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Abstract. Metrics are proposed for the distance between two multivariate stable distributions.

The first set of metrics are defined in terms of the closeness of the parameter functions of one

dimensional projections of the laws. Convergence in these metrics is equivalent to convergence

in distribution and an explicit bound on the uniform closeness of two stable densities is given.

Another metric based on the Prokhorov metric between the spectral measures is related to the

first metric. Consequences for approximation, simulation and estimation are discussed.

1. Introduction. A random variable X is stable if for all n = 2, 3, 4, . . ., there are con-
stants an > 0 and bn ∈ R such that X1 +X2 + · · ·+Xn

d= anX+bn, where X1, X2, X3, . . .

are i.i.d. copies of X. Univariate stable distributions are characterized by 4 parameters:
two shape parameters α ∈ (0, 2] and β ∈ [−1, 1] and a scale γ > 0 and location δ ∈ R.
Because there are no closed formulas for general stable densities or distribution functions,
they are usually specified by their characteristic function φ(u) = E exp(iuX). There are
multiple parameterizations used for stable distributions; we will discuss two. They are
based on Zolotarev’s (M) and (A) parameterizations, see [Z]. We will focus on a scale
and location family that is continuous in all four parameters: X ∼ S(α, β, γ, δ; 0) if

φ(u) =

{
exp

(
−γα|u|α

[
1 + iβtan πα

2 (signu)(|γu|1−α − 1)
]

+ iδu
)
, α 6= 1,

exp
(
−γ|u|

[
1 + iβ 2

π (signu) ln(γ|u|)
]

+ iδu
)
, α = 1.

The second parameterization is X ∼ S(α, β, γ, δ; 1) if

φ(u) =

{
exp

(
−γα|u|α

[
1− iβtan πα

2 (signu)
]

+ iδu
)
, α 6= 1,

exp
(
−γ|u|

[
1 + iβ 2

π (signu) ln |u|
]

+ iδu
)
, α = 1.

This second parameterization is more frequently used in the literature; it is more compact
and has simple algebraic properties. However, it is poorly suited for our purposes here
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because there is a discontinuity at α = 1. Also, it is not a scale and location distribution
when α = 1, which results in technical complications in the multivariate case. These ideas
are discussed further in Section 3. For brevity, these different parameterizations will be
called the 0-parameterization and the 1-parameterization.

A d-dimensional random vector X = (X1, . . . , Xd) is said to be stable if for all n =
2, 3, 4, . . ., there is a constant an > 0 and a vector bn ∈ Rd such that X1 + X2 +
· · · + Xn

d= anX + bn, where X1,X2,X3, . . . are i.i.d. copies of X. If X is a stable
vector, then every one dimensional projection 〈u,X〉 = u1X1 + u2X2 + · · · + udXd has
a univariate stable distribution, with a constant index of stability α and skewness β(u),
scale γ(u) and shift δ(u) that depend on the direction u, see [ST], Section 2.1. (The
converse is true if α ≥ 1; when α < 1 an extra condition is needed for the converse,
see the discussion after Lemma 4.1 below.) We will call the functions β(·), γ(·) and δ(·)
the projection parameter functions. Since they uniquely determine all one dimensional
projections, they determine the joint distribution via the Cramér-Wold device. As in
the univariate case, there are multiple parameterizations possible for multivariate stable
laws. We will say X ∼ S(α, β(·), γ(·), δ(·); k) for k = 0 or k = 1 if for every u ∈ Rd,
〈u,X〉 ∼ S(α, β(u), γ(u), δ(u); k). The 0-parameterization is jointly continuous in the
parameter functions, but the discontinuity of the 1-parameterization carries over to d-
dimensions, see Section 3. Scaling properties (see below) of these parameter functions
make it sufficient to know them on the unit sphere S = {s ∈ Rd : |s| = 1}.

Let X1 ∼ S(α1, β1(·), γ1(·), δ1(·); 0), X2 ∼ S(α2, β2(·), γ2(·), δ2(·); 0), and for 1 ≤ p

≤ ∞ define

∆p(X1,X2) = |α1 − α2|+ ‖β1(·)− β2(·)‖p + ‖γ1(·)− γ2(·)‖p + ‖δ1(·)− δ2(·)‖p,
where ‖ · ‖p is the Lp(S, ds) norm and ds is (unnormalized) surface area measure on S
(not on Rd). Each ∆p is a metric since every term on the right hand side is a metric. The
first result is that ∆∞ meterizes convergence in distribution.

Theorem 1.1. Let Xj ∼ S(αj , βj(·), γj(·), δj(·); 0), j = 1, 2, . . . ,∞. Then Xj
d→ X∞ if

and only if ∆∞(Xj ,X∞)→ 0.

Proof. Lemma 4.1 below shows that all the projection parameter functions are uniformly
continuous on compact S and have simple scaling properties. These scaling results show
that the ch. f. φXj

converges to φX∞ on S if and only if the convergence is uniform on
any compact set. Hence ∆∞(Xj ,X∞) → 0 if and only if φXj

→ φX∞ uniformly on any

compact set, which is equivalent to Xj
d→ X∞.

If two stable random vectors have densities, then the metric ∆1 gives an explicit
measure of closeness between the densities.

Theorem 1.2. Let Xj ∼ S(αj , βj(·), γj(·), δj(·); 0), j = 1, 2 with

γ := min(inf
s∈S

γ1(s), inf
s∈S

γ2(s)) > 0. (1)

Then the respective densities f1(x) and f2(x) exist and

sup
x∈Rd

|f1(x)− f2(x)| ≤ c1 ∆1(X1,X2),

where c1 = c1(α1, α2, γ, d) is a positive constant.



METRICS FOR STABLE LAWS 85

This implies uniform bounds on the difference of the cumulative distribution functions:
the proof of Theorem 1(b) in [BNR] shows that if (1) holds, then for all Borel sets A ⊂ Rd

|P (X1 ∈ A)− P (X2 ∈ A)| ≤ c(α1, α2, γ, d)∆1(X1,X2).

Since (S, ds) is a finite measure space, with total mass Area(S) = 2πd/2/Γ(d/2), ‖ · ‖1 ≤
(2πd/2/Γ(d/2))1−1/p‖ · ‖p for any p ∈ (1,∞]. So when (1) holds, we automatically get

sup
x∈Rd

|f1(x)− f2(x)| ≤ c′1 ∆p(X1,X2), (2)

where c′1 = max(1, (2πd/2/Γ(d/2))1−1/p)c1. Likewise, all the results below hold when ∆1

is replaced by ∆p, p ∈ (1,∞], with modified constants.
A multivariate stable distribution can also be described by a spectral measure Λ, a

finite Borel measure on the unit sphere S, and a shift vector δ ∈ Rd. We will use the
analog of the 0-parameterization defined above and write X ∼ S(α,Λ, δ; 0) to specify
the distribution. (The precise meaning of this and the 1-parameterization in terms of
spectral measures are defined in Section 4.) To compare two measures on S that may
have different masses, define the extended Prokhorov distance between them by

π∗(Λ1,Λ2) = |λ1 − λ2|+ min(λ1, λ2)π
(
λ−1

1 Λ1(·), λ−1
2 Λ2(·)

)
, (3)

where λi := Λi(S) and π(·, ·) is the Prokhorov metric, see [DP] and [DN]. The next result
shows that if two spectral measures Λ1 and Λ2 are close in this metric and α1 and α2 are
close, then the densities of the corresponding stable distributions are uniformly close.

Theorem 1.3. Let Xj ∼ S(αj ,Λj , δj ; 0), j = 1, 2. If (1) holds, then the respective den-
sities exist and satisfy

sup
x∈Rd

|f1(x)− f2(x)| ≤ c2
[
|α1 − α2|+ π∗(Λ1,Λ2)max(α1,α2)/2 + |δ1 − δ2|

]
,

where c2 = c2(α1, α2, d, γ, λ1, λ2) is a positive constant.

