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Abstract. We study the structure of certain classes of homologically trivial locally C∗-algebras.

These include algebras with projective irreducible Hermitian A-modules, biprojective algebras,

and superbiprojective algebras. We prove that, if A is a locally C∗-algebra, then all irreducible

Hermitian A-modules are projective if and only if A is a direct topological sum of elementary

C∗-algebras. This is also equivalent to A being an annihilator (dual, complemented, left quasi-

complemented, or topologically modular annihilator) topological algebra. We characterize all

annihilator σ-C∗-algebras and describe the structure of biprojective locally C∗-algebras. Also,

we present an example of a biprojective locally C∗-algebra that is not topologically isomorphic

to a Cartesian product of biprojective C∗-algebras. Finally, we show that every superbiprojective

locally C∗-algebra is topologically ∗-isomorphic to a Cartesian product of full matrix algebras.

1. Introduction. This paper is devoted to the study of the structure of locally C∗-
algebras satisfying various homological triviality conditions. The properties of projectivity
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of topological modules and of biprojectivity or superbiprojectivity of topological algebras
will play here a central role. We are concerned with the following questions.

How to characterize, in inner terms of their structure, locally C∗-algebras A such that:

(i) all irreducible Hermitian A-modules1 are projective?
(ii) all Hermitian A-module are projective?

(iii) the algebra A is biprojective?
(iv) the algebra A is superbiprojective?

Earlier, similar questions were answered for C∗-algebras [34, 80, 81, 82, 40, 41, 89, 90].
Apart from this, the last two questions were answered for σ-C∗-algebras [67].

The answers to the above questions will be given in Theorems 3.24, 4.21, 5.9 below.
First of all we describe (in Theorem 3.3) the structure of locally C∗-algebras with dense

socle, and also the structure of their closed two-sided ideals. Next we show that property
(i) characterizes locally C∗-algebras with dense socle or, equivalently, direct topological
sums of elementary2 C∗-algebras. Moreover, the same property is equivalent to A being
an annihilator (dual in Kaplansky’s sense, complemented, left quasi-complemented, or
topologically modular annihilator3) topological algebra. Also, we characterize (in Corol-
lary 3.21) projective irreducible Hermitian modules over locally C∗-algebras, and de-
scribe (in Theorem 3.30 and Corollary 3.32) annihilator unital locally C∗-algebras and
annihilator σ-C∗-algebras. In particular, we show that every annihilator σ-C∗-algebra is
topologically ∗-isomorphic to the Cartesian product of a countable family of annihilator
C∗-algebras.

Properties (ii) and (iii) turn out to be equivalent. We describe the structure of bipro-
jective locally C∗-algebras, and present an example of a biprojective locally C∗-algebra
that is not topologically isomorphic to a Cartesian product of biprojective C∗-algebras.

Finally, we show that property (iv) characterizes Cartesian products of full matrix
algebras. In particular, we establish that all superbiprojective locally C∗-algebras are
contractible.

2. Preliminaries. By a topological algebra we shall mean a complete Hausdorff locally
convex space over C equipped with a jointly continuous multiplication. No commutativity
or existence of an identity is assumed.

The symbol ⊗̂ denotes the complete projective topological tensor product. The pro-
duct map is the continuous linear operator πA : A ⊗̂A → A uniquely determined by
πA(a⊗ b) = ab. By a Fréchet algebra we mean a metrizable topological algebra.

We recall that a seminorm p on an algebra A is submultiplicative if p(ab) ≤ p(a)p(b)
for all a, b ∈ A. If A is a ∗-algebra, then a C∗-seminorm on A is a submultiplicative semi-
norm p satisfying p(a∗) = p(a) and p(a∗a) = p(a)2 for all a ∈ A. A topological algebra A

1 See Definition 3.14.
2 Recall that a C∗-algebra A is called elementary if A is isomorphic to the algebra K(H) of

all compact operators on a Hilbert space H.
3 See Definition 3.23.
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is an Arens-Michael algebra if the topology on A can be defined by a family of submulti-
plicative seminorms. A locally C∗-algebra4 is an Arens-Michael ∗-algebra whose topology
is defined by a family of C∗-seminorms. Recall that the term “locally C∗-algebra” is due
to A. Inoue [29]. Metrizable locally C∗-algebras are also called σ-C∗-algebras5 [10, 61, 62].

As is known, every locally C∗-algebra is topologically ∗-isomorphic to an inverse limit
of C∗-algebras. σ-C∗-algebras are countable inverse limits of C∗-algebras.

S. J. Bhatt and D. J. Karia obtained an interesting characterization of locally C∗-
algebras among Arens-Michael ∗-algebras:

Theorem 2.1 (see [14]). An Arens-Michael ∗-algebra A is a locally C∗-algebra if and
only if there exists a dense ∗-subalgebra B of A which is a C∗-algebra under some norm
and which is continuously embedded in A.

We recall (cf. [24, Lemma 8.14]) that every locally C∗-algebra A is semisimple, i.e.,
the Jacobson radical of A is 0. For details and references on locally C∗-algebras, see
[26, 61, 62].

Now for any subset S of an algebra A, let lan(S) and ran(S) denote the left and right
annihilators of S in A, respectively (see, e.g., [15, §30]). So we have

lan(S) = {a ∈ A | ab = 0 for all b ∈ S} and ran(S) = {a ∈ A | ba = 0 for all b ∈ S}.

As is known, lan(S) is always a left ideal of A, and ran(S) is always a right ideal of A.
Furthermore, the left (respectively, right) annihilator of a left (respectively, right) ideal
is a two-sided ideal. Also, if A is a topological algebra, then both lan(S) and ran(S) are
closed.

Recall that a net {eν , ν ∈ Λ} in a topological algebra A is called a left (respectively,
right) bounded approximate identity if eνa → a (respectively, aeν → a) for each a ∈ A
and if the elements eν form a bounded set in A. A bounded approximate identity is a net
which is both a left and a right bounded approximate identity.

We recall that a locally C∗-algebra always has a bounded approximate identity (see [26,
Theorem 11.5]). This implies, in particular, that lan(A) = ran(A) = 0 for every such
algebra A.

A topological algebra A is an annihilator algebra if, for every closed left ideal J and
for every closed right ideal K, we have ran(J) = 0 if and only if J = A and lan(K) = 0
if and only if K = A. If lan(ran(J)) = J and ran(lan(K)) = K, then A is called a dual
algebra. It is obvious that a dual algebra is automatically an annihilator algebra.

Dual algebras were introduced by I. Kaplansky [47], and annihilator algebras were
introduced by F. F. Bonsall and A. W. Goldie [16]. The existence of an annihilator Banach
algebra which is not dual was first established by B. E. Johnson [45]. His example was
commutative and semisimple. Later A. M. Davie [19] gave an example of a topologically
simple annihilator Banach algebra which is not dual. However every annihilator C∗-
algebra is dual (see [70, Corollary 4.10.26]).

4 These objects are called b∗-algebras in [6, 21, 7], LMC∗-algebras in [50, 77], pro-C∗-algebras
in [99, 61, 62] and multi-C∗-algebras in [39].

5 Also, metrizable locally C∗-algebras are called F ∗-algebras in [18].
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Now we recall (see [89] or [43, p. 63]) that the c0-sum,
⊕

0{Aν | ν ∈ Λ}, of a family of
C∗-algebras Aν , ν ∈ Λ, is defined to be the set of all functions f defined on Λ such that

(i) f(ν) ∈ Aν for each ν ∈ Λ, and
(ii) for each ε > 0 the set {ν : ‖f(ν)‖ ≥ ε} is finite.

As is known, this set is a C∗-algebra with respect to pointwise operations and the norm
‖f‖ = supν∈Λ ‖f(ν)‖.

Following [20], we say that a C∗-algebra A is elementary if A is isometrically ∗-
isomorphic to the algebra K(H) of all compact operators on a Hilbert space H. We recall
(see [20, 4.7.20]) that a C∗-algebra A is annihilator (or, equivalently, dual) if and only if
it is isometrically ∗-isomorphic to the c0-sum of a family of elementary C∗-algebras.

For details and references on annihilator and dual algebras, see [70, 57, 15, 59].

Let A be a topological algebra and let M` be the set of all closed left ideals of A.
Then A is called a left quasi-complemented algebra if there exists a mapping q : J 7→ Jq

of M` into itself having the following properties:

(i) J ∩ Jq = 0 (J ∈M`);
(ii) (Jq)q = J (J ∈M`);

(iii) if J1 ⊂ J2, then Jq2 ⊂ J
q
1 (J1, J2 ∈M`).

The mapping q is called a left quasi-complementor on A.
A left quasi-complemented algebra is called a left complemented algebra if it satisfies:

(iv) J + Jq = A (J ∈M`).

In this case, the mapping q is called a left complementor on A.
Right quasi-complemented algebras and right complemented algebras are defined anal-

ogously. A left and right complemented algebra is called a complemented algebra.
Complemented Banach algebras were introduced by B. J. Tomiuk [95] and have been

studied by many authors (see, e.g., [58, 1, 4, 2, 100, 98, 3, 101, 55, 96, 97]). Left (right)
quasi-complemented topological algebras were defined by T. Husain and P. K. Wong [44].
They showed that there exist right quasi-complemented algebras which are not right
complemented.

Structural properties of left complemented semisimple topological algebras in which
every modular maximal left ideal is closed were studied by M. Haralampidou [32].

It is known that a C∗-algebra is complemented if and only if it is dual (see [4]). A
similar result is true for left (right) quasi-complemented algebras (see [44]).

Let {Iν | ν ∈ Λ} be a family of (left, two-sided) ideals in an algebra A. Recall that
the smallest (left, two-sided) ideal in A which contains every Iν is called the sum of the
ideals Iν . The sum of the ideals Iν evidently consists of all finite sums of elements from
the ideals Iν .

If A is a topological algebra, then the closure of the sum of the ideals Iν is called their
topological sum. If each Iν is closed and intersects the topological sum of the remaining
ideals in the zero element, then the topological sum is called a direct topological sum
(C. E. Rickart’s terminology, see [70, p. 46]).
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We recall that a minimal left ideal of an algebra A is a left ideal J 6= 0 such that
0 and J are the only left ideals contained in J . Recall also (see, e.g., [15, §30]) that the
left socle of an algebra A is the sum of all minimal left ideals of A. The right socle is
similarly defined in terms of right ideals. If the left socle coincides with the right socle,
then it is called the socle of A and is denoted by Soc(A).

Recall that an algebra A is semiprime if it has no two-sided ideals, I 6= 0, with I2 = 0.
Since semisimple algebras are semiprime (see, e.g., [15, Proposition 30.5]), we conclude
that every locally C∗-algebra is semiprime.

