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Abstract. We give a survey of our recent results on homological properties of Köthe algebras,

with an emphasis on biprojectivity, biflatness, and homological dimension. Some new results on

the approximate contractibility of Köthe algebras are also presented.

1. Introduction. From the Banach algebra theory point of view, Köthe algebras are
weighted locally convex analogues of `1 with pointwise multiplication. The underlying
locally convex spaces of Köthe algebras (Köthe sequence spaces) are classical objects,
which have been studied since the 1940’s [15] and are often used to provide various
examples and counterexamples in the theory of topological vector spaces. The idea to
consider Köthe spaces as algebras under pointwise multiplication is apparently due to
S. J. Bhatt and G. M. Deheri [1]. The study of homological properties of Köthe algebras
was started by the author [21].

The present paper is organized as follows. In Sections 2 and 3, we recall the definitions
and give some basic examples of Köthe spaces and Köthe algebras. In Section 4, we give a
brief outline of Topological Homology, i.e., the homology theory for topological algebras.
In Section 5, we introduce and discuss four conditions (denoted (U), (N), (B), and (M))
on Köthe sets. These conditions are then applied to computing homological dimensions
of Köthe algebras in Section 6. A detailed exposition of the results of Sections 5 and 6
(including proofs) can be found in [21, 22, 23, 24]. Section 7 contains some new results
on the approximate contractibility of Köthe algebras. Among other things, we show that
a nuclear biprojective Köthe algebra is approximately contractible. Finally, in Section 8
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we formulate some open problems related to homological properties of Fréchet algebras
and, in particular, of Köthe algebras.

2. Köthe spaces. Let I be any set, and let P be a set of nonnegative real-valued
functions on I. For p ∈ P , we will write pi for p(i). Recall that P is a Köthe set on I if
the following axioms are satisfied:

∀ i ∈ I ∃ p ∈ P : pi > 0 ; (P1)

∀ p, q ∈ I ∃ r ∈ P : max{pi, qi} ≤ ri ∀ i ∈ I . (P2)

Given a Köthe set P , the Köthe space λ(P ) is defined as follows:

λ(P ) =
{
x = (xi) ∈ CI : ‖x‖p =

∑
i

|xi|pi <∞ ∀ p ∈ P
}
.

This is a complete locally convex space with the topology determined by the family of
seminorms {‖ · ‖p : p ∈ P}. Clearly, λ(P ) is a Fréchet space if and only if P contains an
at most countable cofinal subset.

Convention. To be definite, we will always assume that P is countable, although some
of our results hold without this assumption.

Let us give some standard examples of Köthe spaces. In all these examples, we set
I = N, so that elements of P and of λ(P ) are sequences.

Example 2.1. If P consists of only one sequence (1, 1, . . .), then λ(P ) = `1.

Example 2.2. For each n ∈ N set p(n) = (1, . . . , 1, 0, . . .) with 1 repeated n times, and
let P = {p(n) : n ∈ N}. Then λ(P ) = CN, the space of all complex sequences with the
topology of pointwise convergence. More generally, if I is any set and P is the family of
all nonnegative functions on I with finite support, then λ(P ) = CI .

Example 2.3. For each n ∈ N set p(n) = (1n, 2n, . . . , kn, . . .), and let P = {p(n) :
n ∈ N}. The resulting Köthe space λ(P ) is denoted by s and is called the space of rapidly
decreasing sequences.

Example 2.4. For each n ∈ N set p(n) = (n1, n2, . . . , nk, . . .), and let P = {p(n) : n ∈ N}.
It is easy to show that the resulting Köthe space λ(P ) is topologically isomorphic to the
space O(C) of entire functions with the topology of compact convergence. Explicitly,
the isomorphism O(C) → λ(P ) takes each entire function to the sequence of its Taylor
coefficients at 0.

Example 2.5. This example generalizes Examples 2.3 and 2.4. Fix a real number 0 <
R ≤ ∞ and a nondecreasing sequence α = (αn)n∈N of positive numbers with limn αn =
∞. Let P = {(rαk)k∈N : 0 < r < R}. The resulting Köthe space λ(P ) is denoted by
ΛR(α) and is called a power series space (of finite type if R < ∞, and of infinite type if
R = ∞). Of course, the above Köthe set P is uncountable, but we can easily make it
countable (e.g., by considering only rational r) without changing λ(P ).

It is easy to see that if αn = log n, then Λ∞(α) = s (see Example 2.3). If αn = n,
then ΛR(α) is topologically isomorphic to O(DR), the space of holomorphic functions on
the disk DR = {z ∈ C : |z| < R} (see Example 2.4).
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3. Köthe algebras. Throughout, all vector spaces and algebras are assumed to be
over the field C of complex numbers. All algebras are assumed to be associative, but
not necessarily unital. The unitization of an algebra A is denoted by A+. By a Fréchet
algebra we mean a complete metrizable locally convex algebra (i.e., a topological algebra
whose underlying space is a Fréchet space). A locally m-convex algebra is a topological
algebra A whose topology can be defined by a family of submultiplicative seminorms (i.e.,
seminorms ‖ ·‖ satisfying ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A). Note that, unlike some authors,
we do not require Fréchet algebras to be locally m-convex.

Given a set I, CI is clearly an algebra under pointwise multiplication. It is natural to
ask when λ(P ) is a subalgebra of CI , and when it is a Fréchet algebra (under its canonical
topology). To answer these questions, let us introduce some notation.

