
x
|H(x+ ε)−H(x)| ≤ cq−1/2

1

√
ε, (10)

where ε > 0.

Proof of the lemma. The distribution of η2 has the density

f(x) =
1√

2Γ(1/2)
√
x
e−x/2 for x > 0, and f(x) = 0 for x ≤ 0.

Denote by H1(x) the distribution function of the random variable η2. Then

H1(x+ ε)−H1(x) =
∫ x+ε

x

f(u)du.

Analyzing the first derivative H ′1 of this function, it is easy to see that the latter does
not increase. Therefore we can write

|H1(x+ ε)−H1(x)| ≤ c
∫ ε

0

e−u√
u
du ≤ c

√
ε.

Passing from the distribution function H1 to the distribution function H we arrive at the
assertion of the lemma.

4. Proof of the Theorem. We have to prove inequality (5). Using the triangle inequal-
ity we can write

∆n ≤ ρ(L(T (X1, . . . , Xn)),L(T (G1, . . . , Gn))) + ρ(L(T (G1, . . . , Gn)),L(T (Z1, . . . , Zn))).
(11)
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It has been shown by Bentkus and Götze (1999) that it is possible to represent the
statistic T (G1, . . . , Gn) in the form

T (G1, . . . , Gn) = n−1
∑

1≤i<k≤n

〈QGi, Gk〉+ n−1/2
∑

1≤i≤n

〈a,Gi〉,

where a = (ai)i≥1 is some constant. Let Gi,j , i ≥ 1 be the components of the vector Gj .
Then we can rewrite the above expression in the form

T (G1, . . . , Gn) =
∑
i≥1

(
n−1qi

∑
1≤j<k≤n

Gi,jGi,k + n−1/2
∑

1≤j≤n

aiGi,j

)
,

where Gi,j are independent normally distributed random variables with the first two
moments equal to 0 and 1 respectively. It is easy to see that

2n−1qi
∑

1≤j<k≤n

Gi,jGi,k = (n− 1)qiG
2

i − qiS2
i ,

where
Gi = n−1

∑
1≤j≤n

Gi,j and S2
i = n−1

∑
1≤j≤n

G2
i,j −G

2

i .

It is also well known (see Cramer (1946)) that random variables Gi and Si are inde-
pendent. The random variables Gi can be written in the form Gi = ηi/

√
n, so we can

write
n−1qi

∑
1≤j<k≤n

Gi,jGi,k =
n− 1
n

qiη
2
i − qiS2

i .

Then

T (G1, . . . , Gn) =
∑
i≥1

(
n− 1

2n
qiη

2
i −

qi
2
S2
i + aiηi

)

=
∑
i≥1

(
1
2
qi(η2

i − 1)− 1
2n
qiη

2
i −

qi
2

(S2
i − 1) + aiηi

)
.

Using the independence of ηi, ηj , Si, Sj , i 6= j and Lemma 3.1 it is easy to notice that
the distribution function of T (G1, . . . , Gn) satisfies the Lipschitz condition with exponent
1/2. Now we can write

sup
x
|P(T (G1, . . . , Gn) ≤ x+ ε)−P(T (G1, . . . , Gn) ≤ x)|

= sup
x

∣∣∣∣P(q1η
2
1 −

1
n
q1η

2
1 + 2a1η1 ≤ x+ 2ε)−P

(
q1η

2
1 −

1
n
q1η

2
1 + 2a1η1 ≤ x

)∣∣∣∣
= sup

x

∣∣∣∣P(q1(n−1)
n

(
η1+

a1n

q1(n−1)

)2

≤ x+2ε
)
−P

(
q1(n−1)

n

(
η1+

a1n

q1(n−1)

)2

≤ x
)∣∣∣∣

≤ c′√
|q1|
√
ε. (12)

Here and throughout, c′, c1, c2, . . . are some positive constants.
Now, we prove that, for any ε > 0, we have

ρ(L(T (X1, . . . , Xn)),L(T (G1, . . . , Gn))) ≤ c′√
|q1|
√
ε+ ∆, (13)
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where
∆ = max

