BANACH ALGEBRAS 2009 BANACH CENTER PUBLICATIONS, VOLUME 91 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2010

FRÉCHET ALGEBRAS OF POWER SERIES

H. GARTH DALES

Department of Pure Mathematics, University of Leeds Leeds, LS2 9JT, UK E-mail: garth@maths.leeds.ac.uk

SHITAL R. PATEL

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, 208 016, Uttar Pradesh, India E-mail: srpatel.math@gmail.com

CHARLES J. READ

Department of Pure Mathematics, University of Leeds Leeds, LS2 9JT, UK E-mail: read@maths.leeds.ac.uk

Abstract. We consider Fréchet algebras which are subalgebras of the algebra $\mathfrak{F} = \mathbb{C}[[X]]$ of formal power series in one variable and of $\mathfrak{F}_n = \mathbb{C}[[X_1, \dots, X_n]]$ of formal power series in n variables, where $n \in \mathbb{N}$. In each case, these algebras are taken with the topology of coordinatewise convergence.

We begin with some basic definitions about Fréchet algebras, (F)-algebras, and other topological algebras, and recall some of their properties; we discuss Michael's problem from 1952 on the continuity of characters on these algebras and some results on uniqueness of topology.

A 'test algebra' \mathcal{U} for Michael's problem for commutative Fréchet algebras has been described by Clayton and by Dixon and Esterle. We prove that there is an embedding of \mathcal{U} into \mathfrak{F} , and so there is a Fréchet algebra of power series which is a test case for Michael's problem.

We also discuss homomorphisms from Fréchet algebras into \mathfrak{F} . We prove that such a homomorphism is either continuous or a surjection, so answering a question of Dales and McClure from 1977. As corollaries, we note that a subalgebra A of \mathfrak{F} containing $\mathbb{C}[X]$ that is a Banach algebra is already a Banach algebra of power series, in the sense that the embedding of A into \mathfrak{F} is automatically continuous, and that each (F)-algebra of power series has a unique (F)-algebra

2010 Mathematics Subject Classification: Primary 46H40; Secondary 1325, 13J05, 46J99. Key words and phrases: (F)-algebras, Fréchet algebras of power series, uniqueness of topology, discontinuous homomorphisms, separating space.

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc91-0-7

topology. We also prove that it is not true that results analogous to the above hold when we replace \mathfrak{F} by \mathfrak{F}_2 .

1. Algebraic definitions. All the algebras that will arise in this paper will have ground field the complex field, \mathbb{C} ; for a background in the algebra that we shall use, see [4, 6, 27], for example.

Let A be an algebra over \mathbb{C} . As in [6], the product map on A is denoted by

$$m_A:(a,b)\mapsto a\cdot b=ab,\quad A\times A\to A;$$

the set (A, \cdot) is the multiplicative semigroup of A.

A character on A is a non-zero homomorphism from A onto \mathbb{C} ; the collection of all characters on A is the character space of A, denoted by Φ_A .

Let A be a unital algebra, with identity e_A . Then $a \in A$ is *invertible* if there exists $b \in A$ with $ab = ba = e_A$, and then we write $b = a^{-1}$ for the *inverse* of a; the collection of invertible elements in A is denoted by Inv A, so that Inv A is a subsemigroup of (A, \cdot) . Clearly we have $(ab)^{-1} = b^{-1}a^{-1}$ $(a, b \in \text{Inv } A)$.

We recall that an ideal P in a commutative algebra A is a prime ideal if $P \neq A$ and if either $a \in P$ or $b \in P$ whenever $a, b \in A$ and $ab \in P$. Thus P is a prime ideal if and only if the quotient algebra A/P is an integral domain. For example, every maximal modular ideal in A is a prime ideal.

Let A and B be algebras, and let $\theta:A\to B$ be a homomorphism. Then θ is an *embedding* if it is injective, and in this case we often regard A as a subalgebra of B; we say that A *embeds* in B if there is such an embedding. An embedding $\theta:A\to B$ is an *isomorphism* if it is also a surjection; A is *isomorphic* to B, written $A\cong B$, if there is such an isomorphism.

In this paper, we shall consider in particular subalgebras of the algebras of formal power series in one and several variables over \mathbb{C} ; these latter algebras of formal power series are denoted by

$$\mathfrak{F} = \mathbb{C}[[X]]$$
 and $\mathfrak{F}_n = \mathbb{C}[[X_1, \dots, X_n]],$

respectively, where $n \in \mathbb{N}$. A description of these algebras is given in [6, §1.6]; we recall some notation and some of their basic properties.

Formally \mathfrak{F} consists of sequences $\alpha = (\alpha_k) = (\alpha_k : k \in \mathbb{Z}^+)$, where $\mathbb{Z}^+ = \{0, 1, 2, \dots\}$, with coordinatewise addition and scalar multiplication and algebra multiplication determined by the rule that $\delta_k \star \delta_\ell = \delta_{k+\ell}$ for $k, \ell \in \mathbb{Z}^+$, where $\delta_k = (\delta_{j,k} : j \in \mathbb{Z}^+)$, the characteristic function of $\{k\}$. Less formally, \mathfrak{F} consists of the formal sums

$$\sum_{k=0}^{\infty} \alpha_k X^k,$$

with the obvious product. Thus (\mathfrak{F},\star) is a commutative algebra with an identity denoted by 1; in fact, we shall usually denote the product of two elements of \mathfrak{F} by juxtaposition. We regard the algebra $\mathbb{C}[X]$ of polynomials in one variable as a unital subalgebra of \mathfrak{F} in the obvious way.

Throughout, we shall write

$$\pi_k: \alpha \mapsto \alpha_k, \quad \mathfrak{F} \to \mathbb{C},$$

for the coordinate projections, defined for each $k \in \mathbb{Z}^+$. In particular, π_0 is the unique character on \mathfrak{F} . For $f \in \mathfrak{F}$ with $f \neq 0$, the *order* of f is $\mathbf{o}(f) = \min\{k : \pi_k(f) \neq 0\}$; we set $\mathbf{o}(0) = \infty$, and follow usual conventions on the ordering of $\mathbb{Z}^+ \cup \{\infty\}$.

For $k \in \mathbb{N}$, where $\mathbb{N} = \{1, 2, \dots\}$, set

$$M_k = \left\{ f = \sum_{k=0}^{\infty} \alpha_k X^k \in \mathfrak{F} : \alpha_0 = \alpha_1 = \dots = \alpha_{k-1} = 0 \right\} = \left\{ f \in \mathfrak{F} : \mathbf{o}(f) \ge k \right\}$$

(and take $M_0 = \mathfrak{F}$). Then, for each $k \in \mathbb{Z}^+$, the set M_k is an ideal in \mathfrak{F} , $M_{k+1} \subset M_k$ with $\dim(M_k/M_{k+1}) = 1$, and every non-zero ideal of \mathfrak{F} has the form M_k for some $k \in \mathbb{Z}^+$. Further, $M = M_1$ is the unique maximal ideal of \mathfrak{F} , and

$$M_k = M^{[k]} = M^k = X^k \mathfrak{F} \quad (k \in \mathbb{Z}^+),$$

in the notation of [6]. Clearly $M_k M_\ell = M_{k+\ell}$ $(k, \ell \in \mathbb{Z}^+)$, and so there are precisely two prime ideals in \mathfrak{F} , namely the maximal ideal M and $\{0\}$. Further,

Inv
$$\mathfrak{F} = \{ f \in \mathfrak{F} : \pi_0(f) \neq 0 \}.$$

For $f \in \text{Inv}\,\mathfrak{F}$ and $k \in \mathbb{N}$, there exists $g \in \text{Inv}\,\mathfrak{F}$ with $g^k = f$. Indeed, suppose that $f = 1 + \sum_{j=1}^{\infty} \alpha_j X^j$, and we seek g of the form $1 + \sum_{j=1}^{\infty} \beta_j X^j$. Then we take β_1 with $k\beta_1 = \alpha_1$, and then note that, for $j \geq 2$, the formula for β_j is $k\beta_j = \alpha_j + \gamma$, where γ depends on only $\beta_1, \ldots, \beta_{j-1}$. It follows that each $f \in \mathfrak{F}$ with $\mathbf{o}(f) = k \in \mathbb{N}$ has the form $(Xg)^k$ for some $g \in \text{Inv}\,\mathfrak{F}$.

For example, $\exp X \in \mathfrak{F}$ is the series $\sum_{k=0}^{\infty} X^k/k!$.

Let $f \in M$ and $g \in \mathfrak{F}$. Then we can define the 'composition series' $g \circ f \in \mathfrak{F}$ by 'substitution' in the obvious way; for example, we can define $\exp f \in \mathfrak{F}$.

Suppose that $f = \sum_{k=0}^{\infty} \alpha_k X^k \in \mathfrak{F}$ is such that $\sum_{k=0}^{\infty} |\alpha_k| R^k < \infty$ for each R > 0. Then we can regard f as an entire function defined on \mathbb{C} ; in this case, $\exp f$ satisfies the same condition and is also an entire function, and hence an element of \mathfrak{F} .