Recall that, if A is semiprime, then the left and right socles of A coincide, and so A
has a socle. Soc(A) is known to be a two-sided ideal of A. Recall that a C∗-algebra A is
dual if and only if Soc(A) is dense in A (see [20, 4.7.20]).

Also, we recall that a minimal closed two-sided ideal of a topological algebra is a
closed two-sided ideal I 6= 0 that contains no closed two-sided ideals other than 0 and I.
Finally, we recall that a topological algebra A is topologically simple if its only closed
two-sided ideals are 0 and A.

The proof of the following lemma repeats the proof of [15, Lemma 32.4].

Lemma 2.2. Let A be a semiprime topological algebra, and let I be a two-sided ideal of A.
Then lan(I) = ran(I), I ∩ lan(I) = 0. If, in addition, A is an annihilator algebra, then
I ⊕ lan(I) is dense in A.

If A is a locally C∗-algebra, then even more is true.

Lemma 2.3 (cf. [57, §25.2] and [33]). Let A be a locally C∗-algebra.

(i) If J is a closed left ideal of A, then J ∩ (ran(J))∗ = 0 and J ⊕ (ran(J))∗ is a closed
left ideal of A. If, in addition, A is an annihilator algebra, then A = J ⊕ (ran(J))∗.

(ii) If K is a closed right ideal of A, then K∩(lan(K))∗ = 0 and K⊕(lan(K))∗ is a closed
right ideal of A. If, in addition, A is an annihilator algebra, then A = K⊕(lan(K))∗.

(iii) If I is a closed two-sided ideal of A, then I ∩ lan(I) = 0 and I ⊕ lan(I) is a closed
two-sided ideal of A. If, in addition, A is an annihilator algebra, then A = I⊕lan(I).

Proof. (i) Clearly, (ran(J))∗ is a closed left ideal of A. Suppose that a ∈ J ∩ (ran(J))∗.
Then aa∗ = 0, and consequently, for each continuous C∗-seminorm p on A,

p(a) = p(aa∗)1/2 = 0.

Hence a = 0, and so J ∩ (ran(J))∗ = 0.
Now let L = J ⊕ (ran(J))∗, and let a = b+ c ∈ L, where b ∈ J , c ∈ (ran(J))∗. Then

ac∗ = cc∗, and therefore
p(c)2 = p(cc∗) ≤ p(a)p(c∗)

and
p(c) ≤ p(a), (1)

for each continuous C∗-seminorm p on A.
Similarly, we have

p(b) ≤ p(a), (2)

for each continuous C∗-seminorm p on A. It follows easily from these inequalities that
the left ideal L is closed.
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We prove now that ran(L) = 0. Indeed, suppose that a ∈ ran(L). Then Ja = 0 and
(ran(J))∗a = 0. It follows from the first equality that a ∈ ran(J) and a∗ ∈ (ran(J))∗.
Hence a∗a = 0, and therefore, for each continuous C∗-seminorm p on A,

p(a) = p(a∗a)1/2 = 0,

and so a = 0. Thus ran(L) = 0, and we see that, if A is an annihilator algebra, then
L = A.

(ii) This is similar.
(iii) This follows from (ii) and from the fact that every closed two-sided ideal of a

locally C∗-algebra is a ∗-ideal (see [26, Theorem 11.7]).

The proof of the next lemma repeats the proof of [70, Theorem 2.8.29]; see also [33,
Theorem 2.4].

Lemma 2.4. Let A be a topological algebra such that lan(A) = ran(A) = 0. Suppose that
A is equal to the topological sum of a given family {Iν | ν ∈ Λ} of its closed two-sided
ideals. If each Iν is an annihilator algebra, then A is an annihilator algebra.

3. Locally C∗-algebras with projective irreducible modules

3.1. Locally C∗-algebras with dense socle. Let A be a locally C∗-algebra, and let
P be the family of all continuous C∗-seminorms on A. For each p ∈ P we set

Np = Ker p,

where Ker p = {a ∈ A | p(a) = 0}. Then each Np is a two-sided ∗-ideal of A. The quotient
seminorm of p on A/Np is a C∗-norm. We denote this norm by ‖ · ‖p. The completion of
A/Np with respect to this norm is a C∗-algebra which is denoted by Ap. Following [39],
we call the C∗-algebra Ap concomitant with A.

Note that every quotient algebra A/Np is in fact already complete with respect to the
norm ‖ · ‖p (see [7], [77], [62, Corollary 1.2.8]), and so Ap = (A/Np, ‖ · ‖p).

Proposition 3.1. Let A be a locally C∗-algebra, and let P be the family of all continuous
C∗-seminorms on A. Then, for every p ∈ P , the quotient topology on A/Np coincides
with the topology determined by the norm ‖ · ‖p.

Proof. Evidently, the first topology is stronger than the second one. On the other hand,
let q ∈ P , and suppose that q ≥ p (i.e., q(a) ≥ p(a) for all a ∈ A). Then the quotient
seminorm of q on A/Np is equal to the quotient norm of the C∗-norm ‖·‖q on Aq = A/Nq,
and hence is itself a (complete) C∗-norm. Therefore the latter norm is equal to ‖ · ‖p.

Note that P is directed with the order p ≤ q (see [62]). Hence we conclude that, if
q ∈ P is arbitrary, and q̂ is the quotient seminorm of q on A/Np, then ‖ · ‖p ≥ q̂. The
rest is clear.

Let A be an algebra. We recall [15] that a non-zero idempotent e ∈ A is called minimal
if eAe is a division algebra. Since an Arens-Michael division algebra is isomorphic to C
(see, e.g., [39, Theorem V.1.7]), we conclude that, for a minimal idempotent e in an
Arens-Michael algebra A, we have eAe = Ce.



HOMOLOGICALLY TRIVIAL LOCALLY C∗-ALGEBRAS 285

Corollary 3.2. Let A be a topologically simple locally C∗-algebra that contains a mi-
nimal idempotent. Then A is isomorphic, as a topological ∗-algebra, to the C∗-algebra of
all compact operators on a Hilbert space.

Proof. Let p ∈ P , and suppose that p 6= 0. Then Ker p is a closed two-sided ideal of A, and
hence Ker p = 0 because A is topologically simple. Thus p is a norm. By Proposition 3.1,
the topology on A = A/Np coincides with the topology determined by the norm p = ‖·‖p.
So A is isomorphic, as a topological ∗-algebra, to the C∗-algebra (A, ‖ · ‖p). Since A

contains a minimal idempotent, it follows from [15, Proposition 30.6] that Soc(A) 6= 0.
Since A is topologically simple, and Soc(A) is a two-sided ideal, it follows that Soc(A) is
dense in A. It remains to apply [20, 4.7.20] and [70, Corollary 4.10.20].

Theorem 3.3. Let A be a locally C∗-algebra with dense socle, and let {Iν | ν ∈ Λ} be
the collection of minimal closed two-sided ideals of this algebra; we put Pν = lan(Iν)
(= ran(Iν)) (ν ∈ Λ). Then the following statements hold.

(i) A is the direct topological sum of all the Iν , and moreover, for each ν1, ν2 ∈ Λ with
ν1 6= ν2, we have Iν1Iν2 = 0.

(ii) For each ν ∈ Λ the algebra Iν is isomorphic, as a topological ∗-algebra, to the
C∗-algebra K(Hν), where Hν is a Hilbert space.

(iii) Every closed two-sided ideal I of A is the intersection of the ideals Pν that contain I.
In particular,

⋂
ν∈Λ Pν = 0.

(iv) Every closed two-sided ideal I of A is the direct topological sum of the ideals Iν
contained in I. As a consequence, for each ν, Pν =

⊕
µ∈Λ\{ν} Iµ.

(v) A is an annihilator algebra.
(vi) For each ν, A = Iν⊕Pν . Moreover, let ψν : A→ A/Pν , a 7→ aν , denote the quotient

map. Then ϕν : Iν ↪→ A
ψν−−→ A/Pν is an isometric ∗-isomorphism of C∗-algebras.

(vii) The homomorphism of locally C∗-algebras

τ : A→
∏
ν∈Λ

A/Pν =
∏
ν∈Λ

K(Hν), a 7→ {aν},

is a continuous embedding with dense range.
(viii) If I, I =

⊕
ν∈Λ1

Iν , is an arbitrary closed two-sided ideal of A, then A = I ⊕ J ,
where

J = lan(I) =
⊕

ν∈Λ\Λ1

Iν .

Moreover, the natural homomorphism ϕ : J ↪→ A→ A/I is a topological ∗-isomor-
phism. In particular, A/I is complete.

(ix) If I is a closed two-sided ideal of A, then Soc(I) is dense in I, Soc(A/I) is dense
in A/I, and A is topologically ∗-isomorphic to the Cartesian product of the algebras
I and A/I.

(x) If p is a continuous C∗-seminorm on A, then there exists a subset Λ1 ⊂ Λ such
that Ker p = lan(J), where J =

⊕
ν∈Λ1

Iν and J is isomorphic, as a topological
∗-algebra, to a C∗-algebra (and hence J is the c0-sum of the family of C∗-algebras
Iν = K(Hν), ν ∈ Λ1). Moreover, for each a ∈ A, p(a) = supν∈Λ1

{
‖aν‖K(Hν)

}
.
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(xi) There exists a ∗-homomorphism of locally C∗-algebras

ω :
⊕

0
{K(Hν) | ν ∈ Λ} → A

such that ω is a continuous embedding with dense range, and τ ◦ ω is the natural
embedding of the C∗-algebra

⊕
0{K(Hν) | ν ∈ Λ} into

∏
ν∈ΛK(Hν).

Proof. (i) Note first that, if J is a minimal left ideal of A, then the closed two-sided ideal
I generated by J is a minimal closed two-sided ideal of A.

Indeed (cf. [57, §25.3, II]), let K be a closed two-sided ideal of A contained in I. Then
J ∩K is a left ideal of A contained in the minimal left ideal J . Therefore either J ⊂ K

or J ∩K = 0. In the first case I ⊂ K, and so K = I. In the second case

K · J ⊂ J ∩K = 0,

and consequently J ⊂ ran(K). Since ran(K) is a closed two-sided ideal of A, we have
I ⊂ ran(K). Hence K ⊂ ran(K), i.e., K2 = 0. Since A is semiprime, we get K = 0.
Therefore I is a minimal closed two-sided ideal of A.

Thus A coincides not only with the topological sum of all its minimal left ideals but
also with the topological sum of all the minimal closed two-sided ideals Iν , ν ∈ Λ. The
latter topological sum is direct, and moreover, for each ν1, ν2 ∈ Λ with ν1 6= ν2, we have
Iν1Iν2 = 0 (cf. [57, the proof of Theorem 5 in §25.3]).