The next section examines the symmetric stable case of Theorem 1.2, where sharper
results are possible. The third section proves Theorem 1.2 for the general, non-symmetric
case. The fourth section relates ∆∞(X1,X2) to the Prokhorov metric between the re-
spective spectral measures to prove Theorem 1.3 and some related results. The proofs of
technical lemmas are collected in the last section.

We end this section with a brief discussion of previous work in this area and some
motivation for our approach. In [BNR], it was shown that any multivariate stable dis-
tribution can be approximated by one with a discrete spectral measure. The original
motivation for this was to give a numerically simpler case to work with when calculating
multivariate stable densities. An algorithm to simulate exactly from a multivariate stable
law with a discrete spectral measure is given in [MN], so showing that this class is dense
is of practical interest. [DP] and [DN] showed that if two symmetric spectral measures
were close in the extended Prokhorov metric, then their respective stable densities were
uniformly close. They also compared symmetric stable densities with different α’s. To
handle the non-symmetric case, allowing different α’s and non-symmetry, some parame-
terization like the 0-parameterization is needed. Because the 0-parameterization is used,



86 J. P. NOLAN

the constants c1 in Theorem 1.2 and c2 in Theorem 1.3 are bounded in a neighborhood of
α = 1, unlike the results in [BNR]. It is impossible to do this in the 1-parameterization.

We emphasize the role of the parameter functions rather than the spectral measure
for several reasons. First, the basic argument used in [BNR], [DP], and [DN] and here is
to show that the characteristic functions of the two distributions are close in L1(Rd, dx),
which implies that the respective densities are close. This argument is conceptually sim-
pler if phrased in terms of the parameter functions, and then those results are used to
derive the ones for the spectral measure. Second, some estimation methods for multi-
variate stable distributions, e.g. [NPM], work by estimating the projection functions in
multiple directions using univariate estimation on the projected data. If those are es-
timated accurately, then the approximation of the distribution is close. Third, if the
distributions are specified in terms of the a stochastic integral representation, then the
spectral measure is not known directly, but the parameter functions are. Finally, the
only way in which the spectral measure enters the characteristic function is through the
parameter functions. In particular, its nature as a measure, e. g. discrete or continuous,
isn’t crucial for closeness of the respective densities. (The tail behavior of stable laws is
dependent on the nature of the spectral measure, but since the tails of the densities are
uniformly small, that does not enter here.)

There are numerous positive constants used in the proofs below, which we denote
by c1, c2, etc. While the bounds given are generally not optimal, the constants given
are bounded in the neighborhood of α = 1 and work for all dimensions d ≥ 1. Finally,
because the 0-parameterization used here is not standard, some detail is given about the
relationship between this continuous parameterization and the standard one in Section 4.

2. Symmetric case. The symmetric α-stable case is a common special case, where
the index α and the scale function γ(·) completely determine the distribution: the joint
characteristic function is φ(u) = exp(−γα(u)).

A necessary and sufficient condition for a multivariate stable random vector (sym-
metric or non-symmetric) X to have a density is that

γmin := min
u∈S

γ(u) > 0. (4)

If γmin > 0, then
∫

Rd |φ(u)|du ≤
∫

Rd exp(−γαmin|u|α)du < ∞, so a density exists. Con-
versely, if γmin = 0, then by continuity of γ(·), there is a u0 ∈ S where γ(u0) = 0. By
scaling (Lemma 4.1 below), γ(ru0) = rγ(u0) = 0 for all r, and thus the ch. f. of the
univariate r.v. 〈u0,X〉 satisfies |E exp(ir〈u0,X〉)| = 1. Hence 〈u0,X〉 is degenerate, i.e.
the components of X are linearly dependent so X is supported on a proper subset of Rd.

Theorem 2.1. Let X1 and X2 be α-symmetric stable d-dimensional random vectors with
respective scale functions γ1(·) and γ2(·) and respective densities f1(·) and f2(·). Then

sup
x∈Rd

|f1(x)− f2(x)| ≤ Γ(d/α)
α(2π)d

∫
S

∣∣γ−d1 (s)− γ−d2 (s)
∣∣ ds.

Proof. The assumption that both densities exist is equivalent to the statements γmin(X1)
> 0 and γmin(X2) > 0, so all the terms below are well defined. By the inversion formula,
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the density is given by

f(x) = f(x|α, γ(·)) = (2π)−d
∫

Rd
e−i〈x,u〉e−γ

α(u)du. (5)

The proof uses the algebraic fact |a − b| = [sign (a − b)](a − b). For any x, a change to
polar coordinates u = rs in the inversion formula and the scaling property γ(rs) = rγ(s)
show

|f1(x)− f2(x)|

≤ (2π)−d
∫

S

∫ ∞
0

|e−γ
α
1 (s)rα − e−γ

α
2 (s)rα |rd−1drds

= (2π)−d
∫

S
sign [γα2 (s)− γα1 (s)]

∫ ∞
0

(
e−γ

α
1 (s)rα − e−γ

α
2 (s)rα

)
rd−1drds

= (2π)−d
∫

S
sign [γα2 (s)− γα1 (s)]

(
Γ(d/α)

α(γα1 (s))d/α
− Γ(d/α)
α(γα2 (s))d/α

)
ds

=
Γ(d/α)
α(2π)d

∫
S

sign
(
γ−d1 (s)− γ−d2 (s)

) (
γ−d1 (s)− γ−d2 (s)

)
ds

=
Γ(d/α)
α(2π)d

∫
S

∣∣γ−d1 (s)− γ−d2 (s)
∣∣ ds.

We note that this bound is sharp: Corollary 4 in [AN] shows fj(0) = Γ(d/α)/(α(2π)d)
·
∫

S γ
−d
j (s)ds, so for any two scale functions with γ1(s) ≤ γ2(s), f1(0)− f2(0) equals the

upper bound in Theorem 2.1.
For a Gaussian r. vectors we have the following sharp bound.

Corollary 2.2. Let Xi ∼ N(0,Σi), i = 1, 2 be nondegenerate Gaussian, then

sup
x∈Rd

|f1(x)− f2(x)| ≤ Γ(d/2)
21+d/2πd

∫
S
|〈s,Σ1s〉−d/2 − 〈s,Σ2s〉−d/2|ds.

Proof. For Gaussian laws, γi(s) = (〈s,Σis〉/2)1/2.

Corollary 2.3. Let X1 and X2 be symmetric α-stable with (1) holding. Then

sup
x∈Rd

|f1(x)− f2(x)| ≤ c3(α, d)γ−d−1∆1(X1,X2).

Proof. In the symmetric case with α1 = α2, ∆1(X1,X2) = ‖γ1(·)−γ2(·)‖1. The function
f(γ) = γ−d is decreasing with |f ′(γ)| ≤ dγ−d−1 on the interval [γ,∞). Hence |γ−d1 (s)−
γ−d2 (s)| ≤ dγ−d−1|γ1(s)−γ2(s)|, and

∫
S |γ
−d
1 (s)−γ−d2 (s)|ds ≤ dγ−d−1

∫
S |γ1(s)−γ2(s)|ds.

Using the previous theorem, we may take c3(α, d) = dΓ(d/α)/(α(2π)d).

Next we compare two symmetric stable distributions with different α’s. The proof
uses the following lemma.

Lemma 2.4.
∫∞

0
|e−uα1 − e−uα2 |ud−1du ≤ c4(min(α1, α2), d)|α1 − α2|.

Theorem 2.5. Let Xj, j = 1, 2, be a symmetric αi-stable random vectors satisfying (1).
Then the respective densities f1(·) and f2(·) satisfy

sup
x∈Rd

|f1(x)− f2(x)| ≤ c5(α1, α2, d, γ)∆1(X1,X2).