Now take $n \in \mathbb{N}$. Let $r = (r_1, \dots, r_n) \in (\mathbb{Z}^+)^n$, and set

$$|r| = r_1 + \dots + r_n.$$

A monomial is the characteristic function of an element, say r, of $(\mathbb{Z}^+)^n$, and the degree of the monomial is |r|. For $j=1,\ldots,n$, we write X_j for the monomial corresponding to the element $(\delta_{j,1},\ldots,\delta_{j,n})\in(\mathbb{Z}^+)^n$. For $k\in\mathbb{Z}^+$, a homogeneous polynomial of degree k is a linear combination (necessarily finite) of monomials of degree k. An element of

$$\mathfrak{F}_n = \mathbb{C}[[X_1, \dots, X_n]]$$

is defined to be a sequence $(f_k : k \in \mathbb{Z}^+)$, where each f_k is a homogeneous polynomial of degree k (and f_0 is a multiple of the identity 1). The product of two homogeneous polynomials of degree k and ℓ , respectively, is a homogeneous polynomial of degree $k + \ell$, and in this way we define a product on \mathfrak{F}_n making it into a commutative algebra with identity 1. A generic element of \mathfrak{F}_n is denoted by

$$\sum \{\alpha_r X^r : r \in (\mathbb{Z}^+)^n\} = \sum \{\alpha_{(r_1, \dots, r_n)} X_1^{r_1} \cdots X_n^{r_n} : (r_1, \dots, r_n) \in (\mathbb{Z}^+)^n\}.$$

The algebra $\mathbb{C}[X_1,\ldots,X_n]$ of polynomials in n variables consists of the finite sums of monomials in \mathfrak{F}_n , and is identified with a subalgebra of \mathfrak{F}_n .

Throughout, we shall write

$$\pi_r: \alpha \mapsto \alpha_r, \quad \mathfrak{F}_n \to \mathbb{C},$$

for the coordinate projections, defined for each $r \in (\mathbb{Z}^+)^n$. In particular, π_0 is the unique character on \mathfrak{F}_n (where $0 = (0, \dots, 0)$).

Let $f = (f_k : k \in \mathbb{Z}^+) \in \mathfrak{F}_n$ with $f \neq 0$, where f_k is a homogeneous polynomial of degree k. Then the *order* of f is

$$\mathbf{o}(f) = \min\{k : f_k \neq 0\},\$$

and the term f_k is the *initial form* of f [27, p. 130]. Take $f, g \in \mathfrak{F}_n$ with $f, g \neq 0$, and suppose that f_k and g_ℓ are the initial forms of f and g, respectively. Then $fg \neq 0$, so that \mathfrak{F}_n is an integral domain; we have $\mathbf{o}(fg) = \mathbf{o}(f) + \mathbf{o}(g)$ and $f_k g_\ell$ is the initial form of fg. We set $\mathbf{o}(0) = \infty$.

For $k \in \mathbb{Z}^+ \cup \{\infty\}$, set

$$M_k := \{ f \in \mathfrak{F}_n : \mathbf{o}(f) \ge k \}.$$

Then, for each $k \in \mathbb{Z}^+ \cup \{\infty\}$, the set M_k is an ideal in \mathfrak{F}_n . Also, we see that

$$M_k M_\ell = M_{k+\ell} \quad (k, \ell \in \mathbb{Z}^+)$$

and that, for each $k \in \mathbb{Z}^+$, we have $\dim(M_k/M_{k+1}) = \binom{k+n-1}{k} < \infty$, so that each M_k is an ideal of finite codimension in \mathfrak{F}_n , and M_k is generated by the monomials of degree k. Further, M_1 , sometimes written as \mathfrak{M}_n (with $\mathfrak{M} = \mathfrak{M}_1$) to show the dependence on n, is the unique maximal ideal in \mathfrak{F}_n , and, for each $k \in \mathbb{N}$, we have $M_1^k = M_k$, so that

Inv
$$\mathfrak{F}_n = \{ f \in \mathfrak{F}_n : \pi_0(f) \neq 0 \}$$
 and $M_1^k = \sum \{ X^r \mathfrak{F}_n : |r| = k \}.$

Clearly, $\bigcap \{M_k : k \in \mathbb{N}\} = \{0\}.$

Each ideal in \mathfrak{F}_n is finitely-generated, and so \mathfrak{F}_n is noetherian [27, VII, Corollary p. 139 and Theorem 4']. However, when $n \geq 2$, there are certainly ideals in \mathfrak{F}_n which are not of finite codimension. For example, this is the case for the ideal $P = X_2\mathfrak{F}_2$ in \mathfrak{F}_2 . Indeed, it is clear that P is a prime ideal in \mathfrak{F}_2 and that $\mathfrak{F}_2/P \cong \mathfrak{F}$.

The topology of coordinatewise convergence, called τ_c , is a metrizable topology on \mathfrak{F}_n (see below). In this topology, a sequence $(f_k)_{k\geq 1}$ in \mathfrak{F}_n converges to $f\in \mathfrak{F}_n$ if and only if $\pi_r(f_k)\to \pi_r(f)$ as $k\to\infty$ for each $r\in (\mathbb{Z}^+)^n$. In particular, a series $\sum_{k=1}^\infty f_k$ in \mathfrak{F}_n converges whenever $(f_k)_{k\geq 1}$ is such that, for each $s\in (\mathbb{Z}^+)^n$, we have $\pi_s(f_k)=0$ for all sufficiently large $k\in\mathbb{N}$. For example, for each $f\in\mathfrak{M}_n$ and each sequence $(\beta_k)_{k\geq 1}$, the series $\sum_{k=1}^\infty \beta_k f^k$ converges in \mathfrak{F}_n .

The following result is given in [27, pp. 135,136]; it is also noted there that each homomorphism from \mathfrak{F}_m to \mathfrak{F}_n has the specified form.

For $n \in \mathbb{N}$, we set $\mathbb{N}_n = \{1, \dots, n\}$.

LEMMA 1.1. Let $m, n \in \mathbb{N}$, and take $f_1, \ldots, f_m \in \mathfrak{M}_n$. Then the map

$$\theta: \sum \{\alpha_r X^r : r \in (\mathbb{Z}^+)^m\} \mapsto \sum \{\alpha_r f_1^{r_1} \cdots f_m^{r_m} : r \in (\mathbb{Z}^+)^m\}, \quad \mathfrak{F}_m \to \mathfrak{F}_n, \tag{1.1}$$

is a continuous homomorphism with $\theta(X_i) = f_i$ $(i \in \mathbb{N}_m)$.

Proof. It suffices to note that, for each $s \in (\mathbb{Z}^+)^n$, we have $\pi_s(f_1^{r_1} \cdots f_m^{r_m}) = 0$ for all but finitely many values of $r \in (\mathbb{Z}^+)^m$, and so the sum on the right-hand side of (1.1) converges in \mathfrak{F}_n . It is then clear that θ is a homomorphism.

We shall use the following lemma from [27, p. 136].

LEMMA 1.2. Let $n \in \mathbb{N}$, and let $f^1, \ldots, f^n \in \mathfrak{F}_n$ have initial forms X_1, \ldots, X_n , respectively. Then the substitution map $\theta : g \mapsto g(f^1, \ldots, f^n)$, $\mathfrak{F}_n \to \mathfrak{F}_n$, is an automorphism of \mathfrak{F}_n with $\theta(X_i) = f^i$ $(i \in \mathbb{N}_n)$. Thus there is an automorphism ψ of \mathfrak{F}_n such that $\psi(f^i) = X_i$ $(i \in \mathbb{N}_n)$.

2. Embeddings of \mathfrak{F}_m **in** \mathfrak{F}_n . As a background to our future results, we shall consider when the algebras \mathfrak{F}_n can be embedded into each other. Of course, there is a trivial embedding of \mathfrak{F}_m into \mathfrak{F}_n whenever $n \geq m$. We shall first show that each \mathfrak{F}_n can be embedded in \mathfrak{F}_2 ; this well-known result is essentially in [27], but we give some details for this specific result.

Let A be a commutative, unital algebra, and let a_1, \ldots, a_n be distinct elements of A. Then $\{a_1, \ldots, a_n\}$ is said to be algebraically independent in A if $p(a_1, \ldots, a_n) \neq 0$ for each non-zero polynomial $p \in \mathbb{C}[X_1, \ldots, X_n]$.

LEMMA 2.1. There is a sequence $(f_j)_{j\geq 1}$ in \mathfrak{F} such that $\{1, f_1, \ldots, f_n\}$ is algebraically independent in \mathfrak{F} for each $n \in \mathbb{N}$.

Proof. Set $f_0 = 1$ and $f_1 = X$, and then define $(f_j)_{j \ge 2}$ inductively by setting

$$f_{j+1} = \exp f_j \quad (j \in \mathbb{N}).$$

As above, we can regard each f_j as an entire function, and in particular as a function on \mathbb{R} . We note that $f_j^m(x)/f_{j+1}(x) \to 0$ as $x \to \infty$ in \mathbb{R} for each $j, m \in \mathbb{N}$.

Let $n \in \mathbb{N}$. Then we *claim* that $\{1, f_1, \ldots, f_n\}$ is algebraically independent in \mathfrak{F} . Indeed, suppose that $p(1, f_1, \ldots, f_n) = 0$, where $p \in \mathbb{C}[X_1, \ldots, X_{n+1}]$. Then there exist $\alpha_r \in \mathbb{C}$ such that

$$\sum \{\alpha_r f_1^{r_1} \cdots f_n^{r_n} : r \in (\mathbb{Z}^+)^n\} = 0,$$

where the sum is a finite sum.

Assume towards a contradiction that not all the numbers α_r in this sum are zero. Choose the maximum value of r_n , say s_n , such that $\alpha_r \neq 0$ for some

$$r = (r_1, \dots, r_{n-1}, s_n) \in (\mathbb{Z}^+)^n$$
.