(ii) Let ν ∈ Λ. Note first that the minimal closed two-sided ideal Iν is a topologically
simple locally C∗-algebra.

Indeed, Iν is a ∗-ideal by [26, Theorem 11.7]. Thus Iν is a closed ∗-subalgebra of A,
i.e., a locally C∗-algebra. Since A is the direct topological sum of all the Iν , it follows
easily that Iν is a topologically simple algebra.

We prove now that Iν contains a minimal left ideal L of A. It is then obvious that Iν
is generated by L.

Indeed, suppose Iν contains no minimal left ideals of A, and let J be a minimal left
ideal. Then J ∩ Iν ⊂ J and J ∩ Iν 6= J , since J 6⊂ Iν . Consequently J ∩ Iν = 0, and
therefore Iν · J ⊂ J ∩ Iν = 0. Since J is arbitrary, Iν · Soc(A) = 0. Hence

(Iν)2 ⊂ Iν ·A = Iν · Soc(A) = 0.

Since A is semiprime, Iν = 0. So we have a contradiction.
Finally we note that, by [15, Lemma 30.2], L has the form L = Ae, where e ∈ Iν ⊂ A is

a minimal idempotent. Since eAe is an Arens-Michael division algebra, we have eAe = Ce,
and hence eIνe = Ce. It remains to apply Corollary 3.2.

(iii) Let I be a closed two-sided ideal of A, and let a ∈
⋂
{Pν : Pν ⊃ I}. Let Iµ,

µ ∈ Λ, be a minimal closed two-sided ideal of A. Then either Iµ ⊂ I or Iµ ∩ I = 0. In
the first case, Iµa ⊂ Iµ ⊂ I. In the second case, I · Iµ ⊂ I ∩ Iµ = 0, and consequently
I ⊂ lan(Iµ) = Pµ. Hence a ∈ Pµ and Iµa ⊂ Iµ · Pµ = 0 ⊂ I. Thus Iµa ⊂ I for each
µ ∈ Λ. Since the sum of the ideals Iµ is dense in A, Aa ⊂ I. Since A has an approximate
identity, we see that a ∈ I.

(iv) Let I be a closed two-sided ideal of A, and let Λ1 = {ν ∈ Λ : Iν ⊂ I} and
J =

⊕
ν∈Λ1

Iν . As we noted in the proof of (iii), I ⊂ Pν for each ν ∈ Λ \ Λ1, and hence
J ⊂ Pν . For each ν ∈ Λ1 we have J 6⊂ Pν , since otherwise Iν ⊂ Pν and Iν = Iν ∩ Pν = 0.
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By (iii), J =
⋂
ν∈Λ\Λ1

Pν . Since I is contained in this intersection, we conclude that
I = J .

(v) This follows from Lemma 2.4 and from the fact that the Banach algebra of all
compact operators on a Hilbert space is an annihilator algebra (see, e.g., [57, §25.6,
Theorem 13]).

(vi) This follows from (v), from Lemma 2.3 and from inequalities (1) and (2) (see the
proof of Lemma 2.3).

(vii) This follows easily by using (i)–(iv) and (vi).
(viii) This follows by the same argument as in (vi).
(ix) This follows at once from (viii) and (iv).
(x) Note that Ker p is a closed two-sided ideal of A. By (iv), there exists a subset

Λ0 ⊂ Λ such that Ker p =
⊕

ν∈Λ0
Iν . We set

Λ1 = Λ \ Λ0.

By (viii), we have A = Ker p⊕ J , where

J = lan(Ker p) =
⊕
ν∈Λ1

Iν ,

and moreover the natural homomorphism

ϕ : J ↪→ A→ A/Ker p

is a topological ∗-isomorphism of locally C∗-algebras. The rest follows from the fact that,
by Proposition 3.1, A/Ker p is topologically ∗-isomorphic to the concomitant C∗-algebra
(Ap, ‖ · ‖p).

(xi) This follows easily by using (i), (ii), (vi), (vii) and (x).

The next corollary follows easily from Theorem 3.3.

Corollary 3.4. Let A be a locally C∗-algebra with dense socle.

(i) If, for each continuous C∗-seminorm p on A, the concomitant C∗-algebra Ap has
finite spectrum Âp, then A is topologically ∗-isomorphic to the Cartesian product of
a family of elementary C∗-algebras.

(ii) If, for each continuous C∗-seminorm p on A, the concomitant C∗-algebra Ap is
finite-dimensional, then A is topologically ∗-isomorphic to the Cartesian product of
a family of full matrix algebras.

(iii) If A has an identity, then A is topologically ∗-isomorphic to the Cartesian product
of a family of full matrix algebras.

3.2. Some definitions and results concerning topological algebras and mod-
ules. Suppose that A is a topological algebra6 and X is a complete Hausdorff locally
convex space which is also a left A-module. Thus there is a bilinear map (a, x) 7→ a · x
from A × X to X such that (ab) · x = a · (b · x) for a, b ∈ A, x ∈ X. Then X is called
a left topological A-module if the above module map is jointly continuous. For two such

6 Recall that by a topological algebra we mean a complete Hausdorff locally convex space
equipped with a jointly continuous multiplication.
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modules X and Y , an A-module morphism from X to Y is a continuous linear operator
ϕ : X → Y which is a module homomorphism.

Similar definitions apply to right topological A-modules and topological A-bimodules.
For example, the algebra A is itself a topological A-bimodule with respect to the maps
given by the product in A. If X is a left topological A-module and Y is a right topological
A-module, then X ⊗̂Y is a topological A-bimodule for the products defined by

a · (x⊗ y) = a · x⊗ y, (x⊗ y) · a = x⊗ y · a (a ∈ A, x ∈ X, y ∈ Y ).

In particular, A ⊗̂A is a topological A-bimodule in this way.
For a left A-module X, we denote by A ·X the linear span of the elements of the form

a · x, where a ∈ A and x ∈ X; expressions of the type Y · A have a similar meaning for
right A-modules Y . We write A2 for A · A. A topological algebra A is idempotent if A2

is dense in A.
A left topological A-module X is essential if A · X is dense in X. A left module X

over an algebra A is (algebraically) irreducible if A ·X 6= 0 and X contains no non-zero
proper submodules. It is obvious that, if X is an irreducible left topological A-module,
then it is essential.

Let A+ denote the unitization of A. Recall that there is the so-called canonical
morphism π+ : A+ ⊗̂X → X (resp., π+ : A+ ⊗̂X ⊗̂A+ → X) associated with any left
topological A-module (resp., topological A-bimodule) X; this morphism is defined by
π+(a⊗x) = a · x (resp., π+(a⊗x⊗ b) = a · x · b), where a, b ∈ A+, x ∈ X.

Now let us recall some important definitions from the homology theory of topological
algebras (see [38, Chapter IV], [39]).

Definition 3.5. A left topological A-module (respectively, topological A-bimodule) is
projective if the canonical morphism π+ has a right inverse in the corresponding category.

Definition 3.6. A topological algebra A is left projective if the left topological A-module
A is projective, and biprojective if the topological A-bimodule A is projective.

Right projective topological algebras are defined similarly. Recall that every biprojec-
tive topological algebra is left and right projective (see [38, Proposition IV.1.3]).

Recall an important characterization of biprojectivity for topological algebras.

Proposition 3.7 (see [38, 42]). A topological algebra A is biprojective if and only if
the product map πA : A ⊗̂A → A has a right inverse in the category of topological
A-bimodules.

In particular, every biprojective topological algebra A is idempotent.

Definition 3.8. A topological algebra A is contractible if A is biprojective and has an
identity.

The simplest example of a contractible topological algebra is the C∗-algebra Mn(C)
of all complex n × n-matrices (the full matrix algebra). J. L. Taylor noticed in 1972
(see [93, p. 181]; for a proof see [84, Lemma 11]) that a topological Cartesian product of
full matrix algebras is a contractible algebra.
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Given a left topological A-module X, the reduced module associated with X is defined
by XΠ = A ⊗̂

A
X (see [38]). Here ⊗̂

A
denotes the (complete) projective tensor product of

topological modules over A (see [38, Chapter II, §4.1]).
The following proposition is a generalization of the corresponding result on Banach

modules over Banach algebras (see [38, Proposition II.3.13]). For Fréchet modules over
Fréchet algebras, Proposition 3.9 was essentially also proved in [68].

Proposition 3.9. Let A be a topological algebra with a left bounded approximate identity,
and let X be a left topological A-module. Then the map

κX : XΠ = A ⊗̂
A
X → X, a⊗

A
x 7→ a · x,

is a topological isomorphism onto A ·X.

Proof. Let L ⊂ A ⊗̂
A
X denote the linear span of all elements of the form a⊗

A
x (a ∈ A,

x ∈ X), and let {eν , ν ∈ Λ} be a left bounded approximate identity in A. If u = a⊗
A
x,

then we have

u = lim(eνa⊗
A
x) = lim(eν ⊗

A
a · x) = lim(eν ⊗

A
κX(u)).

Therefore
u = lim(eν ⊗

A
κX(u)) for each u ∈ L. (3)

Given continuous seminorms pα on A and qβ on X respectively, let rα,β denote the
corresponding projective tensor seminorm on A ⊗̂

A
X. Then (3) implies that

rα,β(u) ≤
(
sup pα(eν)

)
qβ(κX(u)) for each u ∈ L.

By continuity, the same estimate holds for every u ∈ A ⊗̂
A
X. Hence κX is topologically

injective7. Since the image of κX clearly contains A · X and is contained in A ·X, the
result follows.

For the next result see [38, Proposition IV.5.2].

Proposition 3.10. Let A be a biprojective topological algebra, and let X be a left topo-
logical A-module. Then the reduced module XΠ is projective.

From this and from Proposition 3.9 we obtain the next corollary. Earlier, the cor-
responding result concerning Banach algebras and Banach modules was proved in [34,
Theorem 2] (see also [38, Proposition IV.5.3]).

Corollary 3.11. Let A be a biprojective topological algebra with a left bounded ap-
proximate identity. Then, for any left topological A-module X, the submodule A ·X is
projective.

In what follows, given a locally convex space E, we denote by E∼ the completion
of E. For the reader’s convenience, we recall a result which is a topological version of [38,
Theorem II.3.17].

7 In other words, it is a homeomorphism onto ImκX .
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Proposition 3.12 ([66, Proposition 3.1]). Let A be a topological algebra, J a closed left
ideal of A+, and X a right topological A-module. Then there is a topological isomorphism

α : X ⊗̂
A

(A+/J)∼ −→ (X/X · J)∼ (4)

uniquely determined by x⊗
A

(a+ J) 7→ x · a+X · J .

The following result is a generalization of [82, Lemma 1.1].