Notation. Let P , Q be Köthe sets on I. We say that P is dominated by Q and write
P ≺ Q if for each p ∈ P there exist q ∈ Q and C > 0 such that pi ≤ Cqi for all i ∈ I (we
write p ≤ Cq for brevity). This is equivalent to say that λ(Q) ⊂ λ(P ), and the embedding
of λ(Q) into λ(P ) is continuous. In fact, since P and Q are assumed to be countable, it is
easy to show that P ≺ Q if and only if λ(Q) ⊂ λ(P ) (the continuity of the embedding will
then hold automatically). If P ≺ Q and Q ≺ P , then we say that P and Q are equivalent
and write P ∼ Q. This means exactly that λ(P ) = λ(Q) topologically, or, equivalently,
that λ(P ) = λ(Q) as sets. The product P ·Q is defined to be the Köthe set consisting of
all functions pq = (piqi)i∈I , where p ∈ P and q ∈ Q. Finally, we let P 2 = P · P , which is
equivalent to the Köthe set {p2 = (p2

i )i∈I : p ∈ P}.

Proposition 3.1. For a Köthe set P , the following conditions are equivalent:

(i) λ(P ) is a subalgebra of CI ;
(ii) λ(P ) is a subalgebra of CI and is a Fréchet algebra under its canonical topology;
(iii) P ≺ P 2.

Proof. (i) ⇒ (iii). Since P is countable, we may assume that P = {p(k) : k ∈ N} and
that p(k) ≤ p(k+1) for all k. Assume, towards a contradiction, that P is not dominated
by P 2. Then there exists m ∈ N such that there are no k ∈ N and C > 0 satisfying
p(m) ≤ C(p(k))2. Without loss of generality, we may assume that m = 1. Then for each
k ∈ N there exists ik ∈ I such that

p
(1)
ik

> k4(p(k)
ik

)2. (1)

We may also assume that ik 6= il for k 6= l. Note that (1) implies that p(1)
ik

> 0 and hence

p
(k)
ik

> 0 for all k. Now define a function x = (xi)i∈I on I by

xi =


1

k2p
(k)
ik

if i = ik,

0 if i /∈ {i1, i2, . . .}.

For each l ∈ N we have∑
k≥l

|xik |p
(l)
ik
≤
∑
k≥l

|xik |p
(k)
ik

=
∑
k≥l

1
k2

<∞,
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so that x ∈ λ(P ). On the other hand, (1) implies that∑
i

|x2
i |p

(1)
i =

∑
k

|x2
ik
|p(1)
ik

=
∑
k

p
(1)
ik

k4(p(k)
ik

)2
=∞,

i.e., x2 /∈ λ(P ). Thus λ(P ) is not a subalgebra of CI , which contradicts (i).
(iii) ⇒ (ii). Given p ∈ P , find q ∈ P and C > 0 such that p ≤ Cq2. Then for each

a, b ∈ λ(P ) we have

‖ab‖p =
∑
i

|aibi|pi ≤ C
∑
i

|ai||bi|q2
i ≤ C‖a‖q‖b‖q <∞. (2)

Therefore ab ∈ λ(P ), i.e., λ(P ) is a subalgebra of CI . The continuity of the multiplication
on λ(P ) is immediate from (2).

(ii)⇒ (i). This is clear.

Remark 3.2. If P is arbitrary (i.e., not necessarily countable), then condition (iii) is
equivalent to the assertion that λ(P ) is a subalgebra of CI and is a topological algebra
with jointly continuous multiplication.

Definition 3.3. Algebras of the form λ(P ) (where P is a Köthe set satisfying P ≺ P 2)
are called Köthe algebras.

Remark 3.4. In many natural cases (see examples below), we have pi ∈ {0} ∪ [1,+∞)
for all p ∈ P, i ∈ I. This implies that pi ≤ p2

i , so that P ≺ P 2, and λ(P ) is a Köthe
algebra. Moreover, the seminorms ‖ · ‖p are submultiplicative in this case, and so λ(P ) is
locally m-convex.

Examples 3.5. Clearly, `1 and CI are Köthe algebras. The power series space ΛR(α) is
a Köthe algebra if and only if R ≥ 1. Moreover, if R > 1, then ΛR(α) is locally m-convex.
In particular, identifying the space O(DR) (for R ≥ 1) with ΛR({n}) (see Example 2.5),
we see that O(DR) becomes a Fréchet algebra under the “componentwise” product of
the Taylor expansions of holomorphic functions (the Hadamard product; see [25]). The
resulting topological algebra is denoted by H (DR) and is called the Hadamard algebra.

4. Topological Homology. Now let us briefly recall some basic notions of Topological
Homology, i.e., the homology theory for locally convex topological algebras. This theory
was developed in the early 1970’s by A. Ya. Helemskii (see, e.g., [8]) in the special case
of Banach algebras. A few years later a similar theory was independently discovered by
R. Kiehl and J. L. Verdier [14] and by J. L. Taylor [27] in the context of more general
topological algebras. For details, we refer to Helemskii’s monograph [10].

To be definite, we will work only with Fréchet modules over Fréchet algebras. Let A be
a Fréchet algebra. A left Fréchet A-module is a left A-module X endowed with a Fréchet
space topology in such a way that the action A × X → X is continuous. Left Fréchet
A-modules and their continuous morphisms form a category denoted by A-mod. Given
X,Y ∈ A-mod, the space of morphisms from X to Y will be denoted by hA(X,Y ). The
categories mod-A and A-mod-A of right Fréchet A-modules and of Fréchet A-bimodules
are defined similarly.
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If X is a right Fréchet A-module and Y is a left Fréchet A-module, then their A-module
tensor product X ⊗̂A Y is defined to be the quotient (X ⊗̂Y )/N , where N ⊂ X ⊗̂Y is
the closed linear span of all elements of the form x ·a⊗y−x⊗a ·y (x ∈ X, y ∈ Y , a ∈ A).
As in pure algebra, the A-module tensor product can be characterized by the universal
property that, for each Fréchet space E, there is a natural bijection between the set of
all continuous A-balanced bilinear maps from X × Y to E and the set of all continuous
linear maps from X ⊗̂A Y to E.