Then choose the maximum value of r_{n-1} , say s_{n-1} , such that $\alpha_r \neq 0$ for some

$$r = (r_1, \dots, r_{n-2}, s_{n-1}, s_n) \in (\mathbb{Z}^+)^n.$$

Continue in this way to find a specific $s = (s_1, \ldots, s_n) \in (\mathbb{Z}^+)^n$ with $\alpha_s \neq 0$. We see that

$$0 = \sum \{\alpha_r f_1^{r_1}(x) \cdots f_n^{r_n}(x) : r \in (\mathbb{Z}^+)^n\} / f_1^{s_1}(x) \cdots f_n^{s_n}(x) \to \alpha_s \quad \text{as} \quad x \to \infty,$$

a contradiction.

Thus the result holds.

An extension of the following theorem will be given in Theorem 9.1.

THEOREM 2.2. Let $n \in \mathbb{N}$. Then there is an embedding of \mathfrak{F}_n in \mathfrak{F}_2 .

Proof. Set $\mathfrak{F}_n = \mathbb{C}[[X_1,\ldots,X_n]]$ and $\mathfrak{F}_2 = \mathbb{C}[[Y_1,Y_2]]$.

We may suppose that $n \geq 3$. As in Lemma 2.1, there is an algebraically independent set $\{1, f_1, \ldots, f_n\}$ in \mathfrak{F} . Each element of \mathfrak{F}_n has the form $g = (g_k : k \in \mathbb{Z}^+)$, where g_k is a homogeneous polynomial of degree k for each $k \in \mathbb{Z}^+$. Define

$$\theta: g = (g_k) \mapsto \sum_{k=0}^{\infty} Y_2^k g_k(f_1(Y_1), \dots, f_n(Y_1)), \quad \mathfrak{F}_n \to \mathfrak{F}_2.$$

It is clear that θ is a homomorphism.

Suppose that $\theta(g) = 0$, and take $k \in \mathbb{Z}^+$. Then $g_k(f_1(Y_1), \ldots, f_n(Y_1)) = 0$ in \mathfrak{F} . However g_k is a polynomial in $\mathbb{C}[X_1, \ldots, X_n]$ and $\{1, f_1, \ldots, f_n\}$ is algebraically independent, and so $g_k = 0$. Thus g = 0, and so θ is an injection, and hence an embedding.

We now seek to show that \mathfrak{F}_2 does not embed in \mathfrak{F} . This is surely well-known, but we were unable to find a specific reference.

LEMMA 2.3. Assume that there is an embedding of \mathfrak{F}_2 into \mathfrak{F} . Then there is an embedding $\overline{\theta}:\mathfrak{F}_2\to\mathfrak{F}$ and $k\in\mathbb{N}$ such that $X^k\in\overline{\theta}(\mathfrak{F}_2)$.

Proof. Let $\theta: \mathfrak{F}_2 \to \mathfrak{F}$ be an embedding. Then $\theta(X_1) \in \mathfrak{M} \setminus \{0\}$, and so $\mathbf{o}(\theta(X_1)) = k$ for some $k \in \mathbb{N}$. Hence there exists $f \in \text{Inv } \mathfrak{F}$ with $\theta(X_1) = (Xf)^k$. By Lemma 1.2, there is an automorphism ψ of \mathfrak{F} with $\psi(Xf) = X$. Set $\overline{\theta} = \psi \circ \theta: \mathfrak{F}_2 \to \mathfrak{F}$. Then $\overline{\theta}$ is an embedding, and $\overline{\theta}(X_1) = \psi((Xf)^k) = X^k$. Hence $X^k \in \overline{\theta}(\mathfrak{F}_2)$.

Let A be a unital subalgebra of a unital algebra B. An element $b \in B$ is integral over A if there is a monic polynomial $p \in A[X]$ with p(b) = 0; the algebra B is integral over A if each $b \in B$ is integral over A. Suppose that B is a finitely generated A-module. Then B is integral over A [18, Chapter VIII, Corollary 5.4].

LEMMA 2.4. Let $\theta: \mathfrak{F}_2 \to \mathfrak{F}$ be an embedding such that $X^k \in \theta(\mathfrak{F}_2)$ for some $k \in \mathbb{N}$. Then \mathfrak{F} is integral over $\theta(\mathfrak{F}_2)$.

Proof. Set $A = \theta(\mathfrak{F}_2)$. Then it is sufficient to show that \mathfrak{F} is a finitely generated A-module. We shall show that, as an A-module, \mathfrak{F} is generated by $\{1, X, \dots, X^{k-1}\}$.

Let $f \in \mathfrak{F}$, say $f = \sum_{k=0}^{\infty} \alpha_k X^k$. For $j = 0, \ldots, k-1$, set $h_j = \sum_{i=0}^{\infty} \alpha_{j+ik} X^{ik}$. Then $h_0, \ldots, h_{k-1} \in A$ and $f = h_0 + Xh_1 + \cdots + X^{k-1}h_{k-1}$, and so \mathfrak{F} is generated by $\{1, X, \ldots, X^{k-1}\}$.

We shall use the following standard result from [4, Theorem 5.10], for example; it is a precursor of the famous 'going-up' theorem.

LEMMA 2.5. Let A be a unital subalgebra of an algebra B, and let P be a prime ideal of A. Then there is a prime ideal Q of B with $Q \cap A = P$.

THEOREM 2.6. Take $n \geq 2$. Then there is no embedding of \mathfrak{F}_n into \mathfrak{F} .

Proof. Assume towards a contradiction that there is an embedding of \mathfrak{F}_n into \mathfrak{F} . Then there is an embedding $\theta: \mathfrak{F}_2 \to \mathfrak{F}$; again set $A = \theta(\mathfrak{F}_2)$. By Lemma 2.3, we may suppose that there exists $k \in \mathbb{N}$ such that $X^k \in A$. By Lemma 2.4, \mathfrak{F} is integral over A. Next set $P = \theta(X_2\mathfrak{F}_2)$, a prime ideal in A. By Lemma 2.5, there is a prime ideal Q of \mathfrak{F}

with $Q \cap A = P$. But the only two prime ideals Q of \mathfrak{F} are $\{0\}$ and \mathfrak{M} ; it is clear that $\{0\} \cap A = \{0\} \subsetneq P$ and that $\mathfrak{M} \cap A = \theta(\mathfrak{M}_2) \supsetneq P$. Thus we have the required contradiction. \blacksquare

A second proof of the above theorem will be given in Theorem 11.8, below.

3. Higher point derivations. We shall be interested in homomorphisms from algebras into \mathfrak{F} ; these can be defined in terms of certain higher point derivations. For a study of higher point derivations on commutative Banach algebras, see [7, 8, 9].

DEFINITION 3.1. Let A be an algebra, and let τ be a Hausdorff topology on A such that (A, τ) is a topological linear space. Then (A, τ) is a topological algebra if the product map m_A is continuous.

Definition 3.2. Let A be an algebra, and let $\varphi \in \Phi_A$. Then a sequence

$$(d_n) = (d_n : n \in \mathbb{Z}^+)$$

of linear functionals on A is a higher point derivation at φ if $d_0 = \varphi$ and if

$$d_n(ab) = \sum_{j=0}^n d_j(a) d_{n-j}(b) \quad (a, b \in A, n \in \mathbb{N}).$$

A higher point derivation (d_n) is non-degenerate if $d_0 \neq 0$ and $d_1 \neq 0$.

Suppose that (A, τ) is a topological algebra. Then a higher point derivation (d_n) on A is *continuous* if each of the linear functionals d_n for $n \in \mathbb{Z}^+$ is continuous with respect to τ , discontinuous if at least one of the d_n is discontinuous, and totally discontinuous if each of the d_n for $n \in \mathbb{N}$ is discontinuous.

For example, consider $O(\mathbb{D})$, the algebra of all analytic functions on the open unit disc \mathbb{D} , and, for $f \in O(\mathbb{D})$, set

$$d_n(f) = \frac{f^{(n)}(0)}{n!} \quad (n \in \mathbb{Z}^+).$$

Then the sequence $(d_n : n \in \mathbb{Z}^+)$ is a non-degenerate, continuous higher point derivation at the evaluation character $\varepsilon_0 : f \mapsto f(0)$ of $O(\mathbb{D})$.

Let A be a unital algebra, and let $\varphi \in \Phi_A$. Suppose that $(d_n : n \in \mathbb{Z}^+)$ is a higher point derivation at φ . Then the map

$$\theta: a \mapsto \sum_{n=0}^{\infty} d_n(a) X^n, \quad A \to \mathfrak{F},$$

is a homomorphism with $\pi_0 \circ \theta = \varphi$. Conversely, if $\theta : A \to \mathfrak{F}$ is a homomorphism, then $(\pi_n \circ \theta : n \in \mathbb{Z}^+)$ is a higher point derivation at the character $\pi_0 \circ \theta$ on A. We shall always identify homomorphisms into \mathfrak{F} with higher point derivations in this way.

Similarly, one can identify homomorphisms from an algebra A into \mathfrak{F}_n (where $n \in \mathbb{N}$) with a suitable sequence $(d_r : r \in (\mathbb{Z}^+)^n)$ of linear functionals on A.

The following easy remark is known.

PROPOSITION 3.3. Let A be an algebra, and let (d_n) be a non-degenerate higher point derivation at a character of A.

- (i) The set $\{d_n : n \in \mathbb{Z}^+\}$ is linearly independent.
- (ii) For each $k \in \mathbb{Z}^+$, there are $a_0, \ldots, a_k \in A$ such that

$$d_i(a_j) = \delta_{i,j} \quad (i, j = 0, \dots, k).$$

(iii) For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \ker d_0$, we have

$$d_n(a_1 \cdots a_n) = d_1(a_1) \cdots d_n(a_n).$$

Proof. (i) First suppose that $\alpha d_0 + \beta d_1 = 0$. Choose $u \in A$ with $d_0(u) = 1$, so that $d_0(u^2) = 1$ and $d_1(u^2) = 2z$, where $z = d_1(u)$. If z = 0, then $\alpha = 0$, and then $\beta = 0$ because $d_1 \neq 0$. If $z \neq 0$, then $\alpha + \beta z = \alpha + 2\beta z = 0$, and so $\alpha = \beta = 0$. Thus $\{d_0, d_1\}$ is linearly independent.

