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Abstract. We give a survey of techniques from quantum group theory which can be used to show
that some quantum spaces (objects of the category dual to the category of C∗-algebras) do not
admit any quantum group structure. We also provide a number of examples which include some
very well known quantum spaces. Our tools include several purely quantum group theoretical
results as well as study of existence of characters and traces on C∗-algebras describing the
considered quantum spaces as well as properties such as nuclearity.

1. Introduction. Let X be a topological space. One can easily turn X into an asso-
ciative topological semigroup. A possible definition of multiplication is x · y = y for all
x, y ∈ X. This is clearly not a group (unless X consists of a single point). One is therefore
led to a more refined question whether X can be turned into a topological group.

It is not difficult to find topological spaces which cannot be given a structure of a topo-
logical group at all. As an example of this phenomenon consider the interval [0, 1]. Clearly
this topological space cannot be a topological group because there is no homeomorphism
of [0, 1] onto itself carrying an end point onto an interior point (the endpoints have neigh-
borhoods which are connected after the endpoint is removed and interior points do not
have such neighborhoods) and there would be one if [0, 1] were a topological group. The
same argument shows that no manifold with boundary can be endowed with a structure
of a topological group.

One is forced to apply much more sophisticated tools to prove, for example, that the
two-sphere S2 is not a topological group with its usual topology. Of course, the arguments
produced above no longer work, as S2 is a homogeneous space. Still, using some results
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about vector bundles or by noticing that the cohomology ring of S2 does not admit a
Hopf algebra structure, the conclusion that S2 is not a group can be reached ([8, Section
3.C]).

In this paper we want to address similar questions, but instead of topological spaces
we want to consider objects of noncommutative topology or quantum spaces, i.e. objects
of the category dual to the category of C∗-algebras ([4, 24]). Perhaps not unexpectedly
the tools we will use to show that some well known quantum spaces do not admit a
group structure (they are not quantum groups as defined in Section 2) are of completely
different nature than those known from classical topology.

Let us briefly describe the contents of the paper. In Section 2 we give definitions
of objects of our study such as quantum spaces, quantum semigroups and compact
quantum groups. We also provide some basic examples and introduce standard termi-
nology. Section 3 is devoted to a survey of results from the theory of compact quan-
tum groups which we need in following sections. In particular we describe the con-
structions of the reduced and universal versions of a given compact quantum group
and define Woronowicz characters. The next section introduces the tools used to show
that some well known quantum spaces do not admit a compact quantum group struc-
ture. The results are tailored to suit applications and proofs of some known facts
(e.g. from [1]) are considerably simplified. Finally, in Section 5 we describe in de-
tail examples of quantum spaces not admitting any compact quantum group struc-
ture. At the end of this section we discuss some partial results about the quantum
disk.

2. Compact quantum semigroups and compact quantum groups. Let us first
define compact quantum spaces. The category of compact quantum spaces is by definition
the category dual to the category of unital C∗-algebras with unital ∗-homomorphisms
as morphisms (the compactness of our quantum spaces is encoded in the fact that all
considered C∗-algebras will have a unit). The choice to restrict attention to compact
quantum spaces is motivated mainly by the amazingly rich theory of compact quantum
groups as defined below.

Definition 2.1.

1. A compact quantum semigroup is a pair G = (A,∆), where A is a unital C∗-algebra
and ∆ is a morphism A → A ⊗ A (minimal tensor product of C∗-algebras) such
that

(id⊗∆)◦∆ = (∆⊗ id)◦∆.

The morphism ∆ is called the comultiplication of G.
2. A compact quantum group is a compact quantum semigroup G = (A,∆) such that

the linear spans of the sets{
∆(a)(1⊗ b) a, b ∈ A

}
and

{
(a⊗ 1)∆(b) a, b ∈ A

}
are dense in A⊗A.
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Example 2.2. Let G be a compact associative semigroup and let A = C(G). We define
∆ : A→ A⊗A = C(G×G) by

(∆f)(s, t) = f(st).