A chain complex C• = (Cn, dn)n∈Z in A-mod is admissible if it splits in the category
of topological vector spaces, i.e., if it has a contracting homotopy consisting of continuous
linear maps. Geometrically, this means that C• is exact, and Ker dn is a complemented
subspace of Cn for each n.

Let Vect denote the category of vector spaces and linear maps. A left Fréchet A-module
P is projective if the functor hA(P,−) : A-mod→ Vect is exact in the sense that it takes
admissible sequences of Fréchet A-modules to exact sequences of vector spaces. A left
Fréchet A-module F is flat if the tensor product functor (−) ⊗̂A F : mod-A → Vect is
exact in the same sense as above. It is known that every projective Fréchet module is
flat.

A resolution of X ∈ A-mod is a pair (P•, ε) consisting of a nonnegative chain complex
P• in A-mod and a morphism ε : P0 → X making the sequence P•

ε−→ X → 0 into an
admissible complex. The length of P• is the minimum integer n such that Pi = 0 for
all i > n, or ∞ if there is no such n. If all the Pi’s are projective (respectively, flat),
then (P•, ε) is called a projective resolution (respectively, a flat resolution) of X. It is a
standard fact that A-mod has enough projectives, i.e., each left Fréchet A-module has a
projective resolution. The same is true of mod-A and A-mod-A.

The projective homological dimension of X ∈ A-mod is the minimum integer n =
dhAX ∈ Z+ ∪ {∞} with the property that X has a projective resolution of length n.
Similarly, the weak homological dimension of X ∈ A-mod is the minimum integer n =
w.dhAX ∈ Z+ ∪ {∞} with the property that X has a flat resolution of length n. Heuris-
tically, the projective (respectively, flat) dimension measures how far X is from being
projective (respectively, flat). In particular, dhAX = 0 if and only if X is projective, and
w.dhAX = 0 if and only if X is flat. Since each projective module is flat, we clearly have
w.dhAX ≤ dhAX.

Given a Fréchet algebra A, the global dimension and the weak global dimension of A
are defined by

dgA = sup{dhAX |X ∈ A-mod}, w.dgA = sup{w.dhAX |X ∈ A-mod}.

The bidimension and the weak bidimension of A are defined by

dbA = dhA-AA+, w.dbA = w.dhA-AA+,

where the subscript “A-A” means that we work in the category A-mod-A. We clearly have
w.dgA ≤ dgA and w.dbA ≤ dbA. It is also true (but less obvious) that dgA ≤ dbA
and w.dgA ≤ w.dbA.

To complete our short introduction to Topological Homology, let us recall some “ho-
mological triviality” conditions for Fréchet algebras. By definition, a Fréchet algebra A
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is biprojective (respectively, biflat) if A is projective (respectively, flat) in A-mod-A. Sim-
ilarly, A is contractible (respectively, amenable) if A+ is projective (respectively, flat) in
A-mod-A. In fact, there are many other equivalent definitions of the above notions. For
example, it is immediate from the definition of db that A is contractible if and only if
dbA = 0. This is equivalent to say that for each Fréchet A-bimodule X all continuous
derivations from A to X are inner (see [11, 7.3.37]). Similarly, A is amenable if and only if
w.dbA = 0, which is equivalent to say that for each Fréchet A-bimodule X all continuous
derivations from A to X∗ (where X∗ is the strong dual of X) are inner (see [11, 7.3.37]
for the Banach algebra case and [23, Corollary 3.5] for the Fréchet algebra case). In fact,
the above characterization of amenability of Banach algebras in terms of derivations was
the original definition of amenability due to B. E. Johnson [13].

Let us also remark that a Fréchet algebra A is biprojective if and only if the product
map A ⊗̂A → A is a retraction in A-mod-A [10, IV.5.6]. There is also a dual character-
ization of biflat Banach algebras [10, VII.2.7], but we will not use it. Recall also that a
Fréchet algebra A is contractible if and only if A is biprojective and unital [10, IV.5.8].

The following theorem is essentially due to Helemskii [10, V.2.28], [12, 2.5.8]; see also
[23, Proposition 4.8] for the Fréchet algebra case.

Theorem. Let A be a Fréchet algebra.

(i) If A is biprojective, then dbA ≤ 2.
(ii) If A is biflat, then w.dgA ≤ 2.

(iii) If A is biflat and projective in A-mod or in mod-A, then w.dbA ≤ 2.
(iv) If A is a biflat Banach algebra, then w.dbA ≤ 2.

We do not know whether part (iv) of the above theorem holds for biflat Fréchet
algebras.

5. Some conditions on Köthe sets. Our task is to compute the homological dimen-
sions dg, db, w.dg, and w.db of Köthe algebras. To this end, let us introduce some
conditions on Köthe sets.

Let λ(P ) be a Köthe algebra.

Definition 5.1. We say that P satisfies (U) if∑
i

pi <∞ for all p ∈ P .

Clearly, P satisfies (U) if and only if λ(P ) is unital (whence the notation “(U)”).

Example 5.2. CI is unital.

Example 5.3. The Hadamard algebra H (D1) is unital. The identity element of H (D1)
is the function f(z) = (1− z)−1, whose Taylor coefficients are all equal to 1.

Example 5.4. The algebra ΛR(α) is not unital unless R = 1. In particular, the algebra
s of rapidly decreasing sequences and the Hadamard algebras H (DR) for R > 1 are not
unital.
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Definition 5.5. We say that P satisfies (N) if

∀p ∈ P ∃ q ∈ P ∃α ∈ `1(I) : p ≤ αq.

The Grothendieck–Pietsch criterion (see [20, 6.1.2]) states that P satisfies (N) if and
only if λ(P ) is nuclear (whence the notation “(N)”).