Now choose $v \in A$ with $d_0(v) = 0$ and $d_1(v) = 1$. For $k \in \mathbb{N}$, we have

$$d_0(v^k) = \dots = d_{k-1}(v^k) = 0$$

and $d_k(v^k) = 1$. It follows easily from this that the set $\{d_n : n \in \mathbb{Z}^+\}$ is linearly independent.

- (ii) and (iii) These follow immediately.
- **4.** (F)-algebras and Fréchet algebras. There is considerable variation of terminology in the literature about these algebras. We shall use the following definitions, copying [6]. An early important source on these algebras is [28]; a fine recent account is that of [14].

A topological linear space E is an (F)-space if there is a complete metric defining the topology of E; a locally convex space which is an (F)-space is a Fréchet space. The space E is locally bounded if there is a bounded neighbourhood of the origin in E.

DEFINITION 4.1. A topological algebra (A, τ) is an (F)-algebra if there is a complete metric on A which defines the topology τ .

(These algebras are called 'Fréchet topological algebras' in [14].)

A metric d on a linear space E is translation-invariant if

$$d(x+z, y+z) = d(x,y) \quad (x, y, z \in E).$$

In this case d(x,y) = d(x-y,0) $(x,y \in E)$. Let E be a topological linear space whose topology is specified by a metric. Then its topology is also specified by a translation-invariant metric [26, Theorem 1.24]. We can also suppose that, for each $x \in E$, we have

$$d(\alpha_n x, 0) \to 0$$
 whenever $\alpha_n \to 0$ in \mathbb{C} . (4.1)

Thus our (F)-space is the same as an 'F-space' in [26].

Here is an easy remark. Let A be an algebra which is also a complete metrizable space. Suppose that the product $m_A: A \times A \to A$ is separately continuous. Then A is an (F)-algebra with respect to the topology determined by the metric.

Quite a lot of remarks, especially those related to the Baire category theorem, which are normally stated for Banach algebras, are actually true for (F)-algebras. Some particular results hold for separable (F)-algebras. For example, if I is a closed ideal in a separable (F)-algebra A, and I^2 has finite codimension in A, then I^2 is automatically closed; see [6].

Note that the Gel'fand–Mazur theorem holds for locally convex (F)-algebras: a locally convex (F)-algebra which is a division algebra is isomorphic to \mathbb{C} . It seems to be an open question whether or not every (F)-algebra which is a division algebra is isomorphic to \mathbb{C} .

Note that there are topologically simple, commutative locally convex (F)-algebras; of course the existence of topologically simple, commutative Banach algebras is a very famous open problem.

DEFINITION 4.2. Let $A = (A, \tau)$ be an (F)-algebra. Then A is a Fréchet algebra if the topology τ can be defined by a sequence $(p_k : k \in \mathbb{N})$ of algebra seminorms.

In this case, we can suppose without loss of generality that the sequence $(p_k : k \in \mathbb{N})$ of algebra seminorms is increasing, in the sense that

$$p_k(a) \le p_{k+1}(a) \quad (a \in A, k \in \mathbb{N}).$$

We write $(A, (p_k))$ for the corresponding Fréchet algebra.

Our Fréchet algebras are sometimes called 'complete, metrizable locally m-convex algebras'; Helemskii [17, Chapter V] calls them 'polynormed algebras'. The seminal work is [23]; for a new account that has results on Fréchet algebras, see [2].

For example, define

$$p_k\left(\sum_{j=0}^{\infty} \alpha_j X^j\right) = \sum_{j=0}^{k} |\alpha_j| \quad (k \in \mathbb{N})$$

for $\sum \alpha_j X^j \in \mathfrak{F}$. Then $(\mathfrak{F}, (p_k))$ is a Fréchet algebra. The topology so defined on \mathfrak{F} is the topology of coordinatewise convergence, τ_c .

Now fix $n \in \mathbb{N}$, and define

$$p_k\left(\sum\{\alpha_rX^r:r\in(\mathbb{Z}^+)^n\}\right)=\sum\{|\alpha_r|:r\in(\mathbb{Z}^+)^n,\,|r|\leq k\}$$

for $\sum \{\alpha_r X^r : r \in (\mathbb{Z}^+)^n\} \in \mathfrak{F}_n$. Clearly $(\mathfrak{F}_n, \tau_c) = (\mathfrak{F}_n, (p_k))$ is also a Fréchet algebra; the topology τ_c is again that of *coordinatewise convergence*. In this topology, the subalgebra $\mathbb{C}[X_1, \ldots, X_n]$ of polynomials is dense. The space (\mathfrak{F}_n, τ_c) is not locally bounded.

We note that every ideal in the algebra \mathfrak{F}_n is closed in the topology τ_c . Indeed we note the following pleasant result of Żelazko [29].

Proposition 4.3. Let A be a commutative Fréchet algebra. Then all ideals in A are closed if and only if A is noetherian. \blacksquare

5. The continuity of characters. We now consider when characters on a topological algebra are continuous.

DEFINITION 5.1. Let (A, τ) be a topological algebra. The set of continuous characters on A is denoted by Σ_A . The algebra A is functionally continuous if every character on A is continuous, so that $\Sigma_A = \Phi_A$.

It is standard fact, proved at the beginning of any course on Banach algebras in a few lines, that all characters on a Banach algebra are continuous. Thus Banach algebras are functionally continuous.

It is a remarkable fact (see [6, §4.10]) that the question whether or not every commutative Fréchet algebra is functionally continuous is open. This question was specifically discussed in the seminal work [23] of Michael, and so it is often called *Michael's problem*. It is likely that the question was already discussed by Mazur in Warsaw before 1939.

It is easy to find non-metrizable, complete LMC algebras that are not functionally continuous. However, we do not know an example of an (F)-algebra, even non-commutative, that is not functionally continuous.

A strong partial result of Arens [3] asserts that each commutative Fréchet algebra A which has a finite subset S that polynomially generates A, in the sense that the subalgebra of elements that are polynomials in the elements of S is dense in A, is functionally continuous; see [6, Corollary 4.10.11]. It follows that Σ_A is dense in Φ_A in the relative topology $\sigma(A^{\times}, A)$, where A^{\times} denotes the space of all linear functionals on A. Various other results showing that specific commutative Fréchet algebras are functionally continuous are given in [6, §4.10]. For example, it is shown in [6, Corollary 4.10.12] that each commutative Fréchet algebra for which Σ_A is countable is functionally continuous.

A remarkable result of Dixon and Esterle [11], given as [6, Corollary 4.10.16], shows that, under the assumption that there is a commutative Fréchet algebra which is not functionally continuous, the following result about analytic maps in several complex variables holds true: for each fixed $k \geq 2$ and each sequence $(F_n)_{n\geq 1}$ of analytic maps from \mathbb{C}^k into \mathbb{C}^k , the set

$$\{(z_n) \in \prod \mathbb{C}^k : F_n(z_{n+1}) = z_n \ (n \in \mathbb{N})\}$$

is non-empty. An example of a sequence $(F_n)_{n\geq 1}$ such that the above set is empty would lead to a proof that each commutative Fréchet algebra is functionally continuous; no such example is known.

Various 'test algebras' for the functional continuity of commutative Fréchet algebras have been given. These are commutative Fréchet algebras A with the property that all commutative Fréchet algebras are functionally continuous provided that this is the case for the specific algebra A. The first such test algebra, called \mathcal{U} , is due to Clayton in 1975 [5]. A deep study of Michael's problem and of the test algebra \mathcal{U} is given in [13], where other test algebras are mentioned; we shall describe the algebra \mathcal{U} below.

There are various papers in the literature which claim, explicitly or implicitly, a positive solution to Michael's problem, but none seems to have convinced the community.

Unfortunately we cannot mark our conference with a solution of Michael's problem, much as we would like to in this Polish setting. However we shall make a remark on this question in §9.

6. The separating space. A sequence $(x_n)_{n\geq 1}$ in a topological linear space is a *null sequence* if $x_n \to 0$ as $n \to \infty$.

Let E and F be (F)-spaces, and let $T: E \to F$ be a linear map. Then the *separating* space, $\mathfrak{S}(T)$, of T is defined to be the space of elements $y \in F$ such that there is a null sequence $(x_n)_{n\geq 1}$ in E with $\lim_{n\to\infty} Tx_n = y$. It is easily checked that $\mathfrak{S}(T)$ is a closed linear subspace of F; the closed graph theorem for (F)-spaces (see [2, §2.12] or [26, Theorem 2.15]) asserts that T is continuous if and only if $\mathfrak{S}(T) = \{0\}$.

Now suppose that A and B are (F)-algebras and that $\theta: A \to B$ is a homomorphism such that $\theta(A)$ is dense in B. Then it is easily checked that $\mathfrak{S}(\theta)$ is a closed ideal in B.

Let B be an (F)-algebra. Then a closed ideal I in B is a separating ideal if, for each sequence $(b_n)_{n\geq 1}$ in B, the nest $(\overline{b_1\cdots b_n I}:n\in\mathbb{N})$ of closed right ideals in B stabilizes, in the sense that there exists $n_0\in\mathbb{N}$ such that

$$\overline{b_1 \cdots b_n I} = \overline{b_1 \cdots b_{n_0} I} \quad (n \ge n_0).$$

The following is a special case of [6, Theorem 5.2.15].