Proposition 3.13. Let A be a biprojective topological algebra, and let J be a closed left
ideal of A+. Then the left topological A-module (A/A · J)∼ is projective.

Proof. By Proposition 3.12, the left topological A-module (A/A · J)∼ is topologically
isomorphic to A ⊗̂

A
(A+/J)∼. Now the result follows from Proposition 3.10.

3.3. Homologically trivial and annihilator locally C∗-algebras. The following
class of left topological modules will play a central role in studying homologically trivial
locally C∗-algebras.

Definition 3.14 (cf. [71, 72]). Let A be a locally C∗-algebra. A Hermitian A-module8

is an essential left topological A-module H whose underlying topological vector space is
a Hilbert space, and, moreover, 〈a · x, y〉 = 〈x, a∗ · y〉 for all a ∈ A, x, y ∈ H.

Evidently, the above definition means exactly that the continuous representation of
A associated with our module is a non-degenerate ∗-representation.

Let us recall the following result.

Theorem 3.15 ([81, Theorem 5]; see also [89, Theorem 4.40]). Let A be a C∗-algebra.
Then the following conditions are equivalent:

(i) all irreducible left Banach A-modules (or, equivalently9, all irreducible Hermitian
A-modules) are projective;

(ii) A is an annihilator algebra;
(iii) for every closed left ideal J of A, there is a closed left ideal L of A such that

A = J ⊕ L.

Following [11], we say that an algebra A is a modular annihilator algebra if, for every
modular maximal left ideal M and every modular maximal right ideal N of A,

(i) ran(M) 6= 0 and ran(A) = 0, and
(ii) lan(N) 6= 0 and lan(A) = 0.

An equivalent formulation when A is semiprime is as follows: A is a modular annihilator
algebra if and only if A/Soc(A) is a radical algebra (see [103, Theorem 3.4]).

Recall from [13] that a significant number of important algebras are modular annihi-
lator algebras. In particular, all semiprime Banach algebras with dense socle, all so-called

8 Such modules are called non-degenerate star modules in [39] and non-degenerate Hilbert
modules in [41]. We prefer to call them “Hermitian modules”, as the phrase “Hilbert module”
is used in the literature in various senses (see, e.g., [22, 49, 56, 61, 31]).

9 As is known (see, e.g., [20, 2.9.6 and 2.12.18]), every irreducible left Banach module over a
C∗-algebra A is topologically isomorphic to a Hermitian A-module.
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compact Banach algebras (see [5]) and some algebras of linear operators are modular
annihilator algebras. A well-known result of B. A. Barnes [12, Theorem 4.2] (see also [59,
Theorem 8.6.4]) asserts that a semisimple Banach algebra A is modular annihilator if
and only if the spectrum of each element a ∈ A has no non-zero accumulation points.

Recall also [103, Example 4.3] that there exists a primitive (and even topologically
simple) modular annihilator Banach algebra which is not an annihilator algebra. However
every modular annihilator C∗-algebra is dual [103, Theorem 4.1].

For details and references on modular annihilator algebras, see [59, 60].

Now we recall that a Banach space E is said to have the approximation property10

if the identity operator 1E can be uniformly approximated on every compact subset K
by continuous finite-rank operators (i.e., for every ε > 0 there is a continuous finite-rank
operator T : E → E (depending on K and ε) satisfying ‖T (x)− x‖ ≤ ε for all x ∈ K).

Recall also the following result.

Theorem 3.16 ([89, Theorem 4.39]). Let A be a semiprime Banach algebra which satis-
fies at least one of the following conditions:

(a) A has the approximation property;
(b) all irreducible left Banach A-modules have the approximation property.

Then all irreducible left Banach A-modules are projective if and only if A is a modular
annihilator algebra.

The next result follows immediately from [30, I, Lemma 19] or [48, 43.2(12)].

Lemma 3.17. Let E be a complete Hausdorff locally convex space, and let H be a Hilbert
space. Then for each u ∈ E ⊗̂H, u 6= 0, there exist continuous linear functionals f ∈ E∗
and g ∈ H∗ such that (f ⊗̂ g)(u) 6= 0.

The proof of the next proposition, which uses Lemma 3.17, is analogous to the proof
of [82, Lemma 1.4].

Proposition 3.18. Let A be a topological algebra, and let H be a projective Hermitian
A-module. Then for each x ∈ H, x 6= 0, there exists an A-module morphism χ : H → A

such that χ(x) 6= 0.

The next result is [70, Lemma 4.10.1].

Lemma 3.19. Let A be an arbitrary ∗-algebra in which x∗x = 0 implies x = 0. Then every
minimal left ideal of A is of the form Ae, where e is a unique self-adjoint idempotent. A
similar result holds for right ideals.

The next proposition is related to [70, Theorem 4.10.3].

Proposition 3.20. Let A be a locally C∗-algebra, and let J be a minimal left ideal of A.
Then an inner product 〈x, y〉 can be introduced into J with the following properties:

10 This property is discussed in [30, 52, 38, 59]. As is widely known, it was P. Enflo [23] who
gave the first example of a Banach space without the approximation property.
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(i) if p is a continuous C∗-seminorm on A, then, for each x ∈ J , we have p(x) = λ‖x‖0,
where either λ = 0 or λ = 1, and ‖x‖0 = 〈x, x〉1/2, and so J becomes a Hilbert
space with the norm ‖x‖0;

(ii) 〈ax, y〉 = 〈x, a∗y〉 for all a ∈ A, x, y ∈ J ;
(iii) the left regular representation, a 7→ Ta, of A on J is a continuous ∗-representation

relative to 〈x, y〉;
(iv) the Hermitian A-module associated with the left regular representation of A on J

is projective.

Proof. By Lemma 3.19, there exists a self-adjoint idempotent e such that J = Ae. Also,
by [15, Lemma 30.2], e is a minimal idempotent. Since eAe is an Arens-Michael division
algebra, it follows from [39, Theorem V.1.7] that eAe = Ce, i.e., eAe consists of scalar
multiples of e. Now, if x and y are any two elements of J , then y∗x ∈ eAe and hence there
exists a scalar 〈x, y〉 such that y∗x = 〈x, y〉e. We shall prove that 〈x, y〉 is the desired
inner product.

It is evident that 〈x, y〉 is linear in the first variable. Also,

〈y, x〉e = x∗y = (y∗x)∗ = (〈x, y〉e)∗ = 〈x, y〉e.

Hence 〈y, x〉 = 〈x, y〉. In particular, we have 〈x, x〉 = 〈x, x〉, i.e., 〈x, x〉 is a real number.
Since

x∗x = 〈x, x〉e∗e, (5)

it follows from [29, Corollary 2.5] that 〈x, x〉 ≥ 0. Moreover, 〈x, x〉 = 0 implies x∗x = 0,
i.e., x = 0. So 〈x, y〉 is indeed an inner product.

Now, if p is a continuous C∗-seminorm on A, then, in view of (5), we have

p(x)2 = p(x∗x) = 〈x, x〉p(e∗e) = (‖x‖0)2p(e)2, x ∈ J.

Thus, for each x ∈ J , p(x) = λ‖x‖0, where λ = p(e). Since

p(e)2 = p(e∗e) = p(e),

it follows that either λ = 0 or λ = 1. So the topology on the closed subspace J ⊂ A

is generated by the inner product norm ‖x‖0. Since J is complete, J becomes a Hilbert
space.

Next, for a ∈ A and x, y ∈ J , we have

〈ax, y〉e = y∗ax = (a∗y)∗x = 〈x, a∗y〉e,

and hence
〈ax, y〉 = 〈x, a∗y〉. (6)

Moreover, in view of (6), we have

〈Tax, y〉 = 〈x, Ta∗y〉,

and thus we obtain Ta∗ = T ∗a , which shows that a 7→ Ta is a ∗-representation on J .
Finally, let H be the Hermitian A-module associated with the left regular represen-

tation of A on J . Consider the operator

ρ : H → A+ ⊗̂H, x 7→ x ⊗̂ e,
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where x = ae ∈ H = J ⊂ A+. It is obvious that ρ is an A-module morphism such that
π+ ◦ρ is the identity on H, where π+ : A+ ⊗̂H → H is the canonical morphism. It follows
that H is projective.

The next result characterizes projective irreducible Hermitian modules over a locally
C∗-algebra.

Corollary 3.21. Let H be an irreducible Hermitian module over a locally C∗-algebra.
Then the following conditions are equivalent:

(i) H is projective;
(ii) H is topologically isomorphic to a minimal left ideal of A.

Proof. (i) ⇒ (ii) Since H is projective, it follows from Proposition 3.18 that there exists
an A-module morphism χ : H → A such that χ(x) 6= 0 for some x 6= 0. Then Kerχ 6= H

and Imχ 6= 0. Since H is irreducible, it follows at once that Kerχ = 0 and Imχ is an
irreducible submodule of A. The latter implies that Imχ is a minimal left ideal of A.
Since, by Proposition 3.20, every minimal left ideal of A is a Hilbert space, the rest
follows from the Open Mapping Theorem.

(ii) ⇒ (i) This follows from Proposition 3.20.

The following result is a part of [59, Proposition 8.4.4].

Lemma 3.22. Let A be a semiprime algebra and let e be a minimal idempotent of A.
Then A(1− e) is a modular maximal left ideal of A.

Definition 3.23. Let A be a topological algebra. We call A a topologically modular
annihilator algebra if, for every closed modular maximal left ideal M and every closed
modular maximal right ideal N of A,

(i) ran(M) 6= 0 and ran(A) = 0, and
(ii) lan(N) 6= 0 and lan(A) = 0.

We recall (cf. [39, Chapter VI, §1.2]) that a closed submodule X0 of a left (right, or
two-sided) topological module X over a topological algebra A is said to be complemented
as a topological module if there exists another closed submodule X1 of X such that the
operator

λ : X0 ×X1 → X, (x, y) 7→ x+ y,

is an isomorphism of topological modules.
Now we are in a position to answer the first question posed at the beginning of the

paper.

Theorem 3.24. Let A be a locally C∗-algebra. Then the following conditions are equiv-
alent:

(i) all irreducible Hermitian A-modules are projective;
(ii) Soc(A) is dense in A;

(iii) A is the direct topological sum of its minimal closed two-sided ideals each of which
is topologically ∗-isomorphic to an elementary C∗-algebra;

(iv) A is an annihilator algebra;
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(v) for every closed left ideal J of A and for every closed right ideal K of A, we have
A = J⊕(ran(J))∗ and A = K⊕(lan(K))∗, and moreover J and K are complemented
as topological submodules of A;

(vi) A is a dual algebra;
(vii) A is a complemented algebra;

(viii) A is a left quasi-complemented algebra;
(ix) for every closed modular maximal left ideal M of A, there is a closed left ideal L

of A such that A = M ⊕ L;
(x) the closed modular maximal left ideals of A are precisely the left ideals of the form

A(1− e), where e is a minimal idempotent11 of A;
(xi) all irreducible barrelled12 left topological A-modules are projective;

(xii) A is a topologically modular annihilator algebra.