Then G = (A,∆) is a compact quantum semigroup as in Definition 2.1(1). The density
conditions from Definition 2.1(2) are equivalent to cancellation laws:(

s · t = s′ · t
)

=⇒
(
s = s′

)
,(

s · t = s · t′
)

=⇒
(
t = t′

)
,

(1)

so G = (A,∆) is a compact quantum group if and only if the implications (1) hold for
any s, s′, t, t′ ∈ G, i.e. precisely when G is a compact group.

It is a fact that any compact quantum group G = (A,∆) with A commutative is
necessarily of the form described in Example 2.2.

Example 2.3. Let Γ be a discrete group and let A = C∗(Γ). Since A is the completion
of `1(Γ) in the maximal C∗-norm, there is a copy of Γ inside the unitary group of A.
Moreover A is generated by these elements. One can easily see that there exists a unique
∆ : A→ A⊗A such that

∆(γ) = γ ⊗ γ

for all γ ∈ Γ. It is clear that G = (A,∆) is a compact quantum group.

The comultiplication of the compact quantum group G = (A,∆) described in Example
2.3 is cocommutative, i.e. ∆ = σ◦∆, (where σ : A⊗A→ A⊗A is the flip). One is tempted
to write that all cocommutative compact quantum groups are of the form described in
Example 2.3. However this statement is not true. It is true for universal compact quantum
groups which we will define in Subsection 3.4.

There are numerous other examples of compact quantum groups in the literature for
which we refer the reader to e.g. [23, 22, 7].

3. Additional structure. Throughout this section we let G = (A,∆) be a compact
quantum group. The C∗-algebra A carries very rich additional structure. As we will see
in Section 5, this fact may be used to decide whether a given compact quantum space
can be endowed with a compact quantum group structure.

The results about compact quantum groups formulated in this section are all covered
in [25] except for the material of Subsection 3.4 which can be found in [1, Section 3].

3.1. Hopf algebra. The first result we want to state relates compact quantum groups
to Hopf ∗-algebras. For the theory of Hopf algebras we refer to [21]. Hopf ∗-algebras and
their generalizations are discussed e.g. in [15].

Definition 3.1. An n-dimensional unitary representation of G is a unitary matrix

u =

u1,1 · · · u1,n

...
. . .

...
un,1 · · · un,n

 ∈Mn(C)⊗A = Mn(A)
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such that

∆(ui,j) =
n∑
k=1

ui,k ⊗ uk,j . (2)

Elements {ui,j}i,j=1,...,n are called the matrix elements of u.

The concept of a finite dimensional unitary representation of a compact quantum
group is a straightforward generalization of the notion of a finite dimensional unitary
representation of a compact group. It is easy to see that in the case presented in Example
2.2 representations of the compact quantum group are the same objects as ordinary
representations of the group.

Theorem 3.2 (S. L. Woronowicz). Let G = (A,∆) be a compact quantum group and let
A be the linear span of matrix elements of all finite dimensional unitary representations
of G. Then

1. ∆ ⊂ A ⊗alg A ,
2. A is dense unital ∗-subalgebra in A,
3. if ∆A is the restriction of ∆ to A then (A ,∆A ) is a Hopf ∗-algebra; in particular

there exist an antipode κ : A → A and a counit e : A → C,
4. A is the unique Hopf ∗-algebra which can be embedded in (A,∆) as a dense ∗-

subalgebra with the same comultiplication.1

Let G = (A,∆) be a compact quantum group. The dense Hopf ∗-algebra A of A is
called the Hopf ∗-algebra associated to G. In case of a classical group G (as in Example
2.2) the associated Hopf ∗-algebra is the algebra of regular functions on G. In the case
described in Example 2.3 the associated Hopf ∗-algebra is the group algebra of Γ.

The antipode and counit of A may fail to have continuous extensions to A. We will
return to the case when e extends to a character of A in Subsection 4.1.