There is another useful form of the Grothendieck–Pietsch criterion. Given a Köthe
set P , let

λ∞(P ) =
{
a = (ai) ∈ CI : ‖a‖∞p = sup

i
|ai|pi <∞ ∀ p ∈ P

}
.

This is a complete locally convex space with the topology determined by the family of
seminorms {‖ · ‖∞p : p ∈ P}. Clearly, λ(P ) ⊂ λ∞(P ), and the embedding is continuous.
The Grothendieck-Pietsch criterion can be reformulated as follows: λ(P ) is nuclear if and
only if λ(P ) = λ∞(P ) topologically (see [20, 6.1.3]). Since P is assumed to be countable,
this is equivalent to say that λ(P ) = λ∞(P ) as sets (see [19, 28.16]).

Example 5.6. CI is nuclear. This is a standard fact (moreover, it is known that a product
of nuclear spaces is nuclear), but this is also immediate from the Grothendieck–Pietsch
criterion.

Example 5.7. The Grothendieck–Pietsch criterion implies that

ΛR(α) is nuclear ⇔

{
supn(log n)/αn <∞ if R =∞;

limn(log n)/αn = 0 if R <∞

(see, e.g., [19, 29.6 and 28.16]). In particular, s and H (DR) are nuclear.

Definition 5.8. We say that P satisfies (B) if P ∼ P 2.

The next theorem justifies the notation “(B)”.

Theorem 5.9 ([23, 5.2]). Let A = λ(P ) be a Köthe algebra. The following conditions are
equivalent:

(i) P satisfies (B);
(ii) A is biprojective;
(iii) A is biflat;
(iv) A is flat in A-mod;
(v) the product map A ⊗̂A→ A, a⊗ b 7→ ab, is onto.

Example 5.10. CI is biprojective. Since CI is also unital, it follows that CI is con-
tractible. This was first observed by Taylor [27, 5.9] (see also [10, IV.5.27]), but this is
also immediate from Theorem 5.9.

Remark 5.11. As was shown by Helemskii [10, IV.5.27], each complete commutative
contractible locally m-convex algebra is isomorphic to CI for some I.

Example 5.12. `1 is biprojective. This fact is due to Helemskii [10, IV.5.9], but this is
also immediate from Theorem 5.9.

Example 5.13. Theorem 5.9 implies that ΛR(α) is biprojective if and only if either R = 1
or R =∞ [21, Example 3.5]. For instance, s, H (C), H (D1) are biprojective. Moreover,
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H (D1) is unital and hence contractible. On the other hand, H (DR) is not biprojective
unless R = 1 or R =∞.

Definition 5.14. We say that P satisfies (M) if there exist complex matrices α =
(αij)i,j∈I and β = (βij)i,j∈I such that

(M1) αij + βij = 1 (i, j ∈ I);
(M2) ∀p ∈ P ∃C > 0 ∃ q ∈ P ∀j ∈ N supi |αij |pipj ≤ Cq2

j ;
(M3) ∀p ∈ P ∃C > 0 ∃ q ∈ P ∀i ∈ N supj |βij |pjpi ≤ Cq2

i .

The importance of condition (M) will become clear in Section 6. Since this condition
looks a bit artificial and difficult to check, let us show that it is often satisfied automati-
cally.

Proposition 5.15. Let P be a Köthe set on N, and suppose that either each p ∈ P is
nondecreasing, or each p ∈ P is nonincreasing. Then P satisfies (M).

Proof. For convenience, let us agree that a/0 = +∞ and a+ (+∞) = +∞ for all a ≥ 0.
The advantage of this convention is that

a ≥ bc⇔ a/b ≥ c for all a, b, c ≥ 0. (3)

For each i, j ∈ N set

αij = min
{

1, inf
p∈P

pj
pi

}
.

By (3), we have
αijpipj ≤ p2

j (p ∈ P, i, j ∈ N),

and so α = (αij)i,j∈N satisfies (M2). Now observe that the condition imposed on P

implies the inequality
pi
pj

+
qj
qi
≥ 1 (p, q ∈ P, i, j ∈ N),

whence
pi
pj

+ αij ≥ 1 (p ∈ P, i, j ∈ N). (4)

Setting βij = 1− αij and using (4) and (3), we see that

βijpipj ≤ p2
i (p ∈ P, i, j ∈ N),

and so β = (βij)i,j∈N satisfies (M3). Clearly, (M1) is also satisfied.

Example 5.16. The Köthe sets from Examples 2.1–2.5 satisfy the conditions of Propo-
sition 5.15, and hence they satisfy condition (M). Strictly speaking, this is not the case
for ΛR(α) if R > 1, but in this case the Köthe set P = {(rαk)k∈N : 0 < r < R} is
equivalent to the Köthe set P ′ = {(rαk)k∈N : 1 < r < R}, which satisfies the conditions
of Proposition 5.15.

Remark 5.17. Condition (M) slightly differs from its original version in [21, 4.7] (see
also [23, 7.2], [24, Section 3]). Namely, in [21, 23, 24] the right-hand side of (M2) (respec-
tively, (M3)) was Cqj (respectively, Cqi). We have made this change in order to prove
Proposition 5.15. This will not affect our main results (Theorems 6.1 and 6.2), because
for Köthe sets satisfying (B) the old form of (M) is clearly equivalent to the new one.
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6. Homological dimensions of Köthe algebras. In this section we compute the
dimensions dg, db, w.dg, and w.db of Köthe algebras in terms of conditions (U), (N),
(B), (M) introduced above. Before formulating our results, let us observe that, if λ(P ) is
a Köthe algebra (i.e., if P ≺ P 2), then λ∞(P ) is also a Fréchet algebra under pointwise
multiplication (see the proof of Proposition 3.1, (iii)⇒ (ii)). Since λ(P ) in continuously
embedded into λ∞(P ), we may consider λ∞(P ) as a left Fréhcet λ(P )-module.