Proof. (i) ⇒ (ii) Let I = Soc(A) 6= A. Then I is a proper closed two-sided ideal of A.
By [26, Theorem 11.7], I is a ∗-ideal and the quotient algebra A/I equipped with the
quotient topology is a C∗-convex algebra13. According to [26, Corollary 20.4], every
C∗-convex algebra has enough continuous topologically irreducible ∗-representations to
separate its points. Therefore there exists a non-zero continuous topologically irreducible
∗-representation T : A/I → B(H) on some Hilbert space H. (Here, as usual, B(H) is
the Banach algebra of all continuous linear operators on H.) Consider the quotient map
σ : A → A/I and the topologically irreducible ∗-representation T̃ = T ◦ σ of A on H.
Then, by [26, Theorem 19.2], T̃ : A → B(H) is algebraically irreducible. The associated
Hermitian A-module H is irreducible and hence projective. By Proposition 3.18, there
exists an A-module morphism χ : H → A such that χ(x) 6= 0 for some x 6= 0. Then
Kerχ 6= H and Imχ 6= 0. Let J = Imχ. Since H is irreducible, it follows that Kerχ = 0
and J is a minimal left ideal of A. Hence J ⊂ Soc(A) ⊂ I. Since, obviously, T̃ (I) = 0, we
have I ·H = 0 and

J2 ⊂ I · J ⊂ χ(I ·H) = 0.

Since the algebra A is semiprime, we get J = 0. So we have a contradiction.
(ii) ⇒ (iii) This follows from Theorem 3.3.
(iii) ⇒ (iv) This is essentially Theorem 3.3(v).
(iv) ⇒ (v) This follows from Lemma 2.3 and from inequalities (1) and (2) (see the

proof of Lemma 2.3).
(v) ⇒ (vi) Let J be a closed left ideal of A. By condition (v), we have

A = J ⊕ (ran(J))∗. (7)

Since ran(J) is a closed right ideal of A, it follows from condition (v) that

A = ran(J)⊕ (lan(ran(J)))∗.

11 Obviously, such left ideals can also be characterized as those of the form lan(R) for some
minimal right ideal R of A.

12 Recall [17] that a locally convex space E is barrelled if every closed absorbing absolutely
convex subset of E is a neighbourhood of zero. In particular, all Fréchet spaces are barrelled.

13 In other words, a (not necessarily complete) locally m-convex ∗-algebra whose topology is
defined by a family of C∗-seminorms.
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Applying the involution to this equality, we obtain A = (ran(J))∗ ⊕ lan(ran(J)), i.e.,

A = lan(ran(J))⊕ (ran(J))∗. (8)

Since J ⊂ lan(ran(J)), it follows from (7) and (8) that lan(ran(J)) = J . The proof of the
equality ran(lan(K)) = K, for every closed right ideal K of A, is similar.

(vi) ⇒ (vii) For every closed left ideal J of A, we set Jq = (ran(J))∗. Then it is clear
that Jq is a closed left ideal of A and Jq = lan(J∗). Moreover, we have

(Jq)q = lan((Jq)∗) = lan((ran(J))∗∗) = lan(ran(J)) = J,

because A is dual by condition (vi).
Now note that A, being a dual algebra, is an annihilator algebra. From this and from

Lemma 2.3 we get that A = J ⊕ Jq for every closed left ideal J .
Finally, it is evident that, if J1 and J2 are closed left ideals and if J1 ⊂ J2, then

Jq2 ⊂ J
q
1 . Thus A is a left complemented algebra with left complementor q : J 7→ Jq.

Similarly, it can be proved that A is a right complemented algebra with right com-
plementor p : K 7→ Kp, where Kp = (lan(K))∗ for every closed right ideal K.

(vii) ⇒ (viii) This is trivial.
(viii) ⇒ (ix) Let q : J 7→ Jq be a left quasi-complementor on A. Then, since

Aq = Aq ∩A = 0,

we have 0q = (Aq)q = A. Now let M be an arbitrary closed modular maximal left ideal
of A. Then Mq 6= 0, since otherwise

M = (Mq)q = 0q = A.

Since M + Mq is a left ideal which contains M properly, it follows that M + Mq = A.
Putting L = Mq, we get A = M ⊕ L.

(ix) ⇒ (x) By Lemma 3.22, we just need to see that any closed modular maximal left
ideal M of A is of the form A(1− e) for a minimal idempotent e ∈ A. By condition (ix),
for every such left ideal M there is a closed left ideal L of A such that A = M ⊕L. Since
the left ideal M is maximal, it follows that L is minimal.

Let u be a right identity for A modulo M . Since A = M ⊕L, we can write u = m+ e,
where m ∈M and e ∈ L. It is clear that A(1− e) ⊂M , i.e., e is also a right identity for
A modulo M . Let now b ∈ L. Since

b− be ∈M ∩ L = 0,

we have b = be. It follows that L = Ae and e2 = e. Since L is a minimal left ideal of A,
the idempotent e is minimal (see [15, Lemma 30.2]).

Suppose now that M properly includes A(1 − e) = {a ∈ A | ae = 0}. Then there is
some a ∈M with ae 6= 0. Since a− ae ∈M , we have

ae ∈M ∩Ae = M ∩ L = 0.

This contradiction shows that M = A(1− e).
(x) ⇒ (xi) Let X be an irreducible barrelled left topological A-module. Taking an

arbitrary element x ∈ X \ {0} and using [39, Theorem VI.2.8] we get that the set

M = {a ∈ A | a · x = 0}
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is a closed modular maximal left ideal of A. By condition (x), we have M = A(1 − e),
where e ∈ A is a minimal idempotent. Since, for a ∈ A, we have a− ae ∈M and hence

a · (x− e · x) = (a− ae) · x = 0,

we get that e · x = x (see [39, Proposition VI.2.6(II)]).
Let L = Ae. By [15, Proposition 30.6], L is a minimal left ideal of A. It follows from

Proposition 3.20 that L is a Hilbert space. Furthermore, it is a projective irreducible
Hermitian A-module. Consider the operator

ϕ : L→ X, a 7→ a · x.

Clearly, ϕ is an A-module morphism such that

Kerϕ = M ∩ L = 0

and ϕ(e) = x 6= 0. Since X is irreducible, it follows that Imϕ = X. Since X is barrelled,
the Open Mapping Theorem [73, Chapter VI, Theorem 7 and Corollary 2] implies that
ϕ is a topological isomorphism. Thus X is topologically isomorphic to a projective left
topological A-module, and so it is projective.

(xi) ⇒ (i) This is trivial, since all Hilbert spaces are barrelled.
(x)⇒ (xii) Let M be a closed modular maximal left ideal of A. Since, by condition (x),

we have M = A(1−e), where e is a minimal idempotent of A, it follows that e ∈ ran(M).
Hence ran(M) 6= 0. Using the involution it is easily seen that every closed modular
maximal right ideal N of A has a non-zero left annihilator. Thus A is a topologically
modular annihilator algebra.

(xii) ⇒ (ix) Let M be a closed modular maximal left ideal of A. By condition (xii),
we have ran(M) 6= 0. Define

L = (ran(M))∗.

Then L is a non-zero closed left ideal of A. By Lemma 2.3(i), we have M ∩ L = 0. Since
M ⊕ L is a left ideal which contains M properly, it follows that M ⊕ L = A.

Remark 3.25. The implications (iv)⇒ (vi)⇒ (vii) in Theorem 3.24 were proved earlier
in [33]. We included a proof for completeness.

Remark 3.26. Within the setting of C∗-algebras, many other conditions equivalent to
those listed in Theorem 3.24 were obtained in [27, 28].

From Theorems 3.3 and 3.24 we immediately get the following result.

Proposition 3.27. Let A be an annihilator locally C∗-algebra, and let I be a closed
two-sided ideal of A. Then I and A/I are annihilator locally C∗-algebras, and moreover
A is topologically ∗-isomorphic to the Cartesian product of the algebras I and A/I.

Propositions 3.1 and 3.27 imply the following corollary.

Corollary 3.28. Let A be an annihilator locally C∗-algebra, and let P be the family of
all continuous C∗-seminorms on A. Then, for each p ∈ P , the concomitant C∗-algebra
Ap is annihilator and, as a consequence, A can be represented as an inverse limit of
annihilator C∗-algebras.

Lemma 2.4 and Proposition 3.27 imply the following.
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Proposition 3.29. The Cartesian product A =
∏
ν∈ΛAν of a family {Aν | ν ∈ Λ} of

locally C∗-algebras, with the product topology, is an annihilator algebra if and only if all
the algebras Aν are annihilator algebras.

3.4. Unital, metrizable, and non-unital annihilator locally C∗-algebras. Theo-
rem 3.24 can be strengthened in certain cases. First note that Corollary 3.4, Theorem 3.24
and Proposition 3.29 imply the following result.

Theorem 3.30. Let A be a unital locally C∗-algebra. Then A satisfies the equivalent
conditions of Theorem 3.24 if and only if A is topologically ∗-isomorphic to the Cartesian
product of a family of full matrix algebras.

Next we recall that a σ-C∗-algebra is a metrizable locally C∗-algebra (or, equiva-
lently, a locally C∗-algebra whose topology is determined by a countable family of C∗-
seminorms). Every σ-C∗-algebra is topologically ∗-isomorphic to the inverse limit of a
sequence

A1
σ1←− A2

σ2←− A3
σ3←− · · · (9)

of C∗-algebras and surjective ∗-homomorphisms σn : An+1 → An (see [61, Section 5]).
Moreover, all the natural homomorphisms A→ An (n ∈ N) are also surjective.

Theorem 3.31. Let A be an annihilator σ-C∗-algebra. Then A is topologically ∗-isomor-
phic to the Cartesian product of a countable family of annihilator C∗-algebras.

Proof. Choose an inverse system (9) of C∗-algebras such that

A ∼= lim←−An.

As was noted above, we may assume that all the maps An+1 → An and A → An are
onto. By the Open Mapping Theorem, An is topologically ∗-isomorphic to A/In, where

In = Ker (A→ An).

It follows from Proposition 3.27 that An is an annihilator C∗-algebra for each n ∈ N.
So, by [20, 4.7.20], each An is isometrically ∗-isomorphic to a c0-sum of elementary
C∗-algebras. In particular, the spectrum Ân of An is discrete. Now [67, Proposition 5.2]
implies that there exists a family {Bn | n ∈ N} of C∗-algebras such that A is topologically
∗-isomorphic to

∏
nBn. Using Proposition 3.29, we see that each Bn is an annihilator

algebra. This completes the proof.