88 J. P. NOLAN

Proof. For notational simplicity, assume α1 < α2. By symmetry, ∆1(X1,X2) = |α1−α2|+
‖γ1(·)−γ2(·)‖1. Then |f1(x)−f2(x)| ≤ |f(x|α1, γ1(·))−f(x|α2, γ1(·))|+ |f(x|α2, γ1(·))−
f(x|α2, γ2(·))|. We note that f(x|α2, γ1(·)) may not be a density, because while γ1(·) is a
valid scale function for an α1-stable random vector, it may not be a valid scale function
for an α2-stable random vector. However, as functions these terms are defined by (5). For
the first term above, use the preceding Lemma to show

|f(x|α1, γ1(·))− f(x|α2, γ1(·))|

≤ (2π)−d
∫

Rd
|e−γ

α1
1 (u) − e−γ

α2
1 (u)|du

= (2π)−d
∫

S

∫ ∞
0

|e−(γ1(s)r)α1 − e−(γ1(s)r)α2 |rd−1drds

= (2π)−d
∫

S
γ1(s)−d

∫ ∞
0

|e−t
α1 − e−t

α2 |td−1dtds

≤ (2π)−d
(∫

S
γ1(s)−dds

)
c4(α1, d)|α1 − α2| ≤ k(α1, d, γ)|α1 − α2|

where k = (2π)−dγ−dArea(S)c4(α1, d)). Combining this with Corollary 2.3 yields the
result:

|f1(x)− f2(x)| ≤ k(α1, d, γ)|α1 − α2|+ c3(α2, d)γ−d−1‖γ1(·)− γ2(·)‖1
≤ c5 (|α1 − α2|+ ‖γ1(·)− γ2(·)‖1) ,

where c5 = max(k, c3γ−d−1).

Corollary 2.6. (a) If Xj ∼ S(α, 0, γj , 0; 0), j = 1, 2 are non-degenerate univariate
symmetric stable distributions, then their densities satisfy

sup
x∈R
|f1(x)− f2(x)| ≤ Γ(1/α)

απ
|γ−1

1 − γ−1
2 | ≤

Γ(1/α)
απmin(γ1, γ2)2

|γ1 − γ2|.

(b) If Xj ∼ S(αj , 0, γj , 0; 0), j = 1, 2 are non-degenerate univariate symmetric stable
distributions. Then their densities satisfy

sup
x∈R
|f1(x)− f2(x)| ≤ c5(α1, α2, 1,min(γ1, γ2)) [|α1 − α2|+ 2|γ1 − γ2|] .

As above, the first bound (a) is achieved at the origin, where fj(0) = Γ(1/α)/(απγj).

3. Non-symmetric case. To compare non-symmetric univariate stable distributions
with different α’s in a uniform way requires a continuous parameterization of stable laws.
(In the symmetric case, the 0- and 1-parameterizations coincide.) Using the standard
parameterization makes it impossible to compare non-symmetric distributions with α1 =
1 and any nearby α2 6= 1. While one can restrict the α’s to be in either (0, 1−ε] or [1+ε, 2],
this limits the generality of results and introduces constants that involve tan(πα/2), which
tend to ∞ as α→ 1.

This problem carries over to non-symmetric multivariate stable distributions: roughly
speaking when α ↑ 1, the center of the distribution shifts toward infinity in the direction
where the spectral measure has the most mass; when α ↓ 1, the center shifts away from
the direction where the spectral measure has the most mass. (See Lemma 4.1 below.)
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To prove Theorem 1.2 with constants that are bounded in a neighborhood of α = 1,
the function

η(r, α) =

{
tan(πα/2)(r − r<α>), α 6= 1,
2
π r ln |r|, α = 1,

is used, where r<α> := (sign r)|r|α is the signed power function. The function η has the
following properties.

Lemma 3.1. The function η(r, α) is jointly continuous on (−∞,∞)×(0, 2). Furthermore
for all 0 < α < 2,

(a) |η(r, α)| ≤ 2
π (1 + r2), −∞ < r <∞

(b)
∣∣∣r ∂η∂r ∣∣∣ ≤ 4

π (1 + r2), −∞ < r <∞

(c)
∣∣∣ ∂η∂α ∣∣∣ ≤ π

2 (1 + r2), −∞ < r <∞
(d) |η(r1, α)− η(r2, α)| ≤ |r1 − r2|α/2, r1, r2 ∈ [−1, 1]

The proof of Theorem 1.2 is based on the following formula for multivariate stable
densities from Theorem 1(b) (when α = 1) and Theorem 2 (when α 6= 1) of [AN]. Let
X ∼ S(α, β(·), γ(·), δ(·); 0) be d dimensional with γmin(X) > 0. Then the density of X is
given by

f(x) = f(x|α, β(·), γ(·), δ(·); 0) =
∫

S
g

(
〈x, s〉 − δ(s)

γ(s)
, α, β(s)

)
γ−d(s)ds (6)

where

g(v, α, β) = (2π)−d
∫ ∞

0

cos (vr + βη(r, α)) rd−1e−r
α

dr.

Note that g(v, α, β) = gd(v, α, β; 0), i.e. the formulas above depend on the dimension
d and are phrased in the 0-parameterization, we suppress the d and the 0 to simplify
notation. The following technical lemma gives bounds on the behavior of g.

Lemma 3.2. The function g(v, α, β) has the following properties: for all v ∈ R, 0 < α ≤ 2,
−1 ≤ β ≤ 1, d ≥ 1,

(a) |g(v, α, β)| ≤ c6(α, d) := Γ(d/α)/(α(2π)d).
(b) |(∂g/∂v)(v, α, β)| ≤ c7(α, d) := Γ((d+ 1)/α)/(α(2π)d).
(c) |(∂g/∂α)(v, α, β)| ≤ c8(α, d) := [(π/2)(Γ(d/α) + Γ((d + 2)/α)) + Γ(1/α)/(e(d + α −
1)) + Γ((d+ 3)/α)]/(α(2π)d), and c8(·, d) is decreasing in α.
(d) |(∂g/∂β)(v, α, β)| ≤ c9(α, d) := (Γ(d/α) + Γ((d+ 2)/α))/(α(2π)d).
(e) |v(∂g/∂v)(v, α, β)| ≤ c10(α, d) := [(d + (4/π))Γ(d/α) + Γ((d + α)/α) + (4/π)Γ((d +
2)/α)]/α.

Theorem 3.3. Let Xj ∼ S(αj , βj(·), γj(·), δj(·); 0), j = 1, 2 with α1 ≤ α2 and (1) holds.
Then

sup
x∈Rd

|f(x|α1, β1(·), γ1(·), δ1(·); 0)− f(x|α2, β2(·), γ2(·), δ2(·); 0)|

≤ c11(α1, γ, d)|α1 − α2|+ c12(α2, γ, d)‖β1(·)− β2(·)‖1
+c13(α2, γ, d)‖γ1(·)− γ2(·)‖1 + c14(α2, γ, d)‖δ1(·)− δ2(·)‖1.



90 J. P. NOLAN

Proof. For any x ∈ Rd,

|f(x|α1, β1(·), γ1(·), δ1(·); 0)− f(x|α2, β2(·), γ2(·), δ2(·); 0)|
≤ |f(x|α1, β1(·), γ1(·), δ1(·); 0)− f(x|α2, β1(·), γ1(·), δ1(·); 0)|

+|f(x|α2, β1(·), γ1(·), δ1(·); 0)− f(x|α2, β2(·), γ1(·), δ1(·); 0)|
+|f(x|α2, β2(·), γ1(·), δ1(·); 0)− f(x|α2, β2(·), γ2(·), δ1(·); 0)|
+|f(x|α2, β2(·), γ2(·), δ1(·); 0)− f(x|α2, β2(·), γ2(·), δ2(·); 0)|

≤
∫

S

∣∣∣∣g( 〈x, s〉 − δ1(s)
γ1(s)

, α1, β1(s)
)
− g

(
〈x, s〉 − δ1(s)

γ1(s)
, α2, β1(s)

)∣∣∣∣ γ−d1 (s)ds

+
∫

S

∣∣∣∣g( 〈x, s〉 − δ1(s)
γ1(s)

, α2, β1(s)
)
− g

(
〈x, s〉 − δ1(s)

γ1(s)
, α2, β2(s)

)∣∣∣∣ γ−d1 (s)ds

+
∫

S

∣∣∣∣g( 〈x, s〉 − δ1(s)
γ1(s)

, α2, β2(s)
)
γ−d1 (s)− g

(
〈x, s〉 − δ1(s)

γ2(s)
, α2, β2(s)

)
γ−d2 (s)

∣∣∣∣ ds
+
∫

S

∣∣∣∣g( 〈x, s〉 − δ1(s)
γ2(s)

, α2, β2(s)
)
− g

(
〈x, s〉 − δ2(s)

γ2(s)
, α2, β2(s)

)∣∣∣∣ γ−d2 (s)ds

:= A+B + C +D.