Given a Fréchet algebra A, we consider C as a left Fréchet A-module by letting A act
on C trivially. In other words, C = A+/A.

Theorem 6.1 ([24, 4.3]). Let A = λ(P ) be a Köthe algebra. Then

w.dgA = w.dbA =



0 if P satisfies (U).

1 if P satisfies (B) and (N), but does not satisfy (U). In
this case, w.dhA C = 1.

2 if P satisfies (B), but does not satisfy (N). In this case,
w.dhA λ∞(P ) = 2.

∞ if P does not satisfy (B). In this case, w.dhA C =∞.

Let us note that Theorem 6.1 involves only conditions (U), (B), and (N), but not
(M). The situation with the “strong” dimensions dg and db is slightly more delicate. To
compute them, we need some extra notation.

Let P be a Köthe set on I. For each p ∈ P we define a function p̄ : I → R+ by
p̄i = min{pi, 1}. Clearly, P̄ = {p̄ : p ∈ P} is a Köthe set. It is easy to show (see [24, 3.2])
that if λ(P ) is a Köthe algebra, then the pointwise product a · x of any a ∈ λ(P ) and
x ∈ λ(P̄ ) is in λ(P̄ ), and that λ(P̄ ) becomes a Fréchet λ(P )-module under this operation.

Theorem 6.2 ([24, 4.3]). Let A = λ(P ) be a Köthe algebra. Then

dgA = dbA =



0 if P satisfies (U).

1 if P satisfies (B), (N), and (M), but does not satisfy
(U). In this case, dhA C = 1.

2 if P satisfies (B) and (N), but does not satisfy (M). In
this case, dhA λ(P̄ ) = 2.

2 if P satisfies (B), but does not satisfy (N). In this case,
dhA λ∞(P ) = 2.

∞ if P does not satisfy (B). In this case, dhA C =∞.

Corollary 6.3. For a Köthe algebra λ(P ), the following conditions are equivalent:

(i) λ(P ) is amenable;
(ii) λ(P ) is contractible;
(iii) λ(P ) is unital.

Corollary 6.4. Condition (U) implies conditions (B), (N), (M).

Let us look at some examples. We will see, in particular, that every combination of
(U), (N), (B), (M) mentioned in Theorems 6.1 and 6.2 is possible.
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Example 6.5. The algebra CI satisfies (U), and so

dg CI = db CI = w.dg CI = w.db CI = 0

(see Example 5.10 or Corollary 6.3).

Example 6.6. The algebra `1 satisfies (B), but does not satisfy (N). Therefore Theorems
6.1 and 6.2 imply that

dg `1 = db `1 = w.dg `1 = w.db `1 = dh`1 `∞ = w.dh`1 `∞ = 2.

For dg, db, and dh`1 `∞, this is an old result by Helemskii [9] (see also [10, V.2.16]); for
w.db, the result is due to Yu. V. Selivanov [26].

Example 6.7. The algebra Λ∞(α) does not satisfy (U) (see Example 5.4), but satis-
fies (B) and (M) (see Examples 5.13 and 5.16). Taking into account Example 5.7 and
Theorems 6.1 and 6.2, we get

dg Λ∞(α) = db Λ∞(α) = w.dg Λ∞(α) = w.db Λ∞(α) =

{
1 if supn(log n)/αn <∞,
2 otherwise.

In particular,

dg s = db s = w.dg s = w.db s = 1,

dg H (C) = db H (C) = w.dg H (C) = w.db H (C) = 1.

Example 6.8. The algebra Λ1(α) satisfies (B) (see Example 5.13). By using the nucle-
arity criterion for Λ1(α) (see Example 5.7), it is easy to show that if Λ1(α) satisfies (N),
then it satisfies (U). Taking into account Theorems 6.1 and 6.2, we see that

dg Λ1(α) = db Λ1(α) = w.dg Λ1(α) = w.db Λ1(α) =

{
0 if limn(log n)/αn <∞,
2 otherwise.

In particular,

dg H (D1) = db H (D1) = w.dg H (D1) = w.db H (D1) = 0.

Example 6.9. If 1 < R < +∞, then ΛR(α) does not satisfy (B) (see Example 5.13).
Therefore Theorems 6.1 and 6.2 imply that

dg ΛR(α) = db ΛR(α) = w.dg ΛR(α) = w.db ΛR(α) =∞.

In particular,

dg H (DR) = db H (DR) = w.dg H (DR) = w.db H (DR) =∞.

Example 6.10. Let I = N× N. For each i, j, k ∈ N we define

p
(k)
ij =

{
2(kj)i

(i+ j)k (i ≤ k),

(i+ j)k (i > k).

Set p(k) = (p(k)
ij )i,j∈N, and consider the Köthe set P = {p(k)}k∈N. As was shown in [23,

Theorem 7.9], P satisfies (B) and (N), but does not satisfy (M). Note that, since p(k)
ij ≥ 1
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for all i, j, k, we have λ(P̄ ) = `1. Now Theorems 6.1 and 6.2 imply that

dg λ(P ) = dbλ(P ) = dhλ(P ) `
1 = 2, while

w.dg λ(P ) = w.dbλ(P ) = w.dhλ(P ) C = 1.

7. Approximate contractibility of Köthe algebras and around. Approximately
contractible and approximately amenable Banach algebras were introduced by F. Ghahra-
mani and R. J. Loy [5] and have attracted much attention in recent years [4, 6, 7, 2, 3].
Similar notions for Fréchet algebras were studied by P. Lawson and C. J. Read [18]. By
definition, a Fréchet algebra A is approximately contractible (respectively, approximately
amenable) if for each Fréchet A-bimodule X every continuous derivation from A to X

(respectively, to the strong dual X∗) is the limit of a pointwise convergent net of in-
ner derivations. In [6], it was shown that approximate contractibility and approximate
amenability for Banach algebras are equivalent. A similar result for locally m-convex
Fréchet algebras was proved in [18]. We refer the reader to Y. Zhang’s survey [28] for
a detailed discussion and numerous references concerning approximate amenability for
Banach algebras.