THEOREM 6.1. Let A be a locally bounded (F)-algebra and B be an (F)-algebra, and let $\theta: B \to A$ be a homomorphism such that $\theta(B)$ is dense in A. Then $\mathfrak{S}(\theta)$ is a separating ideal in A. \blacksquare

7. Algebras of power series. The following definition is standard.

DEFINITION 7.1. Let $A=(A,\tau)$ be an (F)-algebra (respectively, a Fréchet algebra, a Banach algebra). Then A is an (F)-algebra of power series (respectively, a Fréchet algebra of power series, a Banach algebra of power series) if $\mathbb{C}[X] \subset A \subset \mathfrak{F}$ and if the embedding of (A,τ) into (\mathfrak{F},τ_c) is continuous.

There are many examples of Banach algebras of power series in [6]. An early exposition of Banach algebras of powers series and of their automorphisms and derivations was given by Grabiner in [15]. Fréchet algebras of power series are considered in [1, 13, 16, 21, 22, 24, ?, ?, 25], inter alia.

We also give the obvious generalization of this definition to several variables.

DEFINITION 7.2. Let $n \in \mathbb{N}$, and let $A = (A, \tau)$ be an (F)-algebra (respectively, a Fréchet algebra, a Banach algebra). Then A is an (F)-algebra (respectively, a Fréchet algebra, a Banach algebra) of power series in n variables if $\mathbb{C}[X_1, \ldots, X_n] \subset A \subset \mathfrak{F}_n$ and if the embedding of (A, τ) into (\mathfrak{F}_n, τ_c) is continuous.

We shall discuss the uniqueness of topology for certain topological algebras. Our terminology is the following.

DEFINITION 7.3. Let $A = (A, \tau)$ be an (F)-algebra. Then A has a unique (F)-algebra topology if any topology with respect to which A is an (F)-algebra is equal to τ .

Let $A = (A, \tau)$ be a Fréchet algebra. Then A has a unique Fréchet-algebra topology if any topology with respect to which A is a Fréchet algebra is equal to τ .

The uniqueness of topology for Banach algebra of power series was first considered in [19] and taken up in [20]. The uniqueness of the Fréchet algebra topology on \mathfrak{F} was first established in [1]. The following theorem is given in [6, Theorem 4.6.1 and Corollary 4.6.2].

THEOREM 7.4. Let $n \in \mathbb{N}$. Then (\mathfrak{F}_n, τ_c) is a Fréchet algebra, and \mathfrak{F}_n has a unique (F)-algebra topology. The algebra (\mathfrak{F}_n, τ_c) is not a Banach algebra with respect to any norm.

The following is essentially a theorem of Loy [22]; it is proved in [6, Theorem 5.2.20] in the case where n = 1 and A is a Banach algebra of power series, but the argument of that proof applies more generally.

Theorem 7.5. Let A be a locally bounded Fréchet algebra of power series in n variables, and let B be a functionally continuous Fréchet algebra. Then every homomorphism from B into A is continuous. In particular, A has a unique Fréchet-algebra topology.

This result was generalized by the second author in [24, Theorem 4.1 and Corollary 4.2].

THEOREM 7.6. Let A be a Fréchet algebra of power series such that $A \subsetneq \mathfrak{F}$, and let B be a Fréchet algebra. Then every homomorphism $\theta : B \to A$ such that $\dim \theta(B) > 1$ is continuous. Further, A has a unique Fréchet algebra topology.

It is necessary to exclude the case where $\dim \theta(B) = 1$ in the above theorem because it may be that there is a discontinuous character φ on B, and this would give a discontinuous homomorphism $b \mapsto \varphi(b)1, \ B \to A$. It is also necessary to exclude the case where $A = \mathfrak{F}$ because it is a theorem of Dales and McClure that there is a discontinuous epimorphism from certain Banach algebras onto \mathfrak{F} ; see Theorem 11.1, below.

We shall see in Corollary 11.7 that the second part of Theorem 7.6 can be generalized further: each (F)-algebra of power series has a unique (F)-algebra topology. However this leaves open the following queries.

QUERY. Let A be an (F)-algebra of power series, and let B be a functionally continuous (F)-algebra. Is every homomorphism from B into A automatically continuous? Does an (F)-algebra of power series in n variables (where $n \geq 2$) have a unique (F)-algebra topology?

Later, we shall consider the functional continuity of topological algebras of power series in n variables. Here we state an obvious corollary of the theorem of Arens that was mentioned in $\S 5$.

THEOREM 7.7. Let $n \in \mathbb{N}$, and let A be Fréchet algebra of power series in n variables such that $\mathbb{C}[X_1, \ldots, X_n]$ is dense in A. Then A is functionally continuous.

We remark that the algebra \mathfrak{F} has played a key role in automatic continuity theory through the following result that is a special case of a more general theorem of Allan [1]; see also [6, Theorem 5.7.1].

Theorem 7.8. There is a norm $\|\cdot\|$ on \mathfrak{F} such that $(\mathfrak{F},\|\cdot\|)$ is a normed algebra.

The following more general result is due to Haghany [16]; see also [6, Theorem 5.7.7].

THEOREM 7.9. Let $n \in \mathbb{N}$. Then there is a norm $\|\cdot\|$ on \mathfrak{F}_n such that $(\mathfrak{F}_n, \|\cdot\|)$ is a normed algebra.

All these results, and related results, are given in [6, §5.7].

8. The algebra of absolutely convergent power series

DEFINITION 8.1. A formal power series $\sum \alpha_n X^n$ in \mathfrak{F} is an absolutely convergent power series if there exists $\varepsilon > 0$ such that

$$\sum_{n=0}^{\infty} |\alpha_n| \, \varepsilon^n < \infty. \tag{8.1}$$

The collection of all such absolutely convergent power series is clearly a subalgebra of \mathfrak{F} containing $\mathbb{C}[X]$; it is denoted by $\mathbb{C}\{X\}$. The sum of such a series defines an analytic function, say $f \in O(\Delta_{\varepsilon})$, where $\Delta_{\varepsilon} := \{z \in \mathbb{C} : |z| < \varepsilon\}$, for some $\varepsilon > 0$.

The algebra $\mathbb{C}\{X\}$ is a topological algebra with respect to a certain inductive limit topology; in this topology, we have $f_n \to 0$ if and only if there exists $\varepsilon > 0$ such that each f_n for $n \in \mathbb{N}$ satisfies (8.1) and, further, the corresponding functions in $O(\Delta_{\varepsilon})$ converge uniformly on all compact subspaces of Δ_{ε} . However this inductive limit topology is not metrizable.

We first make an elementary remark on power series. Indeed, consider an element $f = \sum_{n=0}^{\infty} \alpha_n X^n \in \mathbb{C}\{X\}$. Then f has a radius of convergence, denoted by r_f ; indeed, by Hadamard's formula, $r_f = 1/\rho$, where

$$\rho = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

We note the triviality that, if $f = \sum_{n=0}^{\infty} \alpha_n X^n$ and $g = \sum_{n=0}^{\infty} \beta_n X^n$ in $\mathbb{C}\{X\}$, where $|\beta_n| \geq |a_n|$, then $r_g \leq r_f$.

THEOREM 8.2. There is no topology τ on $\mathbb{C}\{X\}$ such that $(\mathbb{C}\{X\},\tau)$ is an (F)-algebra of power series.

Proof. Assume towards a contradiction that there is a complete metric d that defines the topology τ on $\mathbb{C}\{X\}$; we may suppose that d is translation-invariant and satisfies equation (4.1).

For $n \in \mathbb{N}$, define

$$f_n(z) = (1 - nz)^{-1} = 1 + \sum_{j=1}^{\infty} n^j z^j \quad (z \in \Delta_{1/n}),$$

so that $f_n \in \mathbb{C}\{X\}$ and $r_{f_n} = 1/n$, and then choose $\alpha_n > 0$ such that $d(\alpha_n f_n, 0) < 1/2^n$. Now consider the series

$$\sum_{n=1}^{\infty} \alpha_n f_n,$$

with partial sums $F_n = \sum_{j=1}^n \alpha_j f_j$. For $m, n \in \mathbb{N}$ with m < n, we have

$$d(F_m, F_n) = d(\alpha_{m+1} f_{m+1} + \dots + \alpha_n f_n, 0) \le \sum_{j=m+1}^n d(\alpha_j f_j, 0) < 1/2^m,$$

and so the series is a Cauchy series. Since d is a complete metric, the series converges in $(\mathbb{C}\{X\},\tau)$, say $f=\sum_{n=1}^{\infty}\alpha_n f_n$.

For $k \in \mathbb{Z}^+$, the map $\pi_k : (\mathbb{C}\{X\}, \tau) \to \mathbb{C}$, is continuous, and so

$$\pi_k(f) = \sum_{n=1}^{\infty} \pi_k(\alpha_n f_n) = \sum_{n=1}^{\infty} \alpha_n n^k.$$

In particular, for each $m \in \mathbb{N}$, we have $\pi_k(f) \geq \pi_k(\alpha_m f_m)$, and so

$$r_f \leq r_{\alpha_m f_m} = r_{f_m} = 1/m.$$

This is true for each $m \in \mathbb{N}$, a contradiction of the fact that $r_f > 0$.

The result follows.

9. Formal power series algebras over semigroups. Let S be a semigroup, so that S is a non-empty set with an associative binary operation $(s,t) \mapsto st$, $S \times S \to S$. In the case where S is an abelian semigroup, we shall often write s+t for the image of (s,t).

We shall again write δ_s for the characteristic function of $\{s\}$ for $s \in S$.