As noted in the proof of Theorem 2.5, some of the intermediate terms may not be densities,
but are defined as functions by (6). Using Lemma 3.2(c),

A ≤
∫

S
sup

α1≤α≤α2

c8(α, d)|α1 − α2|γ−dds = c11(α1, γ, d)|α1 − α2|,

where c11(α1, γ, d) = c8(α1, d)Area(S)γ−d. Using Lemma 3.2(d),

B ≤
∫

S
c9(α2, d)|β1(s)− β2(s)|γ−dds = c9(α2, d)γ−d‖β1(·)− β2(·)‖1,

so c12(α2, γ, d) = c9(α2, d)γ−d. For the next term, fix v,α, and β and consider the function
defined by h(γ) := g(v/γ, α, β)γ−d. Then

|h′(γ)| = | − (∂g/∂v)(v/γ, α, β)vγ−d−2 − dg(v/γ, α, β)γ−d−1|
≤ c10(α2, d)γ−d−2 + dc6(α2, d)γ−d−1 := c13(α2, γ, d)

where the last step uses Lemma 3.2. Hence

C ≤
∫

S
c13(α2, γ, d)|γ1(s)− γ2(s)|ds = c13(α2, γ, d)‖γ1(·)− γ2(·)‖1.

For the last term, using Lemma 3.2(b),

D ≤
∫

S
c7(α2, d)

∣∣∣∣ 〈x, s〉 − δ1(s)
γ2(s)

− 〈x, s〉 − δ2(s)
γ2(s)

∣∣∣∣ γ2(s)−dds

≤ c7(α2, d)γ−d−1

∫
S
|δ1(s)− δ2(s)|ds = c14(α2, γ, d)‖δ1(s)− δ2(s)‖1.

Note that for fixed d, the constants c6(α, d), c7(α, d), c8(α, d), and c9(α, d) are decreasing
in α, so that α1 ≤ α2 will yield smaller constants.

Theorem 1.2 follows from Theorem 3.3 with c1 = max(c11, c12, c13, c14). Also, the
univariate case follows as in the symmetric case.
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Corollary 3.4. Let Xj ∼ S(αj , βj , γj , δj ; 0), j = 1, 2 be non-degenerate univariate
stable distributions with α1 ≤ α2 and γ = min(γ1, γ2). Then their respective densities
satisfy

sup
x∈R
|f(x|α1, β1, γ1, δ1; 0)− f(x|α2, β2, γ2, δ2; 0)|

≤ c11(α1, γ, 1)|α1 − α2|+ c12(α2, γ, 1)|β1 − β2|
+c13(α2, γ, 1)|γ1 − γ2|+ c14(α2, γ, 1)|δ1 − δ2|.

We end this section by using the ideas above to define a distance from independence
τ⊥,p and a distance from sub-Gaussianity τSG(R),p. For simplicity we will consider a
symmetric stable r. vector X = (X1, . . . , Xd) ∼ S(α, 0, γ(·), 0; k). For the distance from
independence, let ej = the jth standard unit basis vector for Rd and set γj = γ(ej) = scale
of Xj . For 0 < p ≤ ∞, define

τ⊥,p =
∥∥∥γα(u)−

d∑
j=1

γαj |uj |α
∥∥∥
Lp(S,du)

.

It is clear from the proofs above that τ⊥,p = 0 for some (all) p if and only if the components
of X are independent. And τ⊥,p increases as X gets “further away” from independence.

For the second quantity, let R be a nonnegative definite d× d matrix and define

τSG(R),p = ‖γα(u)− 〈u, Ru〉α/2‖Lp(S,du).

Then τSG(R),p = 0 for some (all) p if and only if X is sub-Gaussian (SG) α-stable, with
shape matrix R. In particular, τSG(γ0I),p = 0 if and only if X is isotropic with scale
parameter γ0.

Note that unlike other measures of dependence (covariation, codifference, James or-
thogonality, etc.), τ⊥,p characterizes independence for all α. Likewise, τSG(R),p character-
izes sub-Gaussianity. In the Gaussian case with standardized components, independence
is equivalent to isotropic; in the non-Gaussian stable case the two concepts are distinct.
There are many types of dependence possible in the stable case.

Sample analogs of τ⊥,p and τSG(R),p are defined by taking sample estimates of α̂,
γ̂j , j = 1, . . . , d for the first case and α̂ and R̂ for the second, and then approximating
the integrals in the Lp norm by Riemann sums (or max if p = ∞). It is also possible
to use this approach for other specified form of dependence, including skewness in the
distribution. These ideas are explored in a related paper.

4. Closeness in terms of spectral measures. The standard way to characterize a
stable vector is in terms of an index of stability α, a spectral measure Λ (a finite Borel
measure on the unit sphere S = {s ∈ Rd : |s| = 1}), and a shift vector δ ∈ Rd. There
are multiple parameterizations possible; we describe the two that correspond to the one
dimensional parameterizations described above. We will say X ∼ S(α,Λ, δ; k), k = 0, 1 if
its joint characteristic function is

φ(u) = E exp(i〈u,X〉) = exp
(
−
∫

S
ω(〈u, s〉|α; k)Λ(ds) + i〈u, δ〉

)
,
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where

ω(u|α; k) =


|u|α[1 + i(signu)tan πα

2 (|u|1−α − 1)] k = 0, α 6= 1

|u|α[1− i(signu)tan πα
2 ] k = 1, α 6= 1

|u|+ i 2
πu ln |u| α = 1,

see Section 2.3 of [ST] and [N]. These parameterizations are identical when α = 1, and
shifts of each other when α 6= 1. The next result makes this precise and describes the
projections of each parameterization in terms of the respective univariate parameteriza-
tion.

Lemma 4.1. Let X0 ∼ S(α,Λ0, δ0; 0) and X1 ∼ S(α,Λ1, δ1; 1).

(a) X0
d= X1 if and only if Λ0 = Λ1 and

δ1 =

{
δ0 − tan(πα/2) µ, α 6= 1,

δ0, α = 1,

where µ = µ(Λ) =
∫

S s Λ(ds) =
(∫

S s1Λ(ds), . . . ,
∫

S sdΛ(ds)
)
.

(b) Let X ∼ S(α,Λ, δ0; 0)=S(α,Λ, δ1; 1). For u∈Rd, 〈u,X〉 ∼ S(α, β(u), γ(u), δ(u; 0); 0)
= S(α, β(u), γ(u), δ(u; 1); 1), where

β(u) = γ−α(u)
∫

S
〈u, s〉<α>Λ(ds),

γα(u) =
∫

S
|〈u, s〉|αΛ(ds),

δ(u; 0) =

{
〈δ0,u〉+ tan πα

2 (β(u)γ(u)− 〈 µ,u〉) , α 6= 1,

〈δ0,u〉+ 2
πβ(u)γ(u) ln γ(u)− 2

π

∫
S〈u, s〉 ln |〈u, s〉|Λ(ds), α = 1,

δ(u; 1) =

{
〈δ1,u〉, α 6= 1,

〈δ1,u〉 − 2
π

∫
S〈u, s〉 ln |〈u, s〉|Λ(ds), α = 1.

(c) The parameter functions have the following scaling properties: for r ∈ R, u ∈ Rd

β(ru) = (sign r)β(u),

γ(ru) = |r|γ(u),

δ(ru; 0) = rδ(u; 0),

δ(ru; 1) =

{
rδ(u; 1), α 6= 1,

rδ(u; 1)− 2
π (r ln |r|)〈u, µ〉, α = 1.