In [18], Lawson and Read gave some sufficient conditions of approximate contractibil-
ity for locally m-convex Köthe algebras. In particular, they showed that the algebra s of
rapidly decreasing sequences is approximately contractible. The following result general-
izes Proposition 3.9 from [18].

Theorem 7.1. Let A = λ(P ) be a Köthe algebra satisfying (B) and (N). Then A is
approximately contractible.

Before proving Theorem 7.1, let us recall a result from [18].

Lemma 7.2 ([18, Lemma 2.7]). Let A be a Fréchet algebra, and let {‖ · ‖p : p ∈ P} be a
family of seminorms generating the topology of A. Suppose that there exist nets (uλ)λ∈Λ

in A and (dλ)λ∈Λ in A ⊗̂A such that

(i) (uλ) is a two-sided approximate identity in A;
(ii) ‖a− auλ‖p‖uλ‖p → 0 and ‖a− uλa‖p‖uλ‖p → 0 (a ∈ A);
(iii) π(dλ) = 2uλ − u2

λ, where π : A ⊗̂A→ A is the product map;
(iv) a · dλ − dλ · a→ 0 (a ∈ A).

Then A is approximately contractible.

Remark 7.3. In [18], the authors consider only locally m-convex Fréchet algebras. How-
ever, the argument used in [18] shows that both Lemma 7.2 and [18, Theorem 2.4],
on which Lemma 7.2 is based, are true for all Fréchet algebras, not necessarily locally
m-convex.

In the case of Köthe algebras, Lemma 7.2 can be simplified as follows.

Lemma 7.4. Let A = λ(P ) be a Köthe algebra, and let Π ⊂ A denote the set of charac-
teristic functions χJ , where J runs over the family of all finite subsets of I. Suppose that
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for each p ∈ P and each a ∈ A there exists u ∈ Π such that

‖a− au‖p < 1, (5)

‖a− au‖p‖u‖p < 1. (6)

Then A is approximately contractible.

Proof. Let F denote the family of all finite subsets of A, and let

Λ = {(F, p, ε) : F ∈ F , p ∈ P, ε > 0}.

We make Λ into a directed poset by setting

(F, p, ε) � (F ′, p′, ε′) ⇔ F ⊂ F ′, p ≤ p′, ε ≥ ε′.

Fix any λ = (F, p, ε) ∈ Λ, and define b ∈ A by

b = ε−1
∑
a∈F
|a|.

Using (5) and (6), find uλ = χJ ∈ Π such that

‖b− buλ‖p < 1, ‖b− buλ‖p‖uλ‖p < 1.

Since
‖a− au‖p =

∑
i∈I\J

|ai|pi,

it follows that

‖a− auλ‖p < ε (a ∈ F ),

‖a− auλ‖p‖uλ‖p < ε (a ∈ F ).

Therefore the net (uλ)λ∈Λ satisfies conditions (i) and (ii) of Lemma 7.2. Now, following
[18, Example 3.1], define dλ ∈ A ⊗̂A by

dλ =
∑
i∈F

ei ⊗ ei,

where ei stands for the function on I which is 1 at i, 0 elsewhere. Then it is clear that

π(dλ) = uλ = 2uλ − u2
λ;

a · dλ = dλ · a (a ∈ A).

Thus conditions (iii) and (iv) of Lemma 7.2 are also satisfied, and so A is approximately
contractible.

Proof of Theorem 7.1. Fix any a ∈ A and p ∈ P , and find q ∈ P and λ ∈ `1(I) such that
p ≤ q and p ≤ λq. Let

I ′ = {i ∈ I : pi > 1}, I ′′ = {i ∈ I : pi ≤ 1}.
Note that λi > 0 whenever i ∈ I ′. For each n ∈ N, define the subset J ′n ⊂ I ′ as follows.
If I ′ is finite, we set J ′n = I ′. Otherwise, let

J ′n = {i ∈ I ′ : qi ≤ n}.
For each i ∈ I ′ we have

qi ≥ pi/λi > 1/λi →∞ (i ∈ I ′, i→∞).

Therefore J ′n is finite.
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Choose a finite subset J ′′n ⊂ I ′′ such that

sup
i∈I′′\J′′n

|ai|pi < 1/n2. (7)

Finally, let Jn = J ′n t J ′′n and un = χJn
. Since P satisfies (N), we have λ(P ) = λ∞(P )

topologically (see the discussion after Definition 5.5), and so the topology on λ(P ) is
determined by the seminorms ‖ · ‖∞p (p ∈ P ). Therefore by Lemma 7.4, it suffices to show
that

‖a− aun‖∞p (1 + ‖un‖∞p )→ 0 (n→∞).

Since
‖un‖∞p = sup

j∈Jn

pj ≤ n,

we have
‖a− aun‖∞p (1 + ‖un‖∞p ) ≤ 2n‖a− aun‖∞p ,

and it remains to show that

n‖a− aun‖∞p → 0 (n→∞). (8)

Observe that

n‖a− aun‖∞p = sup
i∈I\Jn

|ai|pin = max
{

sup
i∈I′\J′n

|ai|pin, sup
i∈I′′\J′′n

|ai|pin
}
. (9)

By (7), we have
sup

i∈I′′\J′′n
|ai|pin ≤ 1/n→ 0 (n→∞). (10)

For each i ∈ I ′ \ J ′n we have qi > n. Therefore

sup
i∈I′\J′n

|ai|pin ≤ sup
i∈I′\J′n

|ai|q2
i → 0 (n→∞), (11)

because P satisfies (B). Now (8) follows from (9), (10), and (11).