We shall consider only countable semigroups S which have a family $\{S_n : n \in \mathbb{N}\}$ of finite subsets satisfying the following conditions, where $I_n = S \setminus S_n \ (n \in \mathbb{N})$:

$$S_n \subset S_{n+1}, \ SI_n \cup I_n S \subset I_n \ (n \in \mathbb{N}), \ \bigcup \{S_n : n \in \mathbb{N}\} = S.$$
 (*)

Note that this implies that, for each $t \in S$, there are only finitely many pairs $(r,s) \in S \times S$ such that rs = t. In this case we shall consider \mathbb{C}^S , the linear space of all functions from S into \mathbb{C} , made into an algebra (\mathfrak{F}_S, \star) by the requirement that $\delta_r \star \delta_s = \delta_{rs}$ for all $r, s \in S$. Thus, for $f, g \in \mathbb{C}^S$ and $t \in S$, we have

$$(f\,\star\,g)(t)=\sum\{f(r)g(s):r,s\in S,\,rs=t\},$$

a finite sum. This algebra is called the formal power series algebra over S; it is a Fréchet algebra with respect to the topology τ_c of pointwise convergence on S, which is specified by the increasing sequence $(p_n : n \in \mathbb{N})$ of algebra seminorms, where p_n is given by

$$p_n(f) = \sum \{|f(s)| : s \in S_n\} \quad (f \in \mathbb{C}^S).$$

Clearly, \mathfrak{F}_S is commutative whenever S is abelian. In fact, we shall again denote the product in \mathfrak{F}_S by juxtaposition.

For example, consider the case where $S = \mathbb{Z}^+$ or $S = (\mathbb{Z}^+)^n$, where $n \in \mathbb{N}$. Then \mathfrak{F}_S is equal to \mathfrak{F} or \mathfrak{F}_n , respectively, algebras which we have already discussed.

Now let $S = (\mathbb{Z}^+)^{\omega}$, the abelian semigroup of all \mathbb{Z}^+ -valued sequences, with coordinatewise addition (so that S does not satisfy (*)), and the subsemigroup $S = (\mathbb{Z}^+)^{<\omega}$ consisting of all sequences in $(\mathbb{Z}^+)^{\omega}$ that are eventually 0; this latter semigroup is countable and does satisfy (*), where we take the subsets S_n to satisfy (*) to consist of the sequences $s = (s_k) \in (\mathbb{Z}^+)^{<\omega}$ such that $s_k = 0$ (k > n) and $s_1 + \cdots + s_n \leq n$. A generic element s of $(\mathbb{Z}^+)^{<\omega}$ which is not equal to the zero sequence $(0,0,\ldots,)$ can be written uniquely as

$$s = (s_1, \ldots, s_n, 0, 0, \ldots)$$

with $n \in \mathbb{N}$ defined by the requirement that $s_n \in \mathbb{N}$; when we specify a non-zero element of $(\mathbb{Z}^+)^{<\omega}$, we shall suppose that it has this form. The corresponding formal power series

algebra over $(\mathbb{Z}^+)^{<\omega}$ is denoted by \mathfrak{F}_{∞} . (In [13] and elsewhere, this algebra is denoted by $\mathbb{C}_{\mathbb{N}}[[X]]$.) Thus a generic element of \mathfrak{F}_{∞} again has the form

$$\sum \left\{ \alpha_r X^r : r \in (\mathbb{Z}^+)^n \right\} = \sum \left\{ \alpha_{(r_1, \dots, r_n)} X_1^{r_1} \cdots X_n^{r_n} : (r_1, \dots, r_n) \in (\mathbb{Z}^+)^n \right\},$$

but now there is no restriction on the value of $n \in \mathbb{N}$. Further, the seminorms p_n such that $(p_n : n \in \mathbb{N})$ defines the Fréchet-algebra topology τ_c on \mathfrak{F}_{∞} are given by

$$p_n\left(\sum \alpha_r X^r\right) = \sum \left\{ |\alpha_r| : r \in (\mathbb{Z}^+)^n, |r| \le n \right\} \quad (n \in \mathbb{Z}^+),$$

as in [13, p. 545]. We may regard each algebra \mathfrak{F}_n as a subalgebra of \mathfrak{F}_{∞} in an obvious way, and then $\bigcup \{\mathfrak{F}_n : n \in \mathbb{N}\}$ is a dense subalgebra of $(\mathfrak{F}_{\infty}, \tau_c)$.

This algebra \mathfrak{F}_{∞} is not noetherian. For example, consider the ideal I generated by the elements X_1, X_2, \ldots in \mathfrak{F}_{∞} . Then the element

$$\sum \left\{ \frac{1}{j} X_j : j \in \mathbb{N} \right\}$$

belongs to \overline{I} , but not to I, and so I is not closed in \mathfrak{F}_{∞} . (In [13], Esterle remarks that principal ideals in \mathfrak{F}_{∞} are closed, but that he does not know whether or not all finitely-generated ideals in \mathfrak{F}_{∞} are closed.)

Essentially as before, a monomial is the characteristic function of an element, say r, of $(\mathbb{Z}^+)^{<\omega}$, and the degree of the monomial is |r|. For $k \in \mathbb{Z}^+$, a homogeneous element of degree k is an 'infinite linear combination' of monomials of degree k; the set of these elements is the linear subspace $\mathfrak{F}_{\infty}^{(k)}$ of \mathfrak{F}_{∞} , and the component of an element $f \in \mathfrak{F}_{\infty}$ in $\mathfrak{F}_{\infty}^{(k)}$ is denoted by $f^{(k)}$, so that $f = \sum_{k=0}^{\infty} f^{(k)}$ in $(\mathfrak{F}_{\infty}, \tau_c)$. Clearly we have

$$\mathfrak{F}_{\infty}^{(k)} \cdot \mathfrak{F}_{\infty}^{(\ell)} \subset \mathfrak{F}_{\infty}^{(k+\ell)} \quad (k, \ell \in \mathbb{Z}^+),$$

and so

$$\mathfrak{F}_{\infty} = \bigcup \{\mathfrak{F}_{\infty}^{(k)} : k \in \mathbb{Z}^+\}$$

is a graded algebra. This algebra is an integral domain.

There is another way of writing elements of \mathfrak{F}_{∞} ; for this, each monomial $X_1^{r_1} \cdots X_n^{r_n}$ is written uniquely as

$$X_{t_1} X_{t_2} \cdots X_{t_m}$$
, where $t_1 \le t_2 \le \cdots \le t_m$ and $m = |r|$. (9.1)

We note that there is a unique character on \mathfrak{F}_{∞} , namely the evaluation character

$$\varepsilon_0: f \mapsto f(0,0,\dots), \quad \mathfrak{F}_{\infty} \to \mathbb{C}.$$

Indeed, let φ be a character on \mathfrak{F}_{∞} . Then $\varphi \mid \mathfrak{F}_n$ is a character on \mathfrak{F}_n for each $n \in \mathbb{N}$, and so $\varphi(X^r) = 0$ for each monomial X^r . It follows that the only continuous character on \mathfrak{F}_{∞} is ε_0 . By an earlier remark, this implies that \mathfrak{F}_{∞} is functionally continuous, and so the only character on \mathfrak{F}_{∞} is ε_0 . Alternatively, let $f \in \mathfrak{F}_{\infty}$ be such that $f(0,0,\ldots) \neq 0$. Then the argument of [27, Theorem 2] shows directly that $f \in \text{Inv } \mathfrak{F}_{\infty}$, and it follows that the unique character is ε_0 ; this remark shows that $\ker \varepsilon_0$ is the unique maximal ideal in \mathfrak{F}_{∞} , as noted in [13].

We now note that there is an embedding of \mathfrak{F}_{∞} into \mathfrak{F}_{2} , so extending Theorem 2.2.

For
$$r = (r_1, ..., r_n, 0, 0, ...) \in (\mathbb{Z}^+)^{<\omega}$$
, set

$$w(r) = r_1 + 2r_2 + \dots + nr_n$$

for the weighted order of r. Thus w(r+s) = w(r) + w(s) $(r, s \in (\mathbb{Z}^+)^{<\omega})$. We note that, for each $k \in \mathbb{Z}^+$, there are only finitely many elements r of the semigroup $(\mathbb{Z}^+)^{<\omega}$ with w(r) = k, and so each element of \mathfrak{F}_{∞} can be written as

$$f = \sum_{k=0}^{\infty} \left\{ \sum \alpha_r X^r : r \in (\mathbb{Z}^+)^n \text{ with } w(r) = k \right\},$$

where the inner sum is finite.

Theorem 9.1. There is an embedding of \mathfrak{F}_{∞} in \mathfrak{F}_{2} .

Proof. As before we write $\mathfrak{F}_2 = \mathbb{C}[[Y_1, Y_2]]$. Let $(f_j)_{j=1}^{\infty}$ in \mathfrak{F} be the sequence in \mathfrak{F} specified in Lemma 2.1 such that $\{1, f_1, \ldots, f_n\}$ is algebraically independent for each $n \in \mathbb{N}$.