By combining this result with Theorem 3.24 and Proposition 3.29 we get the following.

Corollary 3.32. Let A be a σ-C∗-algebra. Then A satisfies the equivalent conditions
of Theorem 3.24 if and only if A is topologically ∗-isomorphic to the countable Cartesian
product

∏
nAn, where each An is a C∗-algebra isomorphic to a c0-sum of elementary

C∗-algebras.

Remark 3.33. Theorem 3.31 and Corollary 3.32 cannot be extended to arbitrary (i.e.,
not necessarily metrizable) locally C∗-algebras. Namely, there exists a non-unital anni-
hilator locally C∗-algebra that is not topologically isomorphic to a Cartesian product of
annihilator C∗-algebras (see Theorem 4.29 below).

At the same time we have the following result.
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Proposition 3.34. Let A be a non-unital annihilator locally C∗-algebra. Then A is topo-
logically ∗-isomorphic to the Cartesian product of two annihilator locally C∗-algebras
one of which is an infinite-dimensional C∗-algebra.

Proof. By Theorem 3.24, Soc(A) is dense in A. Since A is non-unital, it follows from
Corollary 3.4(ii) that there exists a continuous C∗-seminorm p on A such that the con-
comitant C∗-algebra Ap is infinite-dimensional. We set I = Ker p. Then I is a closed
two-sided ideal of A and, by Proposition 3.1, A/I is topologically ∗-isomorphic to the
C∗-algebra Ap. It remains to apply Proposition 3.27.

4. Biprojective locally C∗-algebras

4.1. Examples and general properties of biprojective algebras. We recall that
biprojective Banach and topological algebras were introduced by A. Ya. Helemskii [34, 36]
and have been studied by many authors (see, e.g., [34, 35, 46, 78, 80, 81, 37, 82, 53, 69,
83, 87, 88, 89, 91, 8, 63, 102, 64, 65, 67, 9, 76]).

The original motivation to study such algebras was the vanishing of their cohomology
groups14,Hn(A,X), with coefficients in arbitrary topological A-bimodules X for all n ≥ 3
(see, e.g., [42, Theorem 2.4.21]). The structure of biprojective semisimple Banach algebras
with the approximation property is described in [82] (see also [38] and [75]). In [88], the
cohomology groups of biprojective Banach algebras are completely computed for arbit-
rary coefficients. The description of these groups is given in terms of double multipliers
and quasi-multipliers of a given bimodule of coefficients. As an application, biprojective
Banach algebras are characterized in terms of their cohomology groups. In particular, it
is shown (see [88, Theorem 5.9]) that a Banach algebra is biprojective if and only if its
one-dimensional cohomology groups with coefficients in bimodules of double multipliers
are trivial.

We recall some examples of biprojective algebras.

Example 4.1. As was noted after Definition 3.8, the Cartesian product
∏
ν∈ΛMnν (C) of

any family of full matrix algebras is a contractible topological algebra, i.e, a biprojective
algebra with an identity. Moreover, we recall that the Cartesian product of any family of
contractible topological algebras is a contractible algebra (see [84, Lemma 11]).

Here it is important to note that a topological algebra A is contractible if and only if
its cohomology groups with coefficients in arbitrary topological A-bimodules vanish for
all n ≥ 1 (see [38, Theorem IV.5.8]). For some results concerning contractible algebras,
see [93, 94, 51, 79, 81, 38, 84, 74, 25, 91, 64, 67].

Example 4.2. The simplest example of a non-contractible biprojective Banach algebra is
perhaps the Banach sequence algebra `1 with coordinatewise multiplication. The Banach
sequence algebra c0 is also biprojective (see [38, Examples IV.5.9–IV.5.10] or [39, Example
VII.1.80]).

Example 4.3. If G is a compact group, then the group algebras L1(G) and C∗(G) are
biprojective Banach algebras ([34], see also [38]).

14 The definition of cohomology groups of topological algebras can be found, e.g., in [38].
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Example 4.4. The c0-sum,
⊕

0{Mnν (C) | ν ∈ Λ}, of a family of full matrix C∗-algebras
is a biprojective C∗-algebra [34, Theorem 3].

Actually, there are no other biprojective C∗-algebras:

Theorem 4.5 ([80, 81]; see also [89, Theorem 4.62]). Every biprojective C∗-algebra is
isometrically ∗-isomorphic to the c0-sum of a family of full matrix algebras. In particular,
every commutative biprojective C∗-algebra is isometrically ∗-isomorphic to a C∗-algebra
of the form15 c0(Λ) for some set Λ.

Example 4.6. The Cartesian product of a countable family of biprojective Fréchet al-
gebras is a biprojective Fréchet algebra [67, Proposition 1.15]. As a consequence, the
Cartesian product of a countable family of biprojective C∗-algebras is a biprojective
σ-C∗-algebra.

Actually, there are no other biprojective σ-C∗-algebras:

Theorem 4.7 ([67, Theorem 5.3]). Every biprojective σ-C∗-algebra is topologically ∗-
isomorphic to the countable Cartesian product

∏
nAn, where each An is a C∗-algebra

isomorphic to a c0-sum of full matrix algebras.

Example 4.8. Let α = (αn), n ∈ N, be a non-decreasing sequence of positive numbers
with limn→∞ αn = +∞. Then the power series spaces Λ1(α) and Λ∞(α) are biprojective
Fréchet algebras under pointwise product (see [63] or [64]). In particular, the algebra s
of rapidly decreasing sequences is biprojective.

Example 4.9. If G is a compact Lie group, then the Fréchet algebra E(G) of smooth
functions on G with convolution product is biprojective ([86, Example 6]; see also [63]).
Note that E(G) is not a Banach algebra unless G is finite.

Example 4.10. If G is a compact Lie group, then the algebra E ′(G) of distributions on G
with convolution multiplication is a biprojective topological algebra with an identity ([94,
Proposition 7.3], see also [38, Assertion IV.5.30]). In other words, E ′(G) is a contractible
algebra. Note that the biprojective Fréchet algebra E(G) from Example 4.9 is a dense
ideal in E ′(G).

Example 4.11. Let (E,F ) be a pair of complete Hausdorff locally convex spaces, and
let 〈 · , · 〉 : E × F → C be a jointly continuous bilinear form that is not identically zero.
The space A = E ⊗̂F is then a topological algebra with respect to the multiplication
defined by

(x1⊗ y1)(x2⊗ y2) = 〈x2, y1〉x1⊗ y2 (xi ∈ E, yi ∈ F ).

This algebra is biprojective ([86, Example 4], see also [82], [63] and [64]).
In particular, if E is a Banach space with the approximation property, then the algebra

A = E ⊗̂E∗ is isomorphic to the Banach algebra N (E) of all nuclear operators on E,
and so N (E) is biprojective.

Actually, there are no other biprojective Banach algebras of the form N (E):

15 As usual (see, e.g., [52]), we write c0(Λ) for
L

0{Aν | ν ∈ Λ}, where Aν = C for each ν ∈ Λ.
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Theorem 4.12 (see [83, Corollaries 1, 3]). Let E be a Banach space, and let A = N (E).
Then the following conditions are equivalent:

(i) A is a biprojective algebra;
(ii) Hn(A,X) = 0 for all Banach A-bimodules X and for all n ≥ 3;

(iii) there exists k ≥ 3 such that Hn(A,X) = 0 for all Banach A-bimodules X and for
all n ≥ k;

(iv) E has the approximation property.

Let us briefly explain why the algebra N (E) cannot be biprojective unless E has
the approximation property. It is known that, for a biprojective Banach algebra A, the
operator

κA : A ⊗̂
A
A→ A, a⊗

A
b 7→ ab,

is a topological isomorphism (see [88, Corollary 4.2]). Let now A = N (E), where E is a
Banach space. By [83, Lemma 3], the A-bimodule A ⊗̂

A
A is isomorphic to E ⊗̂E∗, and

the operator κA can be identified with the so-called trace homomorphism

Tr: E ⊗̂E∗ → N (E), Tr(x⊗ f)(y) = 〈y, f〉x (x, y ∈ E, f ∈ E∗),

of the dual pair (E,E∗) (see [38]). However, Tr is known to have a non-trivial kernel
unless E has the approximation property (see [30, I, Proposition 35]).

Let us also note that, for any Banach space E, the Banach algebra N (E) has the
weaker property of being “quasi-biprojective”. For details, see [92].

The following result of O. Yu. Aristov describes the structure of finite-dimensional
biprojective algebras.

Theorem 4.13 (see [9, Theorem 7.1]). Let A be a finite-dimensional biprojective algebra.
Then A is isomorphic to the Cartesian product of finitely many algebras of the type E ⊗̂F ,
where (E,F, 〈 · , · 〉) is a pair of finite-dimensional spaces together with a non-zero bilinear
form.

We pass from examples to some general facts. Recall that, if A and B are topological
algebras, then A ⊗̂B is also a topological algebra with multiplication defined by

(a1⊗ b1)(a2⊗ b2) = a1a2⊗ b1b2 (a1, a2 ∈ A, b1, b2 ∈ B).

By Aop we denote the topological algebra opposite to A (with the same underlying space
as A, but with multiplication a ◦ b equal to the “previous” ba). The next proposition
follows immediately from Proposition 3.7.

Proposition 4.14. Let A and B be topological algebras.

(i) If A and B are biprojective, then so is A ⊗̂B.
(ii) If A is biprojective, then so is Aop.

The following is a generalization of the corresponding result on Banach algebras
(see [82, Lemma 1.3]).

Proposition 4.15. Let A be a biprojective topological algebra, and let I be a closed
two-sided ideal of A. Then (A/A · I)∼ is a biprojective topological algebra.
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Proof. Set B = (A/A · I)∼, and consider the commutative diagram

A ⊗̂A
πA //

σ b⊗σ
��

A

σ

��
B ⊗̂B

πB // B

in the category of topological A-bimodules. Here πA and πB are the product maps,
and σ is the natural operator from A to (A/A · I)∼. Using Proposition 3.7, choose an
A-bimodule morphism ρA : A→ A ⊗̂A such that πA ◦ ρA = 1A. We have

ρA(A · I) ⊂ (A ⊗̂A) · I ⊂ Ker(σ ⊗̂σ),

and so there exists a unique A-bimodule morphism ρB making the diagram

A ⊗̂A

σ b⊗σ
��

A

σ

��

ρAoo

B ⊗̂B B
ρBoo

commutative. Therefore,

πB ◦ ρB ◦ σ = πB ◦ (σ ⊗̂σ) ◦ ρA = σ ◦ πA ◦ ρA = σ.