Let X be a random vector with all univariate projections α-stable with α < 1. Sec-
tion 2.2 of [ST] shows that there are vectors X with this property that are not jointly
stable. However, an extra simple condition does guarantee joint stability: let δ(u; 1) be
the location parameter in the 1-parameterization of the projection 〈u,X〉. If

δ(u; 1) = 〈u, δ1〉 (7)

for some δ1 ∈ Rd, then X−δ1 is strictly stable (recall α 6= 1). Hence by [ST], Section 2.1,
(7) and all one dimensional projections univariate stable implies X is jointly stable.
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Fixing a spectral measure Λ and varying α illustrates the advantages of the 0-parame-
terization and disadvantages of the 1-parameterization for our purposes. As in the uni-
variate case, the distribution is centered near δ0 in the 0-parameterization for all α,
but in the 1-parameterization it is shifted by tan(πα/2) µ as α → 1. So, as α → 1,
the location parameter functions δ(·; 1) do not converge to the α = 1 values when the
spectral measure is not symmetric. In contrast, the location functions do converge in the
0-parameterization: for a fixed spectral measure Λ, δ(·; 0) converges to the α = 1 case as
α→ 1:

tan πα
2 (β(u)γ(u)− 〈 µ,u〉)

= tan πα
2

(∫
S
〈u, s〉<α>Λ(ds)γ(u)1−α −

∫
S
〈u, s〉Λ(ds)

)
=
∫

S
tan πα

2

[
〈u, s〉<α> − 〈u, s〉

]
Λ(ds)

−tan πα
2 (1− γ(u)1−α)

∫
S
〈u, s〉<α>Λ(ds)

→ − 2
π

∫
S
〈u, s〉 ln |〈u, s〉|Λ(ds) +

2
π

ln γ(u)
∫

S
〈u, s〉Λ(ds) as α→ 1. (8)

As in the proof of Lemma 4.1, the integral in the last term is β(u)γ(u) when α = 1.
Lemma 4.1 tells how β(·), γ(·), δ(·; 0) and δ(·; 1) are defined in terms of Λ and δ0 or δ1.

Conversely, given the parameter functions, a spectral measure Λ and shift are uniquely
defined. Unfortunately, there is no explicit formula for Λ. In [NPM], a numerical method
is described to get an approximate inverse, i.e. a discrete measure Λ∗ which is close, in the
metric π∗, to Λ. If Λ and the parameter functions are known, then the shift vectors can be
recovered explicitly. Let µ = (µ1, . . . , µd) be as in Lemma 4.1 and define ν = (ν1, . . . , νd)
by νj =

∫
S sj ln |sj |Λ(ds). Substituting u = ej into Lemma 4.1 (b) shows

δ(ej ; 0) =

{
δj0 + tan πα

2

[
β(ej)γ(ej)− µj

]
, α 6= 1,

δj0 + 2
π

[
νj − β(ej)γ(ej) ln γ(ej)

]
, α = 1,

δ(ej ; 1) =

{
δj1, α 6= 1,

δj0 + 2
πν

j , α = 1,

which can be solved for δ0 or δ1.
The extended Prokhorov metric π∗ defined by (3) is defined for all finite Borel mea-

sures on a Polish space (S, ρ) and has similar properties as the regular Prokhorov metric
has on the space of probability measures. Propositions 1 and 2 of [DP] establish the fol-
lowing lemma. The statement below uses operator notation: for a Borel measure Λ and
integrable function f , Λf :=

∫
S
f(s)Λ(ds).

Lemma 4.2. Let (S, ρ) be a Polish space.

(a) π∗ metrizes vague convergence in the space of finite Borel measures on S.
(b) Let Λ1 and Λ2 be finite Borel measures on S with λj := Λj(S). Assume for notational
convenience that λ1 ≤ λ2. If f is a complex valued function on S that is bounded, |f(x)| ≤
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M <∞, and if |f(s)− f(t)| ≤ cρ(s, t)p for some 0 < p ≤ 1, then

|Λ1f − Λ2f | ≤M(λ1−p
2 + cλ1−p

1 )π∗(Λ1,Λ2)p.

In particular, if f satisfies a Lipschitz condition |f(s)− f(t)| ≤ cρ(s, t), then

|Λ1f − Λ2f | ≤M(1 + c)π∗(Λ1,Λ2).

The above result can be applied to yield pointwise bounds on the closeness of the
projection parameter functions.

Lemma 4.3. Let Xj ∼ S(α,Λj , δj ; 0), j = 1, 2 with respective parameter functions βj(·),
γj(·), and δj(·; 0). Let γ > 0 be defined by (1), then

‖β1(·)− β2(·)‖∞ ≤ c15(α, γ, λ1, λ2)π∗(Λ1,Λ2)min(1,α),

‖γ1(·)− γ2(·)‖∞ ≤ c16(α, γ, λ1, λ2)π∗(Λ1,Λ2)min(1,α),

‖δ1(·; 0)− δ2(·; 0)‖∞ ≤ |δ1 − δ2|+ c17(α, γ, λ1, λ2)π∗(Λ1,Λ2)α/2.

Proof of Theorem 1.3. Assume for notational convenience that α1 ≤ α2. On the finite
measures space S: ‖f‖1 ≤ k3‖f‖∞, where k3 =Area(S). Thus the L∞ bounds on the
parameter functions in Lemma 4.3 together with Theorem 3.3 show that for all x,

|f1(x)− f2(x)| ≤ c11|α1 − α2|+ c12‖β1(·)− β2(·)‖1 + c13‖γ1(·)− γ2(·)‖1
+c14‖δ1(·; 0)− δ2(·; 0)‖1

≤ c11|α1 − α2|+ (c12c15 + c13c16)k3π
∗(Λ1,Λ2)min(1,α2)

+c14[c17k3π
∗(Λ1,Λ2)α2/2 + k3|δ1 − δ2|]

≤ c2[|α1 − α2|+ π∗(Λ1,Λ2)α2/2 + |δ1 − δ2|],

where c2 = max(c11, (c12c15 + c13c16)k3(|λ1 − λ2| + min(λ1, λ2)), c14c17k3, k3c14) and
we have used the fact that π(·, ·) ≤ 1 for all probability measures, so π∗(Λ1,Λ2) ≤
|λ1 − λ2|+ min(λ1, λ2).

A case of particular interest is when the spectral measure is “discretized”. While this is
a special case of the above, it is possible to give a sharper result by treating it separately.
Again let (S, ρ) be a Polish space. Let {Aj}j∈J be a partition of S and for each j ∈ J ,
let sj be a point in Aj . The pair ({Aj}, {sj}) is called a tagged partition of S. For any
Borel measure Λ on S, define the discretization of Λ with respect to ({Aj}, {sj}) as

Λdisc(B) = Λdisc(B; {Aj}, {sj}) :=
∑
j∈J

1B(sj)Λ(Aj).

Λdisc is a discrete measure with mass Λ(Aj) concentrated at the point sj . Related to the
tagged partition, define the radii ρj = sups∈Aj ρ(s, sj). The following is a special case of
Lemma 4.2, it is similar to Lemma 1 in [BNR].

Lemma 4.4. Using the notations above, if f satisfies |f(s) − f(t)| ≤ cρ(s, t)p for some
0 < p ≤ 1, then

|Λf − Λdiscf | ≤ c
∑
j∈J

ρpjΛ(Aj).
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If Λ is a finite measure with ρ = supj∈J ρj <∞, then

|Λf − Λdiscf | ≤ cρpΛ(S).

We now apply this to prove a sharpened version of Theorem 1.3 for the discretization
of a spectral measure.

Theorem 4.5. Let Λ be any finite Borel measure on S and let Λdisc be its discretization
w.r.t. the tagged partition ({Aj}, {sj})mj=1. Let ρ be as in the previous lemma. Then the
densities f(x) of X ∼ S(α,Λ, δ; 0) and fdisc(x) of Xdisc ∼ S(α,Λdisc, δ; 0) satisfy

sup
x∈Rd

|f(x)− fdisc(x)| ≤ c18(α, d, γ,Λ(S))ρα/2.