ϕ
|Eϕ(T (X1, . . . , Xn))−Eϕ(T (G1, . . . , Gn))|,

and the maximum is taken over all infinitely differentiable ϕ such that |ϕ(k)(u)| ≤
c1/ε

k, k = 1, 2, 3 and 0 ≤ ϕ(u) ≤ 1, moreover, either

ϕ(u) = 1 for u ≤ x− ε, and ϕ(u) = 0 for u ≥ x, (14)

or
ϕ(u) = 1 for u ≤ x, and ϕ(u) = 0 for u ≥ x+ ε. (15)

To do so, write δ∗ = P{T (X1, . . . , Xn) ≤ x}−P{T (G1, . . . , Gn) ≤ x}. We start with the
proof of (13) in the case δ∗ ≥ 0. Let us take a function ϕ such that (15) holds. Then

δ∗ = EI{T (X1, . . . , Xn) ≤ x} −P{T (G1, . . . , Gn) ≤ x}
≤ |Eϕ(T (X1, . . . , Xn))−Eϕ(T (G1, . . . , Gn))|

+ |Eϕ(T (G1, . . . , Gn))−P{T (G1, . . . , Gn)x}|
≤ ∆ + P{x ≤ T (G1, . . . , Gn) ≤ x+ ε}.

Using the Lipschitz condition, we get (13).
If δ∗ < 0, the proof of (13) is similar. One has to take a function ϕ that satisfies (14).
Denote

∆∗(ϕ) = |Eϕ(T (X1, . . . , Xn))−Eϕ(T (G1, . . . , Gn))|.

Obviously

∆∗(ϕ) ≤ |Eϕ(T (X1, . . . , Xn))−Eϕ(T (X1, . . . , Xn−1, Gn))|
+ |Eϕ(T (X1, . . . , Xn−1, Gn))−Eϕ(T (X1, . . . , Xn−2, Gn−1, Gn))|
+ · · ·+ |Eϕ(T (X1, G2, . . . , Gn))−Eϕ(T (G1, . . . , Gn))|

= ∆∗1,n + · · ·+ ∆∗n,n. (16)

Let us prove now that

ρ(L(T (X1, . . . , Xn)),L(T (G1, . . . , Gn))) ≤ c2|q1|−1/2β′1/6n−1/12. (17)

We shall use induction on n. Assume that for all m ≤ n− 1, the inequality

ρ(L(T (X1, . . . , Xi−1, Gi, . . . , Gm)),L(T (G1, . . . , Gm))) ≤ c2|q1|−1/2β′1/6m−1/12 (18)

holds true for all 2 ≤ i ≤ m and all functions h and g for which the conditions of Section 1
are satisfied. Here β′ is the moment of the functions h and g, defined in Section 1.

It is easy to see that bounds (18) hold for m = 2. Indeed, let m = 2. As ρ ≤ 1, it
suffices to show that |q1|−1/2β′1/6 ≥ 1. We have

|q1|−1/2β′1/6 ≥ |q1|−1/2(E |h|3)1/6 = (q−2
1 (E |h|3)2/3)1/4.

Using (6), we obtain

|q1|−1/2β′1/6 ≥ (q−2
1 E |h|2)1/4 = (q−2

1 (q2
1 + q2

2 + . . . ))1/4 ≥ 1.

Hence, the statement is proved for m = 2.
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Now we will prove that (17) and (18) hold for m = n. We have

T (X1, . . . , Xn) =
1
n
{h(X1, X2) +

√
ng(X1) + · · ·+ h(X1, Xn−1) +

√
ng(Xn−1)

+ h(X1, Xn) +
√
ng(Xn) + h(X2, X3) + · · ·+ h(X2, Xn)

+ · · ·+ h(Xn−2, Xn−1) + h(Xn−2, Xn) + h(Xn−1, Xn)}.

We denote by w the sum of all summands of the above expression for T (X1, . . . , Xn),
which do not involve Xn:

w =
1
n
{h(X1, X2) +

√
ng(X1) + · · ·+h(X1, Xn−1) +

√
ng(Xn−1) + · · ·+h(Xn−2, Xn−1)}

and by ln the sum of all summands involving Xn:

ln =
1
n
{h(X1, Xn) +

√
ng(Xn) + · · ·+ h(Xn−2, Xn) + h(Xn−1, Xn)}.