A quantum group G = (A,∆) with the property that the antipode of A extends to
a continuous linear map A → A is called a quantum group of Kac type. The situation
when κ has a continuous extension to A can be characterized in many different ways. We
will give some equivalent conditions for this phenomenon to hold in Subsection 3.2.

3.2. Haar measure

Theorem 3.3 (S. L. Woronowicz). Let G = (A,∆) be a compact quantum group. Then
there exists a unique state h on A such that

(id⊗ h)∆(a) = (h⊗ id)∆(a) = h(a)1

for all a ∈ A.

The state h introduced in Theorem 3.3 is called the Haar measure of G. Clearly, in
the case from Example 2.2, the state h corresponds to integration with respect to the
normalized Haar measure on G. In Example 2.3 the Haar measure is the well known
von Neumann trace. A more detailed analysis of the latter example shows that the Haar
measure of a compact quantum group need not be a faithful state. Note that in the two

1The reference for the last statement of Theorem 3.2 is [1, Theorem 5.1].
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examples of Haar measures we just discussed the state h is a trace, i.e. h(ab) = h(ba) for
all a, b ∈ A. One can ask if the Haar measure h of a compact quantum group G = (A,∆)
is always a trace. This is not the case. The following theorem describes this situation.

Theorem 3.4 (S. L. Woronowicz). Let G = (A,∆). Let h be the Haar measure of G and
let κ be the antipode of the Hopf ∗-algebra A ⊂ A. Then the following conditions are
equivalent:

1. G is of Kac type,
2. h is a trace,
3. κ has a bounded extension to A,
4. κ2 = id,
5. κ is a ∗-antiautomorphism of A .

3.3. Reduced quantum group. As we noted in Subsection 3.2 the Haar measure of a
compact quantum group G = (A,∆) may not be faithful. However the following theorem
(essentially due to S. L. Woronowicz) shows that we can always pass to a “new version”
of G which has a faithful Haar measure.

Theorem 3.5. Let G = (A,∆) be a compact quantum group with Haar measure h. Then
the left kernel of h

J =
{
a ∈ A h(a∗a) = 0

}
is a two-sided ideal in A. Let Ar be the quotient A/J and let ρr : A→ Ar be the quotient
map. Then

1. there exists a unique ∆r : Ar → Ar ⊗Ar such that the diagram

A

ρr

��

∆ // A⊗A

ρr⊗ρr

��
Ar

∆r

// Ar ⊗Ar

is commutative,
2. Gr = (Ar,∆r) is a compact quantum group,
3. ρr is injective on A ⊂ A and ρr(A ) is the Hopf ∗-algebra associated to Gr.

Let G = (A,∆) be a compact quantum group with associated Hopf ∗-algebra A .
The compact quantum group Gr is called the reduced version of G. In the situation from
Example 2.2 we have Ar = A because the Haar measure is faithful. On the other hand
in case from Example 2.3 where A = C∗(Γ) for a discrete group Γ, we have Ar = C∗r(Γ)
— the reduced group C∗-algebra of Γ.

One can also adopt a different point of view and treat A and Ar as completions of A

with respect to different C∗-norms for which ∆A is continuous.

3.4. Universal quantum group

Theorem 3.6. Let G = (A,∆) be a compact quantum group with associated Hopf ∗-
algebra A . There exists the enveloping C∗-algebra Au of A . Let ρu : Au → A be the
canonical epimorphism. Then
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1. there exists a unique ∆u : Au → Au ⊗Au such that the diagram

Au

ρu

��

∆u // A⊗A

ρu⊗ρu

��
A

∆
// A⊗A

is commutative,
2. Gu = (Au,∆u) is a compact quantum group,

The compact quantum group Gu described in Theorem 3.6 is called the universal
version of G. Since Au is defined as the completion of A with respect to a maximal
possible C∗-norm, it is clear that the Hopf ∗-algebra associated to Gu is A .

IfA is commutative (i.e. in the situation of Example 2.2) we always haveAu = A = Ar.
Moreover if Ar is commutative then so is A and consequently Au = A = Ar.