Proof. Let λ = Λ(S) = Λdisc(S), α0 = min(α, 1), β(·), γ(·), δ(·; 0) be the parameter
functions for X and βdisc(·), γdisc(·), δdisc(·; 0) be the parameter functions for Xdisc. Here
γ = min(infs∈S γ(s), infs∈S γdisc(s)) and γ := max(sups∈S γ(s), sups∈S γdisc(s)) ≤ λ1/α.

The same approach and notation as in Lemma 4.3 yields the following bounds for the
distances between the parameter functions.

For the scale functions,

|γ(u)− γdisc(u)| ≤

{
α−1γ1−α|γα(u)− γαdisc(u)|, α < 1

α−1γ1−α|γα(u)− γαdisc(u)|, α ≥ 1

≤

{
α−1γ1−αραλ, α < 1

α−1γ1−αρλ, α ≥ 1
≤

{
α−1λ1/αρα, α < 1

α−1γ1−αλρ, α ≥ 1

:= c19(α, γ, λ)ρα0

For the skewness functions,

|β(u)− βdisc(u)| = |h(ψα(u, γα(u))− h(ψαdisc(u, γαdisc(u))|
≤ γ−α|ψα(u)− ψαdisc(u)|+ γ−2αγα|γα(u)− γαdisc(u)|

≤

{
γ−α2ραλ+ γ−2αγαc19ρ, α < 1

γ−ααρλ+ γ−2αλc19ρ, α ≥ 1

:= c20(α, γ, λ)ρα0 .

For the location functions, |δ(u; 0) − δdisc(u; 0)| ≤ A + B, where A = |
∫
η(〈u, s〉)Λ −∫

η(〈u, s〉)Λdisc| ≤ λρα/2 and

B = |η1(1/γ(u))ψα(u)− η1(1/γdisc(u))ψαdisc(u)|

≤

|η1(1/γ(u))|2λρα + 2
πγ
−α|γ(u)− γdisc(u)|

|η1(1/γ(u))|αλρ+ 2
πγ
−α|γ(u)− γdisc(u)|

≤


[
max(|η1(1/γ)|, |η1(λ−1/α)|)2λ+ 2

πγ
−αc19

]
ρα[

max(|η1(1/γ)|, |η1(λ−1/α)|)αλ+ 2
πγ
−αc19

]
ρ

:= c21(α, γ, λ)ρα0 .
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Thus |δ(u; 0)− δdisc(u; 0)| ≤ λρα/2 + c21ρ
α0 . Hence, by Theorem 3.3, with k = Area(S),

|f(x)− fdisc(x)| ≤ c12‖β(·)− βdisc(·)‖1 + c13‖γ(·)− γdisc(·)‖1
+c14‖δ(·; 0)− δdisc(·; 0)‖1

≤ k(c12c20ρ
α0 + c13c19ρ

α0 + c14(λρα/2 + c21ρ
α0))

≤ k((c12c20 + c13c19 + c14c21)λα0−α/2 + c14λ)ρα/2

:= c18(α, d, γ,Λ(S))ρα/2.

If Λ is symmetric, choosing a symmetrical partition makes both X and Xdisc symmet-
ric around δ, in which case β(u) = βdisc(u) = 0 and δ(·; 0) = δdisc(·; 0), so Corollary 2.3
shows

sup
x
|f(x)− fdisc(x)| ≤ c3γ−d−1‖γ(·)− γdisc(·)‖1 ≤ c3γ−d−1c19ρ

min(α,1) (9)

To get an idea of how many terms are needed in a discrete approximating measure,
consider the two dimensional case where Λ is uniform measure with total mass λ. Take
the symmetric uniform partition Aj = {(cos θ, sin θ) : (2j − 3)π/n ≤ θ < (2j − 1)π/n},
j = 1, . . . , 2n, with tags sj the midpoint of the arc Aj . Then some approximations and
numerical bounds show ρ ≤ π/n, γ ≈ 0.85(.75)αλ ≥ λ/2 and by (9)

sup
x∈Rd

|f(x)− fdisc(x)| ≤ c3(α, 2)γ−d−1c19(α, γ, λ)ρmin(α,1)

≤


(

Γ(2/α)
α2

)
λ1/α

(
π
n

)α
, α < 1,

λπ
n , α ≥ 1.

This bound is not very sharp for two reasons: non-optimal constants in the proofs, and
the fact that bounds on the maximum difference between parameter functions were used,
whereas the exact difference between two stable densities at any point is the difference
of an average of expressions involving the parameter functions (see Theorem 2.1 in the
symmetric case and (6) in the non-symmetric case).

We end with a few general comments. If it is known that |α − 1| ≥ c > 0, then it is
possible to replace the α/2 power of π∗ with the min(α, 1) power in Lemma 3.1. However,
the constants involved in such an expression seem to be unbounded as α → 1. Also, if
α → 0 or γ → 0, many of the constants tend to ∞. The reason for this is that the
densities of α-stable laws have very sharp peaks when either quantity tends to 0. Finally,
these arguments are based on the form of the stable characteristic function and it is not
clear how to measure closeness to a multivariate stable law for a random vector in its
domain of attraction.

5. Proofs of lemmas. This section contains the proofs of the technical lemmas used
above. To save space, some calculus details are left out of these arguments.

Proof of Lemma 2.4. For notational simplicity, assume α1 < α2. For fixed u > 0, set
h(α) = exp(−uα). Then h′(α) = −(lnu)uα exp(−uα). For u > 0 and 0 < α1 ≤ α ≤
α2 ≤ 2, |u lnu| = |η(u, 1)| ≤ (2/π)(1 + u2) (Lemma 3.1(a)) and uα−1 exp(−uα) ≤
uα1−1 exp(−uα1), and thus |h′(α)| ≤ (2/π)(1 + u2)uα1−1 exp(−uα1). Thus |h(α1) −
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h(α2)| ≤ (2/π)(1 + u2)uα1−1 exp(−uα1)|α1 − α2|, and therefore

A =
∫ ∞

0

|e−u
α1 − e−u

α2 |ud−1du

≤ (2/π)|α1 − α2|
∫ ∞

0

(1 + u2)ud+α1−2e−u
α1
du = c4(α1, d)|α1 − α2|,

where c4(α1, d) = 2/(α1π) (Γ((d+ α1 − 1)/α1) + Γ((d+ α1 + 1)/α1)).
Proof of Lemma 3.1. Set k(α) = (1 − α)tan(πα/2) if α 6= 1; k(1) = 2/π, and note
k(α) ≤ k(1) and k(α)→ k(1) as α→ 1. For r > 0, define

η1(r, α) =
η(r, α)
r

=

{
tan πα

2 (1− rα−1), α 6= 1,

(2/π) ln r, α = 1.

For any r > 0, α 6= 1,

η1(r, α) = k(α)
1− rα−1

1− α
→ k(1)

d

dα
rα−1

∣∣∣∣
α=1

=
2
π

ln r

as α → 1, showing continuity of η1 in α. Since η(r, α) = rη1(|r|, α) for all r and all α,
(η(0, α) := 0), joint continuity of η follows.
(a) Differentiation shows that for all 0 < α < 2 and all r > 0,

∂η1/∂r = k(α)rα−2, (10)

∂η/∂r = ∂(rη1)/∂r = η1(r, α) + k(α)rα−1,

r∂η/∂r = η(r, α) + k(α)rα. (11)

For all α, η(0, α) = η(1, α) = 0, with ∂η/∂r < 0 for r < r∗ and ∂η/∂r > 0 for r > r∗,
where r∗ ∈ (0, 1) is the unique root of ∂η/∂r. It can be found explicitly:

r∗ = r∗(α) =

{
α1/(1−α), α 6= 1,

e−1, α = 1.

Some calculation shows |η(r∗, α)| ≤ 1/2 for all α ∈ (0, 2) and thus for all 0 ≤ r ≤ 1 and
all 0 < α < 2, |η(r, α)| ≤ 1/2. For r ≥ 1, we claim (1 − rα−1)/(1 − α) ≤ r − 1 for all
α 6= 1. To see this, set h(r) = (r − 1)− (1− rα−1)/(1− α), then h(1) = 0 and h′(r) > 0
for all r ≥ 1 and all α 6= 1. Hence

η(r, α) = k(α)r(1− rα−1)/(1− α) ≤ k(1)r(r − 1).