Replacing Xn by Gn we get

T (X1, . . . , Xn−1, Gn) = w+
1
n
{h(X1, Gn)+

√
ng(Gn)+· · ·+h(Xn−2, Gn)+h(Xn−1, Gn)}

= w + l∗n,

where l∗n is obtained from ln replacing Xn by Gn. We expand into the Taylor series

ϕ(x+ y) = ϕ(x) + ϕ′(x)y +
1
2
ϕ′′(x)y2 +

1
2
Eϕ′′′(x+ τy)(1− τ)2y3.

Here τ is a random variable uniformly distributed in [0, 1] and independent of all the
other random variables. Let us apply the expansion to x = w and y = ln. Write

∆∗1,n = |Eϕ(T (X1, . . . , Xn))−Eϕ(T (X1, . . . , Xn−1, Gn))|

=
∣∣∣∣Eϕ(w)−Eϕ(w) + Eϕ′(w)ln −Eϕ′(w)l∗n +

1
2
Eϕ′′(w)l2n −

1
2
Eϕ′′(w)(l∗n)2

+
1
2
Eϕ′′′(w + lnτ)l3n(1− τ)2 − 1

2
Eϕ′′′(w + l∗nτ)(l∗n)3(1− τ)2

∣∣∣∣.
Let EX1,...,Xn−1,τ be the expectation with respect to the random variablesX1, . . . , Xn−1, τ ,
EXn

be the expectation with respect to the random variable Xn and so on. Write

∆∗1,n =
∣∣∣∣EX1,...,Xn−1,τϕ

′(w)EXn ln −EX1,...,Xn−1,τϕ
′(w)EGn l

∗
n

+
1
2
EX1,...,Xn−1,τϕ

′′(w)EXn l
2
n −

1
2
EX1,...,Xn−1,τϕ

′′(w)EGn(l∗n)2

+
1
2
Eϕ′′′(w + lnτ)l3n(1− τ)2 − 1

2
Eϕ′′′(w + l∗nτ)(l∗n)3(1− τ)2

∣∣∣∣.
Using (9), we get

∆∗1,n =
∣∣∣∣12Eϕ′′′(w + lnτ)l3n(1− τ)2 − 1

2
Eϕ′′′(w + l∗nτ)(l∗n)3(1− τ)2

∣∣∣∣. (19)

Denote |Eϕ′′′(w + lnτ)l3n(1− τ)2| by r and let us estimate its value. Write

ln = l′n + l′′n
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with

l′n =
1
n

(√
ng(Xn) +

∑
1≤k≤[(n−1)/2]

h(Xk, Xn)
)
, l′′n =

1
n

∑
[(n−1)/2]<k≤n−1

h(Xk, Xn),

where [(n − 1)/2] is the integer part of the number (n − 1)/2. In a similar manner, we
define (l∗n)′ and (l∗n)′′. Using the inequality (a+ b)3 ≤ 8(a3 + b3) for a > 0, b > 0, we find

r ≤ 8c1
ε3

(EI(x ≤ w + τ l′n + τ l′′n ≤ x+ ε)|l′n|3 + EI(x ≤ w + τ l′n + τ l′′n ≤ x+ ε)|l′′n|3)

=
8c1
ε3

(r1 + r2). (20)

We estimate only r1, since the estimation of r2 is similar. Now we fix X1, . . . , X[(n−1)/2],
Xn, τ. Let E∗ = EX[(n−1)/2]+1,...,Xn−1 , then

r1 = E|l′n|3E∗I(x ≤ w + τ l′n + τ l′′n ≤ x+ ε) ≤ E |l′n|3 sup
x

P{x ≤ w + τ l′′n ≤ x+ ε}

(we use the independence assumption)