3.5. Woronowicz characters. Let G = (A,∆) be a compact quantum group and let
φ and ψ be continuous functionals on A. Then the functional (φ ⊗ ψ)◦∆ is called the
convolution of φ and ψ and is denoted by φ ∗ψ. Similarly if a ∈ A then we can define left
and right convolutions φ ∗ a and a ∗ ψ of a with φ and ψ respectively by

φ ∗ a = (id⊗ φ)∆(a) and a ∗ ψ = (ψ ⊗ id)∆(a).

These definitions are straightforward generalizations of the notion of convolution of mea-
sures and measures and continuous functions on a compact group (cf. Example 2.2).

If A is the Hopf ∗-algebra associated to G and φ and ψ are linear functionals on A

then the we can use the same formulas to define φ ∗ ψ and φ ∗ a, a ∗ ψ for a ∈ A .

Theorem 3.7 (S. L. Woronowicz). Let G = (A,∆) be a compact quantum group with
associated Hopf ∗-algebra A . Then there exists a unique family (fz)z∈C of non-zero mul-
tiplicative functionals on A such that

1. for any a ∈ A the function z 7→ fz(a) is entire holomorphic,
2. f0 = e and fz1 ∗ fz2 = fz1+z2 for all z1, z2 ∈ C,
3. for any z ∈ C and a ∈ A

fz
(
κ(a)

)
= f−z(a) and fz(a∗) = f−z(a),

4. for any a ∈ A we have κ2(a) = f−1 ∗ a ∗ f1.

It is clear from Theorem 3.7(3) that (fit)t∈R is a one-parameter group (under the
operation of convolution) of ∗-characters of A . They extend to characters of Au which we
callWoronowicz characters. The whole family (fz)z∈C is the family ofmodular functionals
of G.

It is important to note that the family (fz)z∈C may be trivial in the sense that fz = e

for all z. Indeed it is always the case for compact quantum groups of Kac type:

Theorem 3.8. Let G = (A,∆) be a compact quantum group and (fz)z∈C be the family
of modular functionals of G. Then the following are equivalent:

1. fz = e for all z,
2. G is of Kac type.
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Theorem 3.8 implies, in particular, that commutative and cocommutative examples
(Examples 2.2 and 2.3) have trivial families of modular functionals.

3.6. The modular group. Let G = (A,∆) be a compact quantum group with associ-
ated Hopf ∗-algebra A and modular functionals (fz)z∈C. The formula

σt(a) = fit ∗ a ∗ fit

for t ∈ R and a ∈ A defines a one parameter group of automorphisms of A . This group
is called the modular group of G. Let us note that the modular group has a continuous
extension to Au, because all Woronowicz characters extend to characters of Au and it is
easy to see that the family (fit)t∈R is continuous on Au. A theorem of S. L. Woronowicz
([25, Theorem 2.6]) asserts that the one parameter group (σt)t∈R is also continuous on
Ar and is intimately connected with the failure of the Haar measure h of G to be a trace
(h is a σ-KMS state).

4. Some tools

4.1. Continuity of Woronowicz characters. Let G = (A,∆) be a compact quantum
group and let G be the set of non-zero multiplicative functionals on A. Clearly G is a
weak∗ compact subset of the unit sphere in A∗ and convolution of functionals defines on
G a structure of a compact associative semigroup. There are many ways to see that G is
in fact a compact group. Indeed, let γ : A → C(G) be the Gelfand transform. Clearly γ
is a surjective ∗-homomorphism and if ∆G is the map C(G)→ C(G×G) given by

(∆G(f))(φ, ψ) = f(φ ∗ ψ)

then (γ ⊗ γ)◦∆ = ∆G◦γ by the very definition of convolution product (in other words γ
is a quantum group morphism). Therefore we have the density of linear spans of{

∆G(f)(1⊗ g) f, g ∈ C(G)
}

and
{

(f ⊗ 1)∆(g) f, g ∈ C(G)
}

in C(G)⊗C(G) which is equivalent to cancellation laws in G (cf. Example 2.2). It follows
that G is a compact group. In particular it has the unit element φ0.