When α = 1, ln r ≤ r − 1 for all r > 0, so we also have η(r, 1) ≤ k(1)r(r − 1). Thus for
all r ≥ 1 and all α, η(r, 1) ≤ (2/π)r(r − 1). Adding the 0 ≤ r ≤ 1 bound and the r ≥ 1
bound, we conclude part (a) of the lemma:

|η(r, α)| ≤ 1/2 + (2/π)r(r − 1) ≤ (2/π)(1 + r2).

(b) Using (11), the above bound on |η(r, α)| and a simple bound for |r|α: |r∂η/∂r| ≤
|∂η/∂r|+ k(a)|r|α ≤ (2/π)(1 + r2) + (2/π)(1 + r2) = (4/π)(1 + r2).
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(c) When α 6= 1,

∂η

∂α
(r, α) = sec2(πα/2)

[π
2

(r − rα)
]
− tan πα

2 r
α ln r

= sec2(πα/2)
[π

2
(r − rα)− cos(πα/2) sin(πα/2)rα ln r

]
=

1
2

sec2(πα/2) [π(r − rα)− sin(πα)rα ln r]

Define (∂η/∂α)(r, 1) = (1/π)r(ln r)2 by continuity: for α near 1, sec(πα/2) ≈ π(1 − α),
sin(πα) ≈ (π/2)(1− α), and 1− rα−1 ≈ (1− α) ln r − (1/2)((1− α) ln r)2.

For all 0 < α ≤ 2 and 0 ≤ r ≤ 1, |(∂η/∂α)(r, α)| ≤ |(∂η/∂α)(r, 0)| = (π/2)(1 − r) ≤
(π/2), while for r ≥ 1 |(∂η/∂α)(r, α)| ≤ |(∂η/∂α)(r, 2)| = (π/2)(r2−r) ≤ (π/2)r2. Hence
for all r ≥ 0 and all 0 < α ≤ 2, |(∂η/∂α)(r, α)| ≤ (π/2)(1 + r2).
(d) Since η(·, α) is odd, and has maximal rate of change on [−1, 1] at the origin, |η(r1, α)−
η(r2, α)| ≤ |η(|r1 − r2|/2, α) − η(−|r1 − r2|/2, α)| = 2|η(|r1 − r2|/2, α)|. On r ∈ [0, 1],
|η(r, α)| ≤ (4/(πe))rα/2 (equality is achieved at α = 1), so

|η(r1, α)− η(r2, α)| ≤ 2(4/(πe))(|r1 − r2|/2)α/2 ≤ |r1 − r2|α/2.

Proof of Lemma 3.2. (a) |g(v, α, β)| ≤ (2π)−d
∫∞

0
rd−1e−r

α

dr = g(0, α, 0) = c6(α, d).
(b) For any α, ∣∣∣∣∂g∂v

∣∣∣∣ =
∣∣∣∣(2π)−d

∫ ∞
0

− sin(vr + βη(r, α))rde−r
α

dr

∣∣∣∣
≤ (2π)−d

∫ ∞
0

rde−r
α

dr = c7(α, d).

(c) For 0 ≤ r ≤ 1, rd+α−1 ln r ≤ k := (1/(e(d+α−1)), while for r > 1, rd+α−1 ln r ≤ rd+α;
hence for all r ≥ 0, rd+α−1 ln r ≤ k + rd+α. Using Lemma 3.1(c) to bound |∂η/∂α| and
the above shows∣∣∣∣ ∂g∂α

∣∣∣∣ = (2π)−d
∣∣∣∣ ∫ ∞

0

[− sin(vr + βη(r, α))β(∂η/∂α) + cos(vr + βη(r, α))

×(−rα ln r)]rd−1e−r
α

dr

∣∣∣∣
≤ (2π)−d

∫ ∞
0

[
(π/2)(1 + r2)rd−1 + k + rd+2

]
e−r

α

dr

= α−1(2π)−d [(π/2)(Γ(d/α) + Γ((d+ 2)/α)) + kΓ(1/α) + Γ((d+ 3)/α)] .

(d) For any α, Lemma 3.1(a) shows∣∣∣∣ ∂g∂β
∣∣∣∣ =

∣∣∣∣(2π)−d
∫ ∞

0

− sin(vr + βη(r, α))η(r, α)rd−1e−r
α

dr

∣∣∣∣
≤ (2π)−d

∫ ∞
0

(1 + r2)rd−1e−r
α

dr = c9(α, d).

(e) To get a bound on v(∂gd/∂v), start with

d

dr
cos(vr + βη(r, α)) = − sin(vr + βη(r, α)) [v + β∂η/∂r] .
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Solving this for −v sin(vr + βη(r, α)) and substituting in the first integral below gives

v
∂gd
∂v

(v, α, β) =
∫ ∞

0

−v sin(vr + βη(r, α))rde−r
α

dr

=
∫ ∞

0

d

dr
cos(vr + βη(r, α))rde−r

α

dr

+ β

∫ ∞
0

sin(vr + βη(r, α))
∂η

∂r
rde−r

α

dr

= I1 + I2.

To bound I1, integrate by parts

I1 =
∫ ∞

0

[
d

dr
cos(vr + βη(r, α))

]
rde−r

α

dr

= cos(vr + βη(r, α))rde−r
α
∣∣∣∞
0
−
∫ ∞

0

cos(vr + βη(r, α))
(
drd−1 − αrd+α−1

)
e−r

α

dr

= 0− d
∫ ∞

0

cos(vr + βη(r, α))rd−1e−r
α

dr + α

∫ ∞
0

cos(vr + βη(r, α))rd+α−1e−r
α

dr,

|I1| ≤ d
∫ ∞

0

rd−1e−r
α

dr + α

∫ ∞
0

rd+α−1e−r
α

dr = (d/α)Γ(d/α) + Γ((d+ α)/α).

To bound I2, use Lemma 3.1(b):

|I2| ≤ 1 ·
∫ ∞

0

∣∣∣∣r ∂η∂r
∣∣∣∣ rd−1e−r

α

dr

≤
∫ ∞

0

4
π

(1 + r2)rd−1e−r
α

dr =
4
απ

(Γ(d/α) + Γ((d+ 2)/α)) .

Hence v∂g/∂v(v, α, β) ≤ c10(α, d) where c10(α, d) = (d/α)Γ(d/α)+Γ((d+α)/α)+4/(απ)·
(Γ(d/α) + Γ((d+ 2)/α)) is independent of β and v.

Proof of Lemma 4.1. (a) When α = 1, there is nothing to prove. When α 6= 1, ω(u|α; 0) =
ω(u|α; 1) + itan(πα/2)u, so

−
∫

S
ω(〈u, s〉; 0)Λ0(ds) + i〈u, δ0〉

= −
∫

S

(
ω(〈u, s〉; 1) + itan πα

2 (〈u, s〉)
)

Λ0(ds) + i〈u, δ0〉

= −
∫

S
ω(〈u, s〉; 1)Λ0(ds) + i

(
−tan πα

2

∫
S
〈u, s〉Λ0(ds) + 〈u, δ0〉

)
= −

∫
S
ω(〈u, s〉; 1)Λ0(ds) + i〈u,−tan πα

2 µ + δ0〉.

If Λ0 = Λ1 and δ1 = −tan πα
2 µ + δ0, then X0 and X1 have the same characteristic

function, so X0
d= X1. Conversely, if X0

d= X1, then they have the same characteristic
functions, which requires that δ1 is related to δ0 as above and by the uniqueness of
spectral measures, the family {〈u, ·〉,u ∈ Rd} is a separating family, and hence Λ0 = Λ1.
(b) The formulas for β(·), γ(·) and δ(·; 1) are from Example 2.3.4 of [ST]. The formulas
for δ(·; 0) follow from (a) and the relation for univariate parameterizations (see [N]): if
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univariate Y ∼ S(α, β, γ, δ0; 0) = S(α, β, γ, δ1; 1), then

δ1 =

{
δ0 − tan(πα/2)βγ, α 6= 1,

δ0 − 2
πβγ ln γ, α = 1.