Since σ has dense range, this implies that πB ◦ ρB = 1B . For the same reason, ρB is a
B-bimodule morphism. The rest follows from Proposition 3.7.

The following result generalizes [67, Corollary 1.17].

Corollary 4.16. Let A be a biprojective topological algebra, and let I be a closed two-
sided ideal of A such that I is complemented as a topological submodule of the A-bimo-
dule A. Then I and A/I are biprojective topological algebras.

Proof. It follows from the hypothesis that there exists another closed two-sided ideal J
of A such that A = I ⊕ J , and moreover the operator

λ : I × J → A, (a, b) 7→ a+ b,

is a topological isomorphism.
Since A is biprojective, we have A2 = A. This implies that A · I = I and A · J = J .

Hence the topological algebras

I ∼= A/J = A/A · J and A/I = A/A · I

are biprojective by Proposition 4.15.

Now suppose that A and B are topological algebras, ϕ : A → B is a continuous
homomorphism, and X is a left topological B-module. Then, obviously, the action of B
on X induces a continuous action of A on X defined by a · x = ϕ(a) · x, where a ∈ A,
x ∈ X. In particular, B is a left topological A-module with the action a ·b = ϕ(a)b, where
a ∈ A, b ∈ B; in this case, the operator ϕ : A→ B is an A-module morphism.
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Proposition 4.17. Let A and B be topological algebras, and let ϕ : A → B be a con-
tinuous homomorphism with dense range. Suppose further that A is biprojective and has
either a left or a right bounded approximate identity. Then B is biprojective.

Proof. Consider the case where A has a left bounded approximate identity. Since A is
biprojective, there exists an A-bimodule morphism ρ : A→ A+ ⊗̂A such that π+◦ρ = 1A,
where π+ : A+ ⊗̂A→ A is the canonical morphism (cf. [39, Proposition VII.1.66]). Set
ρ1 = 1B ⊗̂

A
ρ ⊗̂
A

1B . Then

ρ1 : B ⊗̂
A
A ⊗̂
A
B → B ⊗̂

A
(A+ ⊗̂A) ⊗̂

A
B

is a B-bimodule morphism which is a right inverse for

π1 : B ⊗̂ (A ⊗̂
A
B)→ B ⊗̂

A
(A ⊗̂

A
B), b⊗u 7→ b⊗

A
u (b ∈ B, u ∈ A ⊗̂

A
B).

Since A has a left bounded approximate identity and ϕ : A → B has dense range, it
follows from Proposition 3.9 that there exists a topological isomorphism

κB : A ⊗̂
A
B → A ·B = B

uniquely determined by

κB(a⊗
A
b) = a · b = ϕ(a)b (a ∈ A, b ∈ B).

It is obvious that κB : A ⊗̂
A
B → B is a right B-module morphism. Since ϕ : A → B

has dense range and, clearly (cf. [54, Chapter XIV, Lemma 1.2]), B has a left bounded
approximate identity, we see that the B-bimodule morphism π1 may be identified with
the morphism

π̃1 : B ⊗̂B → B ⊗̂
B
B ∼= B, b⊗ c 7→ bc (b, c ∈ B).

But π1 (and hence also π̃1) has a right inverse B-bimodule morphism. So it follows from
Proposition 3.7 that B is biprojective. A similar argument applies in the case where A
has a right bounded approximate identity.

The proof of the following proposition repeats the proof of [67, Proposition 1.15].

Proposition 4.18. The Cartesian product of an arbitrary family of biprojective topolog-
ical algebras is a biprojective topological algebra.

The following result generalizes Proposition 4.18.

Proposition 4.19. Let A = lim←−(Aλ, τ
µ
λ : Aµ → Aλ) be a reduced inverse limit of topo-

logical algebras. Suppose that for each λ there exists an Aλ-bimodule morphism

ρλ : Aλ → Aλ ⊗̂Aλ
such that πAλ ◦ ρλ = 1Aλ and that

(τµλ ⊗̂ τ
µ
λ ) ◦ ρµ = ρλ ◦ τµλ

whenever λ ≺ µ. Then A is biprojective.

Proof. Since projective tensor product commutes with reduced inverse limits (see [48,
§41.6]), we may identifyA ⊗̂A with lim←−(Aλ ⊗̂Aλ, τµλ ⊗̂ τ

µ
λ ). It follows from the assumption
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that there exists a well-defined continuous linear operator

ρ = lim←− ρλ : A→ A ⊗̂A.

It is readily verified that ρ is an A-bimodule morphism and that πA ◦ ρ = 1A. Therefore
A is biprojective, as required.

Example 4.20. For every function s : N→ N, consider the set

Ms = {(i, j) ∈ N× N : 1 ≤ j ≤ s(i)},

and define
A =

{
a = (aij) ∈ CN×N : lim

(i,j)→∞
(i,j)∈Ms

|aij | = 0, ∀s ∈ NN
}
.

Clearly, A is a ∗-subalgebra of CN×N. Moreover, A is a locally C∗-algebra with respect to
the family of C∗-seminorms

ps(a) = sup
(i,j)∈Ms

|aij | (s ∈ NN)

(cf. [61, Example 5.10]). This algebra is biprojective.

Proof. It is easy to see that, for each s ∈ NN, the concomitant C∗-algebra As = A/Ker ps
is isomorphic to c0(Ms), and that the linking maps

At → As (s ≤ t)

are just the restriction maps from c0(Mt) to c0(Ms).
For each (i, j) ∈ N× N, let eij ∈ CN×N denote the function which is 1 at (i, j), and 0

elsewhere. Fix s ∈ NN. By [39, Example VII.1.80], there exists an As-bimodule morphism
ρs : As → As ⊗̂As such that

ρs(eij) = eij ⊗ eij
for each (i, j) ∈ Ms. It is readily verified that the family {ρs | s ∈ NN} satisfies the
conditions of Proposition 4.19. This implies that A is biprojective.

4.2. Structure theorems for biprojective locally C∗-algebras. Our next aim is to
answer the second and the third questions posed at the beginning of the paper.

Theorem 4.21. Let A be a locally C∗-algebra. Then the following conditions are equiv-
alent:

(i) A is a biprojective algebra;
(ii) all essential left topological A-modules are projective;
(iii) all Hermitian A-modules are projective;
(iv) Soc(A) is dense in A, and moreover, for each continuous C∗-seminorm p on A, the

concomitant C∗-algebra Ap is biprojective;
(v) A is the direct topological sum of its minimal closed two-sided ideals each of which

is topologically ∗-isomorphic to a full matrix C∗-algebra;
(vi) A is an annihilator algebra with finite-dimensional minimal closed two-sided ideals;

(vii) there exists a dense ∗-subalgebra B of A which is a biprojective C∗-algebra under
some norm and which is continuously embedded in A.
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For the proof of this theorem the following two results will be important.

Theorem 4.22 ([40, 41]). The following properties of a C∗-algebra A are equivalent:

(i) all Hermitian A-modules are projective;
(ii) A is isometrically ∗-isomorphic to the c0-sum of a family of full matrix C∗-algebras.

The next lemma follows immediately from [38, Proposition IV.1.7].

Lemma 4.23. Let A and B be locally C∗-algebras, and let ϕ : A → B be a continuous
∗-homomorphism with dense range. Suppose further that all Hermitian A-modules are
projective. Then all Hermitian B-modules are projective.

Proof of Theorem 4.21. (i) ⇒ (ii) This follows from Corollary 3.11.
(ii) ⇒ (iii) This is trivial.
(iii) ⇒ (iv) Since all irreducible Hermitian A-modules are projective, it follows from

Theorem 3.24 that Soc(A) is dense in A. Further, let p be a continuous C∗-seminorm
on A, and let Ap be the corresponding concomitant C∗-algebra. Using Lemma 4.23, we
see that all Hermitian Ap-modules are projective. Applying Theorem 4.22 and taking into
account Example 4.4, we conclude that Ap is biprojective.

(iv) ⇒ (v) This follows from Theorem 3.3 (see also Theorem 3.24) and Theorem 4.5.
(v) ⇒ (vi) This follows from Theorem 3.24.
(vi) ⇒ (vii) This follows from Theorem 3.24, Theorem 3.3(xi), and Example 4.4.
(vii) ⇒ (i) This follows from Proposition 4.17.

Proposition 4.24. Let A be a biprojective locally C∗-algebra. Then the following state-
ments hold.

(i) For each closed left ideal J of A, J and A/J are projective left topological A-modules.
Moreover, J is complemented as a topological submodule of the left A-module A.

(ii) For each closed right ideal K of A, K and A/K are projective right topological
A-modules. Moreover, K is complemented as a topological submodule of the right
A-module A.

(iii) For each closed two-sided ideal I of A, I and A/I are projective topological A-bimo-
dules. Moreover, I is complemented as a topological submodule of the A-bimodule A.

Proof. (i) It follows from Theorem 4.21 that A is an annihilator algebra, and that Soc(A)
is dense in A. Now Theorem 3.24 implies that J is complemented as a topological sub-
module of the left A-module A. Hence J and A/J are retracts (i.e., A-module direct
summands) of the module A. Since the biprojective algebra A is left projective, we see
that J and A/J are projective left topological A-modules (see [38, Proposition III.1.16]).

(ii) and (iii) These are similar.

The next result follows easily from Theorems 3.3 and 4.21 (see also Proposition 4.24
and Corollary 4.16).

Proposition 4.25. Let A be a biprojective locally C∗-algebra, and let I be a closed two-
sided ideal of A. Then I and A/I are biprojective locally C∗-algebras, and moreover A is
topologically ∗-isomorphic to the Cartesian product of the algebras I and A/I.

Propositions 3.1 and 4.25 (see also Theorem 4.21) imply the following.
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Corollary 4.26. Let A be a biprojective locally C∗-algebra, and let P be the family of
all continuous C∗-seminorms on A. Then, for each p ∈ P , the concomitant C∗-algebra
Ap is biprojective and, as a consequence, A can be represented as an inverse limit of
biprojective C∗-algebras.

Applying Theorems 4.21 and 3.30 and taking into account Example 4.1, we get the
following theorem.

Theorem 4.27. Let A be a unital locally C∗-algebra. Then the following conditions are
equivalent:

(i) A is a biprojective (or, equivalently, contractible) algebra;
(ii) all essential (or, equivalently16, unital) left topological A-modules are projective;
(iii) all Hermitian A-modules are projective;
(iv) all irreducible Hermitian A-modules are projective;
(v) Soc(A) is dense in A;
(vi) A is an annihilator algebra;

(vii) A is topologically ∗-isomorphic to the Cartesian product of a family of full matrix
algebras.