Take $f \in \mathfrak{F}_{\infty}$, as above, and set

$$\theta(f) = \sum_{k=0}^{\infty} Y_2^k \left\{ \sum \alpha_r f_1^{r_1} \cdots f_n^{r_n} : r \in (\mathbb{Z}^+)^n \text{ with } w(r) = k \right\}.$$

Then it is clear that $\theta: \mathfrak{F}_{\infty} \to \mathfrak{F}_2$ is a continuous homomorphism (using the fact that w(r+s) = w(r) + w(s) $(r, s \in (\mathbb{Z}^+)^n)$). Suppose that $\theta(f) = 0$. Then, for each $k \in \mathbb{Z}^+$, we have

$$\left\{ \sum \alpha_r f_1^{r_1} \cdots f_n^{r_n} : r \in (\mathbb{Z}^+)^n \text{ with } w(r) = k \right\} = 0.$$

Since this sum is finite and since $\{1, f_1, \dots, f_n\}$ is algebraically independent in \mathfrak{F} , it follows that $\alpha_r = 0$ for each $r \in (\mathbb{Z}^+)^n$ with w(r) = k, and so f = 0. Thus θ is an embedding.

Definition 9.2. For $m \in \mathbb{N}$, set

$$\mathcal{U}_m = \left\{ f = \sum \left\{ \alpha_r X^r : r \in (\mathbb{Z}^+)^{<\omega} \right\} \in \mathfrak{F}_\infty : q_m(f) := \sum |\alpha_r| \, m^{|r|} < \infty \right\},\,$$

and then set

$$\mathcal{U} = \bigcap \{\mathcal{U}_m : m \in \mathbb{N}\}.$$

It is clear that each \mathcal{U}_m is a unital subalgebra of \mathfrak{F}_{∞} and that (\mathcal{U}_m, q_m) is a Banach algebra continuously embedded in \mathfrak{F}_{∞} . Thus \mathcal{U} is a unital subalgebra of \mathfrak{F}_{∞} , and $(\mathcal{U}, (q_m))$ is a unital, commutative Fréchet algebra continuously embedded in \mathfrak{F}_{∞} . The algebra \mathcal{U} contains each monomial X^r .

The algebra \mathcal{U} was first introduced in this context by Clayton [5]; it is studied further in [11, 13].

It is noted in [11] that the map

$$\varphi \mapsto (\varphi(X_i) : i \in \mathbb{N}), \quad \Phi_{\mathcal{U}} \to \ell^{\infty},$$

is a continuous bijection. It can be said that \mathcal{U} is the algebra of all entire functions on ℓ^{∞} .

Extended versions of the following theorem are given in [5, 11, 13]; in [11, Proposition 2.1], there is a non-commutative version of the theorem. We write \mathcal{M} for the closed maximal ideal $\{f \in \mathcal{U} : f(0,0,\ldots) = 0\}$ and

$$\mathcal{I} = \bigcup \{ X_1 \mathcal{U} + \dots + X_n \mathcal{U} : n \in \mathbb{N} \},$$

a prime ideal in \mathcal{U} .

Theorem 9.3. The following statements are equivalent:

- (a) all characters on the commutative Fréchet algebra $(\mathcal{U}, (q_m))$ are continuous;
- (b) there is a non-zero character on the quotient algebra \mathcal{M}/\mathcal{I} ;
- (c) every commutative Fréchet algebra is functionally continuous.

There is a study of the quotient algebra \mathcal{M}/\mathcal{I} in [13].

In distinction from the uniqueness of topology results that we stated for each algebra \mathfrak{F}_n in Theorem 7.4, we have the following result from [25].

THEOREM 9.4. The algebra $(\mathfrak{F}_{\infty}, \tau_c)$ is a Fréchet algebra, but it does not have a unique Fréchet algebra topology.

We shall also require in a future proof the non-commutative version of \mathfrak{F}_{∞} .

We now take S to be the free semigroup in countably many (non-commuting) elements X_1, X_2, \ldots . Thus, S consists of finite sequences $i = (i_1, \ldots, i_m)$ in \mathbb{N}^m for some $m \in \mathbb{N}$, and the product is given by concatenation, so that

$$(i_1,\ldots,i_m)+(j_1,\ldots,j_n)=(i_1,\ldots,i_m,j_1,\ldots,j_n);$$

we shall write $X^{\otimes i} = X_{i_1} \otimes X_{i_2} \otimes \cdots \otimes X_{i_n}$ for a generic element of S. This semigroup S is countable and also satisfies condition (*), above, and so we can consider \mathfrak{F}_S , the formal power series algebra over S; as in [25], we shall set

$$\mathfrak{B} = \mathfrak{F}_S = \mathbb{C}_{nc}[[X_1, X_2, \dots]]$$

for the corresponding algebra. In the case where $i=(i_1,\ldots,i_n)$ in \mathbb{N}^n , we obtain a 'non-commutative monomial' of $rank\ n$, and, almost as before, the space of 'infinite linear combinations' of monomials of rank n forms a linear subspace $\mathfrak{B}^{(n)}$ of \mathfrak{B} , the natural decomposition making \mathfrak{B} into a graded algebra. We can write each $b\in\mathfrak{B}$ uniquely as $b=\sum_{n=1}^{\infty}b^{(n)}$, essentially as before.

We shall also require the 'averaging map' on \mathfrak{B} . For $n \in \mathbb{N}$, let \mathfrak{S}_n be the symmetric group on n symbols, and define $\widetilde{\sigma}$ on $\mathfrak{B}^{(n)}$ by

$$\widetilde{\sigma}(X_{i_1} \otimes X_{i_2} \otimes \cdots \otimes X_{i_n}) = \frac{1}{n!} \sum \left\{ X_{i_{\sigma(1)}} \otimes X_{i_{\sigma(2)}} \otimes \cdots \otimes X_{i_{\sigma(n)}} : \sigma \in \mathfrak{S}_n \right\}.$$

We then extend $\widetilde{\sigma}$ to a continuous linear map on \mathfrak{B} to obtain the *symmetrizing map* $\widetilde{\sigma}$ (cf. [6, p. 27]). The elements $b \in \mathfrak{B}$ with $\widetilde{\sigma}(b) = b$ are the *symmetric* elements of \mathfrak{B} .

For $n \in \mathbb{N}$, there is a continuous linear embedding $\varepsilon_n : \mathfrak{F}_{\infty}^{(n)} \to \mathfrak{B}^{(n)}$ defined by the requirement that

$$\varepsilon_n(X_{i_1}\cdots X_{i_n})=\widetilde{\sigma}(X_{i_1}\otimes X_{i_2}\otimes\cdots\otimes X_{i_n});$$

the map ε_n is well-defined because

$$\widetilde{\sigma}(X_{i_1} \otimes X_{i_2} \otimes \cdots \otimes X_{i_n}) = \widetilde{\sigma}(X_{j_1} \otimes X_{j_2} \otimes \cdots \otimes X_{j_n})$$

whenever $X_{i_1} \cdots X_{i_n} = X_{j_1} \cdots X_{j_n}$, the latter happening exactly when $\{i_1, \ldots, i_n\}$ is a permutation of $\{j_1, \ldots, j_n\}$. From these maps, we obtain a continuous linear embedding $\varepsilon : \mathfrak{F}_{\infty} \to \mathfrak{B}$. Clearly, the symmetrizing map $\widetilde{\sigma}$ is a projection from \mathfrak{B} onto the subspace $\mathfrak{B}_{\text{sym}}$ of \mathfrak{B} consisting of the symmetric elements. There is a product in $\mathfrak{B}_{\text{sym}}$, denoted by \vee , so that

$$u \vee v = \widetilde{\sigma}(u \otimes v) \quad (u, v \in \mathfrak{B}_{sym});$$

now $(\mathfrak{B}_{sym}, \vee)$ is a commutative, unital algebra.

PROPOSITION 9.5. Let $m, n \in \mathbb{N}$. Then $\widetilde{\sigma}(\varepsilon_m(f) \otimes \varepsilon_n(g)) = \varepsilon_{m+n}(fg)$ for all $f \in \mathfrak{F}_{\infty}^{(m)}$ and $g \in \mathfrak{F}_{\infty}^{(n)}$.

Proof. This is clear in the special case where $f = X_{i_1} \cdots X_{i_m}$ and $g = X_{j_1} \cdots X_{j_n}$. The general case follows because ε_m , ε_n and ε_{m+n} are continuous linear maps.

It follows that $(\mathfrak{B}_{sym}, \vee)$ is naturally identified with $\varepsilon(\mathfrak{F}_{\infty})$ as an algebra.

We shall require the concept of 'tensor products by rows', taken from [25].

First, for each $n \in \mathbb{Z}^+$, let $P_n : \mathfrak{B} \to \mathfrak{B}$ be the linear map such that $P_n(1) = 0$ and

$$P_n(X_{i_1} \otimes X_{i_2} \otimes \cdots \otimes X_{i_m}) = \begin{cases} 0 & \text{when } i_1 \neq n, \\ X_{i_2} \otimes \cdots \otimes X_{i_m} & \text{when } i_1 = n. \end{cases}$$

Now let $\lambda_1, \lambda_2 : \mathfrak{B}^{(1)} \to \mathbb{C}$ be two linear functionals. We define the *tensor product by* $rows, \lambda_1 \otimes \lambda_2 : \mathfrak{B}^{(2)} \to \mathbb{C}$, by

$$(\lambda_1 \otimes \lambda_2)(b) = \lambda_1 \Big(\sum_{j=1}^{\infty} \lambda_2(P_j b) X_j \Big) \quad (b \in \mathfrak{B}^{(2)}).$$

Finally, let $n \in \mathbb{N}$, and let $\lambda_1, \ldots, \lambda_n : \mathfrak{B}^{(1)} \to \mathbb{C}$ be n linear functionals. Then we define the tensor product by rows, $\lambda_1 \otimes \cdots \otimes \lambda_n : \mathfrak{B}^{(n)} \to \mathbb{C}$, inductively by

$$(\lambda_1 \otimes \cdots \otimes \lambda_n)(b) = \lambda_1 \Big(\sum_{j=1}^{\infty} (\lambda_2 \otimes \cdots \otimes \lambda_n)(P_j b) X_j \Big) \quad (b \in \mathfrak{B}^{(n)}).$$

The first lemma that we shall use is the following; it is essentially obvious.