(c) Substituting ru into the definitions and simplifying yields these formulas. When α = 1,
use the fact that β(u)γ(u) =

∫
S〈u, s〉

<1>Λ(ds) = 〈u, µ〉.

Proof of Lemma 4.3. For notational convenience, assume λ1 ≤ λ2 and set α0 = min(1, α).
First consider the term involving the scale functions. For any u ∈ S, the function f(s) :=
|〈u, s〉|α is bounded by 1 and for s, t ∈ S satisfies

|f(s)− f(t)| ≤

{
|s− t|α, α < 1,

α|s− t|, α ≥ 1.

Lemma 4.2(b) applied to this f shows that uniformly in u

|γα1 (u)− γα2 (u)| ≤

{
(λ1−α

1 + λ1−α
2 )π∗(Λ1,Λ2)α, α < 1,

(1 + α)π∗(Λ1,Λ2), α ≥ 1.
(12)

Define γ = max(sups∈S γ1(s), sups∈S γ2(s)), so γj(u) ∈ [γ, γ], j = 1, 2. On the interval
[γα, γα], the derivative of the function x 7→ x1/α has derivative bounded by α−1γ1−α if
α < 1 and by α−1γ1−α if α ≥ 1, so we conclude that uniformly in u,

|γ1(u)− γ2(u)| ≤ c∗16(α, γ, γ, λ1, λ2)π∗(Λ1,Λ2)α0 ,

with

c∗16 =

{
α−1γ1−α(λ1−α

1 + λ1−α
2 ), α < 1,

α−1γ1−α(1 + α), α ≥ 1.

To minimize the number of parameters, eliminate the dependence on γ: γαj (u)≤
∫

1Λj(ds)
≤ λj , so γ ≤ max(λ1, λ2)1/α. Thus c16(α, γ, λ1, λ2) = c∗16(α, γ,max(λ1, λ2)1/α) proves the
result for the scale functions.

For the skewness term, adapt the previous argument to the signed power. For x, y ∈
[−R,R],

|x<α> − y<α>| ≤

{
2|x− y|α, α < 1,

αRα−1|x− y|, α ≥ 1.

Then for any s, t,u ∈ S,

|〈u, s〉<α> − 〈u, t〉<α>| ≤

{
2|s− t|α, α < 1,

α|s− t|, α ≥ 1.

Mimic the argument above for ψαj (u) :=
∫

S〈u, s〉
<α>Λj(ds) to show

|ψα1 (u)− ψα2 (u)| ≤ k1(α, λ1, λ2)π∗(Λ1,Λ2)α0 , (13)

where

k1(α, λ1, λ2) =

{
2(λ1−α

1 + λ1−α
2 ), α < 1,

(1 + α), α ≥ 1.
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Note that ψj(u) ∈ [−γ, γ]. On the rectangle {(v, w) : −γα ≤ v ≤ γα, γα ≤ w ≤ γα},
the function h(v, w) = v/w satisfies |∂h/∂v| ≤ γ−α and |∂h/∂w| ≤ γ−2αγα. Thus

|β1(u)− β2(u)|
= |h(ψα1 (u), γα1 (u))− h(ψα2 (u), γα2 (u))|
≤ γ−α|ψα1 (u)− ψα2 (u)|+ γ−2αγα|γα1 (u)− γα2 (u)|

≤

{(
γ−α2(λ1−α

1 + λ1−α
2 ) + γ−2αγα(λ1−α

1 + λ1−α
2 )

)
π∗(Λ1,Λ2)α, α < 1

(γ−α + γ−2αγα)(1 + α)π∗(Λ1,Λ2), α ≥ 1

=: c∗15(α, γ, γ, λ1, λ2)π∗(Λ1,Λ2)α0 .

To eliminate the value of γ from this constant, and the assumption that λ1 ≤ λ2, and we
can set c15(α, γ, λ1, λ2) = c∗15(α, γ,max(λ1, λ2)1/α,min(λ1, λ2),max(λ1, λ2)).

For the shift term, we have to consider the α 6= 1 and the α = 1 case separately.
When α 6= 1, using (8)

|δ1(u; 0)− δ2(u; 0)|
=
∣∣〈δ1 − δ2,u〉 − tan πα

2 (β1(u)γ1(u)− 〈 µ1,u〉)
+tan πα

2 (β2(u)γ2(u)− 〈 µ2,u〉)
∣∣

≤ |δ1 − δ2|

+
∣∣∣∣∫

S
tan πα

2

[
〈u, s〉<α> − 〈u, s〉

]
Λ1(ds)

−
∫

S
tan πα

2

[
〈u, s〉<α> − 〈u, s〉

]
Λ2(ds)

∣∣∣∣
+
∣∣∣∣tan πα

2 (1− γ1(u)1−α)
∫

S
〈u, s〉<α>Λ1(ds)

−tan πα
2 (1− γ2(u)1−α)

∫
S
〈u, s〉<α>Λ2(ds)

∣∣∣∣
:= |δ1 − δ2|+A+B.

Using Lemma 4.2 with the bounds on η(·, α) in Lemma 3.1 shows

A =
∣∣∣∣∫ η(〈u, s〉)Λ1(ds)−

∫
η(〈u, s〉)Λ2(ds)

∣∣∣∣ ≤ 2(λ1−α/2
2 + 1 · λ1−α/2

1 )π∗(Λ1,Λ2)α/2.

To bound B, use η1(·) = η1(·, α) from Lemma 3.1 with Lemma 4.2 and (13) to show

B =
∣∣∣∣η1(1/γ1(u))

∫
〈u, s〉<α>Λ1(ds)− η1(1/γ2(u))

∫
〈u, s〉<α>Λ2(ds)

∣∣∣∣
=
∣∣∣∣η1(1/γ1(u))

(∫
〈u, s〉<α>Λ1(ds)−

∫
〈u, s〉<α>Λ2(ds)

)
+ (η1(1/γ1(u))− η1(1/γ2(u)))

∫
〈u, s〉<α>Λ2(ds)

∣∣∣∣
≤ |η1(1/γ1(u))|k1π

∗(Λ1,Λ2)α0 +
2
π
γ2−α

∣∣∣∣ 1
γ1(u)

− 1
γ2(u)

∣∣∣∣λ2
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≤ k1 max(|η1(1/γ)|, |η(1/γ)|)π∗(Λ1,Λ2)α0 +
2
π
γ−αλ2|γ1(u)− γ2(u)|

≤
(
k1 max(|η1(1/γ)|, |η(max(λ1, λ2)−1/α)|) +

2λ2c16

πγα

)
π∗(Λ1,Λ2)α0 .

Since π∗(Λ1,Λ2) ≤ k2 := |λ1 − λ2|+ min(λ1, λ2), π∗(Λ1,Λ2)α0 ≤ k
α0−α/2
2 π∗(Λ1,Λ2)α/2.

Hence |δ1(u; 0)− δ2(u; 0)| ≤ |δ1 − δ2|+ c17π
∗(Λ1,Λ2)α/2.

Proof of Lemma 4.4. Using the fact that {Aj} partitions S,

|Λf − Λdiscf | =
∣∣∣∣∫
S

f(t)Λ(dt)−
∫
S

f(t)Λdisc(dt)
∣∣∣∣

=
∣∣∣∣∑
j∈J

∫
Aj

f(t)Λ(dt)−
∑
j∈J

f(sj)Λ(Aj)
∣∣∣∣

≤
∑
j∈J

∣∣∣∣∫
Aj

f(t)Λ(dt)−
∫
Aj

f(sj)Λ(dt)
∣∣∣∣

≤
∑
j∈J

∫
Aj

|f(t)− f(sj)|Λ(dt) ≤ c
∑
j∈J

ρpjΛ(Aj).

The case where Λ is finite follows directly.
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