The next thing we want to check is that φ0 is the extension to A of the counit e
defined on the Hopf ∗-algebra A associated with G. This follows by considering a finite
dimensional unitary representation u ∈Mn(C)⊗A and the unitary matrix U = (id⊗φ0)u.
It follows from (2) that U = U2, which for a unitary matrix means U = 1. This means
that φ0(ui,j) = δi,j for any finite dimensional unitary representation u = (ui,j) of G.
The counit e of A has the same values on matrix elements of representations, and A is
spanned by these matrix elements. Therefore φ0 = e on A .

Theorem 4.1. Let G = (A,∆) be a compact quantum group such that the C∗-algebra Ar
possesses a character. Then all Woronowicz characters are continuous on A.

Proof. From the discussion preceding the statement of the theorem we know that the
nonempty set of characters of Ar is a compact group whose unit is the extension to Ar of
the counit e of the Hopf ∗-algebra A associated with Gr. We will still write e to denote
this extension.
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Now for any a ∈ A and t ∈ R we have

e
(
σt(a)

)
= (fit ⊗ e⊗ fit)(∆A ⊗ id)∆A (a)

= (fit ⊗ fit)∆A (a) = (fit ∗ fit)(a) = f2it(a)

and we know that both e and (σt)t∈R are continuous on Ar. This means that Woronowicz
characters (fit)t∈R also have continuous extensions to Ar. Since Ar is the image of A
under ρr (cf. Subsection 3.3) which is the identity on A , all Woronowicz characters also
extend to characters of A.

It has to be noted that in fact a statement much stronger than Theorem 4.1 is true.
Namely, existence of a character on Ar implies that ρu and ρr are isomorphisms, so in
particular, Ar = A = Au ([1]) and Woronowicz characters must extend to A. However,
we will make use solely of the weaker statement presented above.

4.2. Other results. We will need two more results that will help us disprove existence
of compact quantum group structure on some compact quantum spaces. The first one
follows from a very deep theorem of Bédos, Murphy and Tuset ([2, Theorem 1.1]).

Theorem 4.2. Let G = (A,∆) be a compact quantum group of Kac type with associated
Hopf ∗-algebra A . Then the following are equivalent:

1. the C∗-algebra Ar is nuclear,
2. the counit of A is continuous on Ar.

Recall that a C∗-algebra A is nuclear if for any C∗-algebra B the algebraic tensor
product A ⊗alg B admits a unique C∗-norm. This property can be also characterized
in many different ways, but all we will need is the fact that a crossed product of a
commutative C∗-algebra by an action of a commutative group is nuclear ([18, Proposition
2.1.2]).

The next fact we will need is the following:

Theorem 4.3 ([19, Remark A.2]). Let G = (A,∆) be a compact quantum group such
that A admits a faithful family of tracial states. Then G is of Kac type.

5. Examples. In this section we will give examples of compact quantum spaces which
do not admit any compact quantum group structure. In each case we will use the results
collected in Section 4 to prove non-existence of such a structure. The quantum spaces
under consideration are all discussed in the survey article [5], where further references
can be found.

Example 5.1 (The quantum torus). Let us fix θ ∈]0, 1[. The quantum two-torus T2
θ is the

quantum space corresponding to the rotation C∗-algebra Aθ, i.e. the universal C∗-algebra
generated by two unitary elements u and v satisfying the relation uv = e2πiθvu ([16]).
This C∗-algebra is nuclear (indeed, Aθ = C(T) o Z, where the action is by rotation by
2πθ). Moreover it possesses a faithful trace (unique if θ is irrational).

Let us assume that there exists ∆ : Aθ → Aθ ⊗ Aθ such that G = (Aθ,∆) were a
compact quantum group. We know from Theorem 4.3 that the Haar measure of G must
then be a trace and G is of Kac type. Moreover, since Aθ is nuclear, we know from
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Theorem 4.2 that (Aθ)r must have a character (because then (Aθ)r is also nuclear). But
if this were the case then Aθ would admit a character, since (Aθ)r is a quotient of Aθ (in
fact, for irrational θ the algebra Aθ is simple, so there are no proper quotients of Aθ) and
we know that Aθ does not admit any characters.