Remark 4.28. The equivalence of conditions (i), (ii) and (vii) of Theorem 4.27 was
proved earlier in [25, Theorem 3.3].

In [67, Corollary 5.4], we proved that every biprojective σ-C∗-algebra is topologically
∗-isomorphic to the Cartesian product of a family of biprojective C∗-algebras. In the
same paper, we have raised the following question (see [67, Question 5.5]):

Can this result be extended to arbitrary (i.e., non-metrizable) locally C∗-algebras?

Now we show that the answer to this question is negative. Namely, we present an ex-
ample of a non-unital biprojective locally C∗-algebra that is not topologically isomorphic
to a Cartesian product of (biprojective) C∗-algebras.

Theorem 4.29. There exists a biprojective locally C∗-algebra that is not topologically
isomorphic to a Cartesian product of C∗-algebras.

Proof. Consider the biprojective locally C∗-algebra A defined in Example 4.20. Assume
towards a contradiction that this algebra is topologically isomorphic to the Cartesian
product

∏
i∈I Ai of a family of C∗-algebras Ai, i ∈ I. Since A is biprojective, it follows

from Proposition 4.25 that Ai is biprojective for each i ∈ I. Since A is commutative, it
follows from Theorem 4.5 that each algebra Ai, i ∈ I, is isometrically ∗-isomorphic to a
C∗-algebra of the form c0(Λi) for some set Λi. So A is topologically isomorphic to the
algebra

∏
i∈I c0(Λi).

Denote the latter algebra by B. Note that A is not metrizable, because the set NN of
all functions s : N→ N does not have a countable cofinal subset (cf. [61, Example 5.10]).
Therefore B is not metrizable either, and so I is uncountable. For each i ∈ I, let

pi : B → c0(Λi)

16 Clearly, every essential left topological module over a unital topological algebra is unital.
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denote the natural projection onto the ith factor. Then it is easy to check (cf. [39, Propo-
sition V.1.8]) that every non-zero continuous character on B has the form

b 7→ pi(b)(ν)

for some i ∈ I and for some ν ∈ Λi. Therefore there is no countable separating set of
continuous characters on B. On the other hand, the characters

{a 7→ aij | (i, j) ∈ N× N}

obviously separate the points of A. The resulting contradiction shows that A is not
topologically isomorphic to B. This completes the proof.

Thus Theorem 4.7 and [67, Corollary 5.4] cannot be generalized to arbitrary locally
C∗-algebras. Nevertheless we have the following result.

Proposition 4.30. Let A be a non-unital biprojective locally C∗-algebra. Then A is
topologically ∗-isomorphic to the Cartesian product of two biprojective locally C∗-algebras
one of which is an infinite-dimensional C∗-algebra.

Proof. By Theorem 4.21, A is an annihilator algebra. Now Proposition 3.34 implies
that A is topologically ∗-isomorphic to the Cartesian product of two annihilator locally
C∗-algebras one of which is an infinite-dimensional C∗-algebra. The rest follows from
Proposition 4.25.

5. Superbiprojective locally C∗-algebras. Here our aim is to answer the fourth
question posed in the beginning of the paper.

The following result is well known (cf. [85, Corollary 8], see also [91, Corollary 2.4.3]).

Theorem 5.1. Let A be a biprojective topological algebra. Then the following conditions
are equivalent:

(i) H2(A,X) = 0 for all topological A-bimodules X;
(ii) H2(A,A ⊗̂A) = 0;
(ii) the operator

∆: A ⊗̂A→ (A+ ⊗̂A)⊕ (A ⊗̂A+), a⊗ b 7→ (a⊗ b, a⊗ b),

has a left inverse A-bimodule morphism.

Definition 5.2 (cf. [90] and [67]). A topological algebra A is said to be superbiprojective
if A is biprojective and satisfies the equivalent conditions of Theorem 5.1.

It is clear that every contractible topological algebra is superbiprojective.
The proof of the next proposition repeats, in essence, the proof of [78, Theorem 1].

Proposition 5.3. Let A be a biprojective topological algebra. If A has a left or a right
identity, then A is superbiprojective.

Example 5.4. Let F be a complete Hausdorff locally convex space with dimF > 1.
Then every continuous linear functional f ∈ F ∗, f 6= 0, defines on F the structure of
a topological algebra, denoted by Sf (F ), with multiplication given by ab = f(a)b. It is
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easily seen that Sf (F ) is a superbiprojective algebra with a left identity ([86, Example 3],
see also [78, Theorem 1] and [64, Example 2.6]). Clearly, Sf (F ) is not contractible. Note
that Sf (F ) is a particular case of the algebras E ⊗̂F considered in Example 4.11. Indeed,
it suffices to set E = C and to define 〈λ, x〉 = λf(x) for λ ∈ C and x ∈ F .

The following result generalizes [67, Proposition 2.8].

Proposition 5.5. Let A be a superbiprojective topological algebra, and let I be a closed
two-sided ideal of A such that I is complemented as a topological submodule of the
A-bimodule A. Then I and A/I are superbiprojective topological algebras.

Proof. Using Corollary 4.16, we see that I and A/I are biprojective topological algebras.
Also, it follows from the hypothesis that there is a closed two-sided ideal J of A such that
A = I ⊕ J , and the operator λ : I × J → A, (a, b) 7→ a+ b, is a topological isomorphism.
Moreover, as we noted in the proof of Corollary 4.16, A · I = I and A · J = J . Now
Proposition 3.13 implies that the left topological A-modules

I ∼= A/J = A/A · J and A/I = A/A · I

are projective. Similarly, I ∼= A/J and A/I are projective in the category of right topo-
logical A-modules. Therefore the natural projections of topological algebras A → A/J

and A → A/I satisfy the conditions of [63, Theorem 5.2], and so the algebras I ∼= A/J

and A/I are superbiprojective.

By combining this result with Proposition 4.24(iii) we get the following.

Corollary 5.6. Let A be a superbiprojective locally C∗-algebra, and let I be a closed
two-sided ideal of A. Then I and A/I are superbiprojective locally C∗-algebras.

This result, together with Proposition 3.1, implies the following.

Corollary 5.7. Let A be a superbiprojective locally C∗-algebra, and let P be the family
of all continuous C∗-seminorms on A. Then, for each p ∈ P , the concomitant C∗-algebra
Ap is superbiprojective.

Now we recall a result concerning C∗-algebras.

Theorem 5.8 (see [89, Corollary 4.64] and [90]). Let A be a superbiprojective C∗-algebra.
Then A is topologically ∗-isomorphic to the Cartesian product of finitely many full matrix
algebras. In particular, A is finite-dimensional and contractible.

Everything is now ready for the proof of the main result of this section. The following
theorem generalizes [67, Theorem 5.6 and Corollary 5.7].

Theorem 5.9. Let A be a locally C∗-algebra. Then the following conditions are equiva-
lent:

(i) A is a superbiprojective algebra;
(ii) A is topologically ∗-isomorphic to the Cartesian product of a family of full matrix

algebras;
(iii) A is a contractible algebra.
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Proof. (i) ⇒ (ii) It follows from the hypothesis and from Theorem 4.21 that A is bipro-
jective, and that Soc(A) is dense in A. On the other hand, Corollary 5.7 and Theorem 5.8
imply that, for each continuous C∗-seminorm p on A, the concomitant C∗-algebra Ap is
finite-dimensional. Now the result follows from Corollary 3.4(ii).

(ii) ⇒ (iii) This follows from [84, Lemma 11] and [39, Proposition VII.1.73]. (See also
Example 4.1.)

(iii) ⇒ (i) This is trivial.

Recall that the equivalence of conditions (ii) and (iii) in Theorem 5.9 was proved
earlier in [25, Theorem 3.3] (see Remark 4.28).

We now recall an important definition (see [38, 42]).

Definition 5.10. Let A be a topological algebra. The least n for which Hm(A,X) = 0
for all topological A-bimodules X and all m > n, or ∞ if there is no such n, is called the
homological bidimension of A, and is denoted by dbA.

Clearly, dbA = 0 means exactly that A is contractible. Also, a biprojective topological
algebra A always has dbA ≤ 2, and it has dbA ≤ 1 if and only if it is superbiprojective.

Example 5.11. If G is an infinite compact Lie group, then the Fréchet algebra E(G) (see
Example 4.9) is superbiprojective and db E(G) = 1 [63, Corollary 5.4].

From Theorem 5.9 we immediately get the following corollaries.

Corollary 5.12. Let A be a non-unital biprojective locally C∗-algebra. Then dbA = 2
and H2(A,A ⊗̂A) 6= 0.

Corollary 5.13. In the class of biprojective locally C∗-algebras the homological bidi-
mension dbA can take only the values 0 and 2.
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one, Funkcional. Anal. i Priložen. 6 (1972), no. 2, 95–96 (in Russian); English transl.:

Funct. Anal. Appl. 6 (1972), 166–168.

[36] A. Ya. Helemskii, Homological characteristics of Banach algebras, Diss. Doktor Fiz.-Mat.

Nauk, Moscow, 1973 (in Russian).

[37] A. Ya. Helemskii, Lower values that admit the global homology dimension of functional

Banach algebras, Trudy Sem. Petrovsk. 3 (1978), 223–242 (in Russian); English transl.:

Amer. Math. Soc. Transl. 124 (1984), 75–96.

[38] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer Academic

Publishers, Dordrecht, 1989.

[39] A. Ya. Helemskii, Banach and Locally Convex Algebras, Clarendon Press, Oxford Uni-

versity Press, New York, 1993.

[40] A. Ya. Helemskii, The structure of a C∗-algebra and its supply of projective Hilbert mod-

ules, Uspekhi Mat. Nauk 52 (1997), no. 4, 221–222 (in Russian); English transl.: Russian

Math. Surveys 52 (1997), no. 4, 834–835.

[41] A. Ya. Helemskii, Projective homological classification of C∗-algebras, Comm. Algebra

26 (1998), 977–996.

[42] A. Ya. Helemskii, Homology for the algebras of analysis, in: Handbook of Algebra, Vol. 2,

North-Holland, Amsterdam, 2000, 151–274.

[43] A. Ya. Helemskii, Lectures and Exercises on Functional Analysis, Translations of Math-

ematical Monographs 233, Amer. Math. Soc., Providence, RI, 2006.

[44] T. Husain and P. K. Wong, Quasi-complemented algebras, Trans. Amer. Math. Soc. 174

(1972), 141–154.

[45] B. E. Johnson, A commutative semisimple annihilator Banach algebra which is not dual,

Bull. Amer. Math. Soc. 73 (1967), 407–409.

[46] B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach

algebras, Amer. J. Math. 94 (1972), 685–698.

[47] I. Kaplansky, Dual rings, Ann. of Math. (2) 49 (1948), 689–701.
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