Example 7.5. Theorem 7.1 implies that Λ∞(α) is approximately contractible when-
ever supn(log n)/αn < ∞ (see Examples 5.7 and 5.13). In particular, s and H (C) are
approximately contractible.

Example 7.6. As was shown in [4], `1 is not approximately contractible (although it
satisfies (B), see Example 5.12).

Let us now discuss some other properties of Köthe algebras related to approximate
contractibility. One such property is idempotence. Given an algebra A, let

A2 = span{ab : a, b ∈ A}.

In [4], the authors conjectured that there is a relation between the approximate con-
tractibility of a Banach sequence algebra A and the property A = A2. Below we study
this relation in the case of Köthe algebras.

Lemma 7.7. Let A = λ(P ) be a Köthe algebra. Then

A2 = {a2 : a ∈ A} = {a ∈ A :
√
|a| ∈ A}.
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Proof. Suppose that
√
|a| ∈ A. For each i ∈ I, find λi ∈ C such that ai = λ2

i |ai|, and
define bi = λi

√
|ai|. We then have b = (bi) ∈ A and a = b2. Clearly, this implies that

a ∈ A2.
Conversely, suppose that a ∈ A2, and write

a =
n∑
k=1

bkck (bk, ck ∈ A).

For each p ∈ P and each i ∈ I we have

|ai|p2
i ≤

∑
k

|bki||cki|p2
i ≤

(∑
k

(|bki|pi + |cki|pi)
)2

.

Therefore ∑
i

√
|ai|pi ≤

∑
i

∑
k

(|bki|pi + |cki|pi) =
∑
k

(‖bk‖p + ‖ck‖p) <∞,

which implies that
√
|a| ∈ A.

Remark 7.8. An inspection of the above proof shows that, if A is a Köthe algebra over R,
then

A2 = {ab : a, b ∈ A} = {a ∈ A :
√
|a| ∈ A}.

Let λ(P ) be a Köthe space. Recall that the Köthe-Toeplitz dual λ(P )× is defined by

λ(P )× =
{
y = (yi) ∈ CI : ‖y‖x =

∑
i

|yixi| <∞ ∀x ∈ λ(P )
}
.

In other words, λ(P )× is the Köthe space λ(P×), where P× = {(|xi|) : x ∈ λ(P )}.

Lemma 7.9. Let A = λ(P ) be a Köthe algebra satisfying (B). Suppose that A× is nuclear.
Then A = A2.

Proof. Fix any a ∈ A. Since A× = λ(P×) is nuclear, the Grothendieck–Pietsch criterion
implies that P× satisfies (N). Therefore there exist λ ∈ `1 and b ∈ P× such that |a| ≤ λb.
For the same reason, there exist µ ∈ `1 and c ∈ P× such that b ≤ µc. Now take any
p ∈ P and find q ∈ P and C > 0 such that p2 ≤ C2q. We have∑

i

√
|ai|pi ≤ C

∑
i

√
|ai|qi ≤ C

∑
i

√
λiµiciqi ≤ C sup

i

√
ciqi

∑
i

√
λiµi. (12)

Since λ, µ ∈ `1, we have
√
λ,
√
µ ∈ `2, and so

∑
i

√
λiµi < ∞. Since c ∈ A, we have

supi
√
ciqi ≤

√
‖c‖q <∞. Now (12) implies that

∑
i

√
|ai|pi <∞, i.e.,

√
|a| ∈ A. Using

Lemma 7.7, we see that a ∈ A2, and so A = A2, as claimed.

Lemma 7.10. Let A = λ(P ) be a Köthe algebra on N satisfying (B). Suppose that pn ≥ 1
for all p ∈ P and all n ∈ N, and suppose that there exists p ∈ P such that

sup
n

log n
log pn

<∞. (13)

Then A is nuclear.

Proof. Since P is directed (Axiom (P2)), the topology on λ(P ) is generated by all semi-
norms ‖ · ‖q with q ∈ P, q ≥ p. Therefore we may assume that (13) holds for all p ∈ P .
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Now fix any p ∈ P and find k ∈ N such that log n ≤ k log pn for all n ∈ N. Since P
satisfies (B), there exist C > 0 and q ∈ P such that p2k+1 ≤ Cq. We have∑

n

pn
qn
≤ C

∑
n

1
p2k
n

≤ C
∑
n

1
n2

<∞.

Now the Grothendieck–Pietsch criterion implies that A is nuclear.

Lemma 7.11. Let A = λ(P ) be a Köthe algebra on N such that A = A2. Suppose that
1 ≤ pn ≤ pn+1 for all p ∈ P and all n ∈ N. Then there exists p ∈ P such that (13) holds.

Proof. Without loss of generality, we may assume that P = {p(n) : n ∈ N}, and that
p(n) ≤ p(n+1) for all n. Assume, towards a contradiction, that none of p ∈ P satisfies
(13). Then for each n ∈ N there exists kn ∈ N such that

log kn
log p(n)

kn

≥ n, i.e., p(n)
kn
≤ k1/n

n .

We may also assume that kn+1 ≥ 2kn for all n ∈ N. Set k0 = 0 and define a ∈ CN by

am =
1
k3
n

for kn−1 < m ≤ kn.