The same reasoning can be applied to show that higher dimensional quantum tori
([17]) do not admit a compact quantum group structure for nontrivial deformation pa-
rameters. If the deformation parameters are trivial (that means θ = 0 for the two-torus)
the resulting C∗-algebra Aθ is just the algebra of continuous function on a torus and, as
such, carries a compact quantum group structure.

It should be noted that the quantum two-torus can be made into a “part” of a compact
quantum group. This was done by P. M. Hajac and T. Masuda in [7].

There is one more interesting remark. The theory of quantum groups on operator
algebra level has its version in the language of von Neumann algebras (see e.g. [10]). The
passage to von Neumann algebras is achieved by taking weak closure in the GNS repre-
sentation defined by the Haar measure. If G = (Aθ,∆) were a compact quantum group
for some irrational θ then the unique tracial state of Aθ would be its Haar measure (as we
said earlier this follows from Theorem 4.3 and Theorem 3.4). Therefore the resulting von
Neumann algebra would be the hyperfinite factor of type II1. We already know that the
quantum torus is not a quantum group. However the “algebra of measurable essentially
bounded functions” on the quantum torus is the same as that of “measurable functions”
on many compact quantum groups. Indeed we get the same von Neumann algebra when
we start with C∗(Γ) for any amenable i.c.c. discrete group Γ.

Example 5.2 (Bratteli-Elliott-Evans-Kishimoto quantum two-spheres). The algebra of
continuous functions on a Bratteli-Elliott-Evans-Kishimoto quantum two-sphere is by
definition the fixed point subalgebra Cθ of Aθ considered in Example 5.1 under the action
of Z2 sending u and v to their adjoints ([3, 5]). For θ = 0 we have Cθ = C(S2) and this
C∗-algebra carries no compact quantum group structure because S2 is not a topological
group. For θ ∈]0, 1[ the argument used to show that T2

θ is not a compact quantum group
works perfectly well for the BEEK quantum two-spheres. All we need is to know that Cθ
is a nuclear C∗-algebra with a faithful trace which admits no characters.

Example 5.3 (Standard Podleś quantum sphere). In [13] Piotr Podleś defined and stud-
ied a class of quantum spaces which later came to be known as Podleś (quantum) spheres.
These are compact quantum spaces endowed with an action of the quantum SU(2) group
([23]) mimicking the standard action of SU(2) on S2. Podleś found all such objects and
showed that they form a family (S2

q,c) labeled by a parameter c ∈ [0,∞] (the parameter q
is related to the particular quantum SU(2) group). Only for c = 0 can S2

q,c be considered
as a quotient homogeneous space the quantum SU(2) and this quantum sphere is referred
to as the standard Podleś quantum sphere (cf. [14]).

The algebra of continuous functions on S2
q,0 is isomorphic to K +, i.e. the minimal uni-

tization of the algebra of compact operators on a separable Hilbert space. This C∗-algebra
has a unique proper ideal which is maximal. This makes it easy to see that if there existed
∆ : K + → K +⊗K + such that G = (K +,∆) were a compact quantum group then the
Haar measure h of G would have to be faithful. Otherwise the left kernel J of h would
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be either {0} or so large that the quotient Ar = K +/J would be commutative (equal
to C). But we already said in Subsection 3.4 that compact quantum groups described by
commutative C∗-algebras are automatically universal. It follows that G must be equal to
its reduced version. Note that on K + there exists a nontrivial character.

There are no faithful traces on K +, so that the family of modular functionals must be
nontrivial. But since K + has a character, the Woronowicz characters must be continuous
and nontrivial on K + (Theorem 4.1). However there is only one character on K + which
shows that existence of ∆ is impossible.