= E |l′n|3 sup
x

P{x ≤ T ∗ ≤ x+ ε},

where T ∗ = T ∗(X[(n−1)/2]+1, . . . , Xn−1). We get T ∗ from w + τ l′′n and then we fix
X1, . . . , X[(n−1)/2], Xn, τ. The corresponding function h∗ = h is the same and g∗ has
the following form

g∗(Xj) = g(Xj) + n−1/2
∑

1≤k≤[(n−1)/2]

h(Xk, Xj) + n−1/2τh(Xn, Xj),

where j = [(n− 1)/2] + 1, . . . , n− 1. Using the inequalities (12), (18), we get

sup
x

P(x ≤ T ∗ ≤ x+ ε) ≤ c′√
|q1|
√
ε+

2c2√
|q1|

(
2β∗2

n− 1

)1/12

, (21)

where β∗ = β3 + β18/5 + γ∗3 + γ∗18/5 + 1, γ∗s = E∗ |g∗(X)|s.
From Theorem 20 in Petrov (1987), we derive that

n18/5E|l′n|18/5 = E
∣∣∣n9/5g(Xn) +

∑
1≤k≤[(n−1)/2]

h(Xk, Xn)
∣∣∣18/5

≤ c4n9/5(γ18/5 + β18/5) ≤ c4β′n9/5. (22)

In Bentkus and Götze (1999) we can find the following inequalities

E|g(G)|s ≤ csE|g(X)|s, E|h(x,G)|s ≤ csE|h(x,X)|s, s ≥ 2,

where cs are some constants depending on s. Let us take c4 so large that inequality (22)
will be true for (l∗n)′ as well. In a similar way we get

n3E|l′n|3 = E
∣∣∣n3/2g(Xn) +

∑
1≤k≤[(n−1)/2]

h(Xk, Xn)
∣∣∣3 ≤ c3n3/2(γ3 + β3).

Obviously,
E|l′n|3 ≤ c3β′n−3/2. (23)
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Let us estimate E (|l′n|3β∗
1/6). Using Hölder’s inequality, we obtain

E (|l′n|3β∗
1/6) ≤ (E |l′n|18/5)5/6(E β∗)1/6

= (E |l′n|18/5)5/6(E (β3 + β18/5 + |g∗(X)|3 + |g∗(X)|18/5 + 1))1/6.

The following bounds are true

E |g∗(X)|18/5 ≤ c4(γ18/5 + β18/5), E |g∗(X)|3 ≤ c3(γ3 + β3).

Denoting c5 = max(c4 + 1, c3 + 1), we get

E (|l′n|3β∗
1/6) ≤ c1/65 β′1/6(E |l′n|18/5)5/6 ≤ c5β′n−3/2. (24)

Combining (21), (23), (24) and using that β′ > 1, we get

r1 ≤
β′√
|q1|n3/2

(c′c3
√
ε+ 3c2c5β′1/6(n− 1)−1/12).

We can construct the same bounds for the second summand in (19). Finally we have

∆∗1,n ≤ 16
c1c5β

′√
|q1|ε3n3/2

(c′
√
ε+ c2β

′1/6(n− 1)−1/12).

Let ε = δn−1/6β′1/3, then we can write

∆∗1,n ≤ 16c1c5(c′
√
δ + 3c2)δ−3|q1|−1/2

β′1/6(n)−13/12.

In view of (16) and (13), we obtain

ρ(L(T (X1, . . . , Xn)),L(T (G1, . . . , Gn)))

≤ c′|q1|−1/2
√
ε+ 16c1c5(c′

√
δ + 3c2)δ−3|q1|−1/2

β′1/6(n)−1/12

= (c′
√
δ + 16c1c5(c′

√
δ + 3c2)δ−3)|q1|−1/2

β′1/6(n)−1/12.

Choosing δ and c2 so that the relations

112c1c3 ≤ δ3, c2 ≥ 2c′
√
δ,

hold, we achieve

ρ(L(T (X1, . . . , Xn)),L(T (G1, . . . , Gn))) ≤ c2|q1|−1/2β′1/6n−1/12 ≤ c2|q1|−1/2β1/6n−1/12.

The second summand in (11) can be estimated similarly. This ends the proof of Theo-
rem 1.1.
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