Then for each i ∈ N we have∑
m>ki−1

|am|p(i)
m =

∑
n≥i

kn∑
m=kn−1+1

|am|p(i)
m ≤

∑
n≥i

kn∑
m=kn−1+1

1
k3
n

p
(n)
kn

≤
∑
n≥i

kn∑
m=kn−1+1

k
1
n−3
n =

∑
n≥i

(kn − kn−1)k
1
n−3
n ≤

∑
n≥i

k
1
n−2
n <∞,

because 1
n − 2 < − 3

2 for n ≥ 2. Therefore a ∈ A. On the other hand,∑
m

4
√
|am| =

∑
n

kn∑
m=kn−1+1

1

k
3/4
n

≥
∑
n

kn − kn−1

kn
≥
∑
n

1
2

=∞,

showing that 4
√
|a| /∈ `1, and, a fortiori, 4

√
|a| /∈ A. Applying Lemma 7.7 twice, we see

that a /∈ A. The resulting contradiction completes the proof.

Now we can summarize the above discussion as follows.

Theorem 7.12. Let A = λ(P ) be a Köthe algebra on N satisfying (B). Suppose that
1 ≤ pn ≤ pn+1 for all p ∈ P and all n ∈ N. Then the following conditions are equivalent:

(i) A is nuclear;
(ii) A× is nuclear;
(iii) A = A2;
(iv) there exists p ∈ P such that

sup
n

log n
log pn

<∞.

Each of the above conditions implies that A is approximately contractible.

Proof. (i)⇒ (ii). This is true for all metrizable Köthe spaces [16, Satz 7].
(ii)⇒ (iii). This follows from Lemma 7.9.
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(iii)⇒ (iv). This follows from Lemma 7.11.
(iv)⇒ (i). This follows from Lemma 7.10.
Finally, (i) implies that A is approximately contractible by Theorem 7.1.

8. Open problems. In conclusion, let us formulate some open problems.

Problem 8.1. Let A be a biflat Fréchet algebra. Is w.dbA ≤ 2?

Recall that the answer is positive if A is a Banach algebra [12, 2.5.8] or if A is projective
in A-mod (or in mod-A) [23, Proposition 4.8].

In fact, Problem 8.1 can be reduced to the following.

Problem 8.2. Let X be flat in A-mod, and let Y be flat in mod-A. Is X ⊗̂Y flat in
A-mod-A?

Again, the answer is positive in the case of Banach modules over Banach algebras
[11, 7.1.57]. The answer is also positive provided that either X or Y is projective [23,
Proposition 3.6].

Problem 8.3. Let A = λ(P ) be an approximately contractible Köthe algebra.

(1) Does P satisfy (B)?
(2) Does A satisfy the conditions (i)–(iv) of Theorem 7.12? In particular, must A be

nuclear?

Note that, if A = A2, then P satisfies (B) (see implication (v)⇒ (i) in Theorem 5.9).
Therefore a positive answer to question (2) would imply a positive answer to question (1).
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[5] F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Funct. Anal. 208

(2004), 229–260.

[6] F. Ghahramani, R. J. Loy, and Y. Zhang, Generalized notions of amenability. II, J. Funct.

Anal. 254 (2008), 1776–1810.

[7] F. Ghahramani and R. Stokke, Approximate and pseudo-amenability of the Fourier alge-

bra, Indiana Univ. Math. J. 56 (2007), 909–930.

[8] A. Ya. Helemskii, The homological dimension of normed modules over Banach algebras,

Mat. Sb. (N.S.) 81 (123) (1970), 430–444 (in Russian); English transl.: Mathematics of

the USSR-Sbornik 10 (1970), 399–411.

[9] A. Ya. Helemskii, The global dimension of a Banach function algebra is different from

one, Funkcional. Anal. i Prilozen. 6 (1972), no. 2, 95–96 (in Russian); English transl.:

Functional Anal. Appl. 6 (1972), 166–168.

[10] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Moscow University

Press, 1986 (in Russian); English transl.: Kluwer Academic Publishers, Dordrecht, 1989.

[11] A. Ya. Helemskii, Banach and Polynormed Algebras: General Theory, Representations,

Homology, Nauka, Moscow, 1989 (in Russian); English transl.: Oxford University Press,

1993.

[12] A. Ya. Helemskii, Homology for the Algebras of Analysis, in: Handbook of Algebra, Vol. 2

(ed. M. Hazewinkel), 151–274, Amsterdam, North-Holland, 2000.

[13] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).

[14] R. Kiehl and J. L. Verdier, Ein einfacher Beweis des Kohärenzsatzes von Grauert, Math.
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[25] H. Render and A. Sauer, Algebras of holomorphic functions with Hadamard multiplication,

Studia Math. 118 (1996), 77–100.

[26] Yu. V. Selivanov, Weak homological bidimension and its values in the class of biflat Banach

algebras, Extracta Math. 11 (1996), 348–365.

[27] J. L. Taylor, Homology and cohomology for topological algebras, Adv. Math. 9 (1972),

137–182.

http://dx.doi.org/10.1016/S0022-1236(03)00214-3
http://dx.doi.org/10.1016/j.jfa.2007.12.011
http://dx.doi.org/10.1512/iumj.2007.56.2951
http://dx.doi.org/10.1007/BF01077526
http://dx.doi.org/10.1007/BF02059414
http://dx.doi.org/10.1007/BF01181598
http://dx.doi.org/10.1023/A:1016058211668
http://dx.doi.org/10.1070/SM2008v199n01ABEH003910
http://dx.doi.org/10.1016/0001-8708(72)90016-3


278 A. YU. PIRKOVSKII

[28] Y. Zhang, Solved and unsolved problems on generalized notions of amenability for Banach

algebras, Slides of a lecture delivered at the 19th International Conference on Banach

Algebras, http://www.siue.edu/MATH/BA2009/ABSTRACTS/lecture-Zhang.pdf.

http://www.siue.edu/MATH/BA2009/ABSTRACTS/lecture-Zhang.pdf

	Introduction
	Köthe spaces
	Köthe algebras
	Topological Homology
	Some conditions on Köthe sets
	Homological dimensions of Köthe algebras
	Approximate contractibility of Köthe algebras and around
	Open problems