Example 5.4 (Natsume-Olsen quantum two-spheres). In [11] a family of quantum spaces
was introduced which we call the family of Natsume-Olsen quantum two-spheres. The
family is parametrized by a parameter t ∈

[
0, 1

2

[
. The C∗-algebra Bt corresponding to

t is the universal C∗-algebra generated by two elements z and ζ satisfying the following
relations:

ζ∗ζ + z2 = 1 = ζζ∗ + (tζζ∗ + z)2,

ζz − zζ = tζ(1− z2).

For t = 0 we have Bt = C(S2) and S2 is not a compact group.
In case t > 0 let us suppose that G = (Bt,∆) is a compact quantum group for some

comultiplication ∆ : Bt → Bt ⊗ Bt. Then we note that Bt has an ideal I isomorphic
to C(T) ⊗ K such that Bt/I = C2 ([11]). This can be used to show that the Haar
measure h of G cannot be a trace. Indeed, if it were then a simple argument shows that
the left kernel J of h would contain I . Then the quotient (Bt)r = Bt/J would be
commutative and we would arrive at a contradiction as e.g. in Example 5.3. Then one
must do a little work to show that (Bt)r admits a character ([20]). By Theorem 4.1 all
Woronowicz characters must be continuous on Bt and by Theorems 3.8 and 3.4 and the
fact that h is not a trace we see that Bt must have a nontrivial one-parameter continuous
family of characters. This contradicts a simple fact that the character space of Bt consists
of two points. It follows that Natsume-Olsen quantum spheres do not admit a compact
quantum group structure.

6. On the quantum disk. Let us now describe some partial results on the question
whether the quantum disk could have a quantum group structure. The quantum disk is
the compact quantum space described by the Toeplitz algebra T ([9]). We do not have a
proof that the quantum disk does not admit a compact quantum group structure, but we
conjecture it does not and we can go quite far along the lines of our previous examples.

If we assume that G = (T ,∆) is a compact quantum group then the Haar measure h
of G must be faithful. This is because K is an essential ideal of T , and the left kernel
J of h would have a non zero intersection with K which by simplicity of K would be
all of K . In particular J would contain K and the quotient would be commutative. As
we stated in Subsection 3.4 this would imply that the C∗-algebra T is commutative. In
particular h cannot be a trace since there is no faithful trace on T .

As h is faithful, we see that G = Gr and since T admits a character, all Woronowicz
characters must be continuous on T . The character space of the C∗-algebra T is home-
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omorphic to T and carries a structure of a compact group. Let us first see that this is
exactly the set of Woronowicz characters with the group structure of quotient of R (recall
that fit ∗ fis = fi(t+s)). Indeed, let G be the compact group of characters of T and let
GW be the subgroup consisting of Woronowicz characters. GW is nontrivial (because h
is not tracial) and it is a connected subset of G. Therefore GW contains the unit of G
as an interior point (cf. Section 1) and thus a neighborhood of the unit of G. But G is
connected, so it is algebraically generated by any open neighborhood of its unit. It follows
that GW = G.

The Gelfand transform γ : T → C(T) is a morphism of compact quantum groups,
where the comultiplication on C(T) comes from the group structure of T = G = GW .
Using some known results about Toeplitz algebras ([6]) one can show that there is an
isometry x which generates T and is mapped to a group like generator z of C(T) under
the Gelfand transform (this means that the comultiplication on C(T) sends z to z⊗z). It
follows that ∆(x) = x⊗x+X, where X ∈ ker γ⊗γ = T ⊗K +K ⊗T . Now, if X could
be shown to be zero we would be done, since in that case x would be group like and by
[25, Theorem 2.6(2)] would belong to the Hopf ∗-algebra associated to G. However group
like elements of Hopf algebras must be invertible and x is not. Unfortunately, although
we can show a number of properties of X, as for now the property that X = 0 is not
within our reach. In fact, using techniques from the theory of Hopf-Galois extensions, one
could show that the weaker property that (id⊗ γ)(X) = 0 would be enough to disprove
existence of a compact quantum group structure on the quantum disk.
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