LEMMA 9.6. Let S be a semigroup satisfying (*), and suppose that there are linear functionals $\lambda_s: \mathfrak{B}^{(1)} \to \mathbb{C}$ for each $s \in S$. Let $s \in S$ and $n \in \mathbb{N}$, and set

$$\lambda = \sum \{\lambda_{r_1} \otimes \cdots \otimes \lambda_{r_n} : r_1, \dots, r_n \in S, \ r_1 + \cdots + r_n = s\}.$$

Then $\lambda = \lambda \circ \widetilde{\sigma}$.

The second lemma that we shall use is the following, taken from [25, Lemma 1.10]. In this lemma, the tensor product of *no* linear functionals is deemed to be the identity map, regarded as a linear functional on $\mathbb{C} = \mathfrak{B}^{(0)}$.

LEMMA 9.7. Let $m, n \in \mathbb{N}$, and let $\lambda_1, \ldots, \lambda_{m+n}$ be linear functionals on $\mathfrak{B}^{(1)}$. Then

$$(\lambda_1 \otimes \cdots \otimes \lambda_{m+n})(a \otimes b) = (\lambda_1 \otimes \cdots \otimes \lambda_m)(a)(\lambda_{m+1} \otimes \cdots \otimes \lambda_{m+n})(b)$$

for each $a \in \mathfrak{B}^{(m)}$ and $b \in \mathfrak{B}^{(n)}$.

10. Semigroup algebras. Now let S be an arbitrary semigroup. Then the Banach space $\ell^1(S)$ consists of all sums

$$f = \sum \{\alpha_s \delta_s : s \in S\},\$$

where $\alpha_s \in \mathbb{C}$ $(s \in S)$, such that $\sum \{|\alpha_s| : s \in S\} < \infty$. Of course, this space is a Banach space for the norm $\|\cdot\|_1$, specified by

$$||f||_1 = \sum \{|\alpha_s| : s \in S\} \quad \Big(f = \sum_{s \in S} \alpha_s \delta_s \in \ell^1(S)\Big),$$

and it is a Banach algebra with respect to a unique product \star again specified by the condition that $\delta_s \star \delta_t = \delta_{st}$ for all $s, t \in S$. This algebra is called the *semigroup algebra* over S. There have been many recent studies of this Banach algebra; for example, see [10], where more details are given.

For example, consider the semigroup $S=(\mathbb{Z}^+)^{<\omega}$, described above. For $k\in\mathbb{Z}^+$, we set

$$S^{(k)} = \left\{ (r_j) \in S : |r| = \sum_{j=1}^{\infty} r_j = k \right\}.$$

Then $S = \bigcup \{S^{(k)} : k \in \mathbb{Z}^+\}$, and $S^{(k)} \cdot S^{(\ell)} \subset S^{(k+\ell)}$ for $k, \ell \in \mathbb{Z}^+$, so that S is graded in a natural way. Further,

$$\ell^{1}(S) = \left(\bigoplus_{k=0}^{\infty} \ell^{1}(S^{(k)})\right)_{1},$$

is a graded algebra; here $(\cdot)_1$ denotes an ℓ_1 -sum. We shall often write $A = \ell^1(S)$ for this semigroup algebra, and then $A^{(k)} = \ell^1(S^{(k)})$ and $A = \sum \{A^{(k)} : k \in \mathbb{Z}^+\}$ is a graded algebra. There is a natural embedding of A into \mathfrak{F}_{∞} , and this embedding takes each $A^{(k)}$ into $\mathfrak{F}_{\infty}^{(k)}$, so that A is a graded subalgebra of \mathfrak{F}_{∞} .

Again, a generic element of A can also be written as

$$f = \sum \beta_{(t_1, \dots, t_m)} X_{t_1} X_{t_2} \cdots X_{t_m}, \tag{10.1}$$

where $t_1 \leq t_2 \leq \cdots \leq t_m$, as in equation (9.1), and $\sum |\beta_{(t_1,\dots,t_m)}| = ||f||_1$.

Let \mathcal{U} be the test algebra which was described above for Michael's problem. Then clearly there is a continuous embedding of \mathcal{U} into $\ell^1(S)$.

Set $E = \ell^1(\mathbb{Z}^+)$, so that E is a Banach space, and recall that, for each $n \in \mathbb{N}$, the Banach space $\ell^1((\mathbb{Z}^+)^n)$ can be identified as a Banach space with the n-fold projective tensor product

$$E_n := \widehat{\bigotimes}^n E = E \,\widehat{\otimes}_{\pi} \,\cdots\,\widehat{\otimes}_{\pi} \,E.$$

As in [6, Example 2.2.46(ii)], we form the projective tensor algebra of E; this is

$$\widehat{\bigotimes} E = \{ u = (u_n) : u_n \in E_n \ (n \in \mathbb{N}) \},\,$$

with product denoted by \otimes , so that

$$(u_p) \otimes (v_q) = \Big(\sum_{p+q=r} u_p \otimes v_q : r \in \mathbb{Z}^+\Big);$$

we obtain a non-commutative, unital algebra.

We again have the concept of a symmetric element and a symmetrizing map $\widetilde{\sigma}$, as in [6]. The subspace of $\widehat{\bigotimes} E$ consisting of the symmetric elements is denoted by $\widehat{\bigvee} E$; it is the range of the map $\widetilde{\sigma}$, and is itself an algebra with respect to the product \vee , where

$$(u_p) \vee (v_q) = \Big(\sum_{p+q=r} \widetilde{\sigma}(u_p \otimes v_q) : r \in \mathbb{Z}^+\Big);$$

we obtain a commutative, unital algebra $(\widehat{\nabla}E, \vee)$, called the *projective symmetric algebra* of E.

For $n \in \mathbb{N}$, define

$$p_n(u) = \sum_{i=0}^n ||u_i||_1 \quad (u = (u_i) \in \widehat{\nabla} E).$$

Then each p_n is an algebra seminorm on $\widehat{\nabla} E$, and $(\widehat{\nabla} E, (p_n)_{n\geq 1}, \vee)$ is a commutative, unital Fréchet algebra which is naturally identified with a subalgebra of $(\mathfrak{B}_{\text{sym}}, \vee)$.

We now set

$$B = \left\{ u = (u_n) \in \widehat{\bigvee} E : ||u||_1 := \sum_{n=0}^{\infty} ||u_n||_1 < \infty \right\}.$$

As in [6, Example 2.2.46(ii)], $(B, \|\cdot\|, \vee)$ is a commutative, unital Banach algebra; it is a subalgebra of the projective symmetric algebra $(\widehat{\nabla} E, \vee)$.

Again set $A = \ell^1(S)$, where $S = (\mathbb{Z}^+)^{<\omega}$. The restriction of the map ε to A is an isometric unital isomorphism of A onto the above algebra B.

It was shown in [6, §5.5] how to construct continuous higher point derivations of infinite order on the above algebra $A = \ell^1(S)$, and hence how to construct continuous homomorphisms from $(A, \|\cdot\|_1)$ into (\mathfrak{F}, τ_c) . However, it is not clear to us how to modify this argument to obtain a continuous *embedding* of A into \mathfrak{F} ; such an embedding will be exhibited in the following theorem.

THEOREM 10.1. (i) There is a continuous embedding θ of $\ell^1((\mathbb{Z}^+)^{<\omega})$ into (\mathfrak{F}, τ_c) such that $\theta(X_1) = X$, and so the Banach algebra $\ell^1((\mathbb{Z}^+)^{<\omega})$ is (isometrically isomorphic to) a Banach algebra of power series.

(ii) The Fréchet algebra $\mathcal U$ is (isometrically isomorphic to) a Fréchet algebra of power series.

Proof. Set $S = (\mathbb{Z}^+)^{<\omega}$ and $A = \ell^1(S)$, as above. We shall construct a continuous, unital homomorphism $\theta : (\mathfrak{F}_{\infty}, \tau_c) \to (\mathfrak{F}, \tau_c)$ such that $\theta \mid A : (A, \|\cdot\|_1) \to (\mathfrak{F}, \tau_c)$ is a continuous embedding with $\theta(X_1) = X$, and so $\theta(\mathcal{U}) \supset \mathbb{C}[X]$. In this case, $\theta(A)$ is a Banach algebra of power series, with respect to the norm transferred from A, and so A is isometrically isomorphic to a Banach algebra of power series. Since the embedding of \mathcal{U} into A is continuous, $\theta(\mathcal{U})$ is a Fréchet algebra of power series. Thus the result will be established.

Our first remark is the following. Let $(g_i : i \in \mathbb{N})$ be a sequence in \mathfrak{F} with $g_1 = X$ such that $\mathbf{o}(g_i) \geq i$ $(i \in \mathbb{N})$. Then there is a unique continuous, unital homomorphism $\theta : (\mathfrak{F}_{\infty}, \tau_c) \to (\mathfrak{F}, \tau_c)$ with $\theta(X_i) = g_i$ $(i \in \mathbb{N})$. Since $\theta(X_1) = X$, we have $\theta(\mathcal{U}) \supset \mathbb{C}[X]$, and so all the required conditions are satisfied save perhaps for the fact that $\theta \mid A$ is an injection. (We note for future reference in Theorem 12.3 that the element

$$\theta\left(\sum_{i=2}^{\infty} X_i/i^2\right)$$

belongs to $X^2\mathfrak{F}$.)

Our main *claim* is that we can choose the sequence $(g_i : i \in \mathbb{N})$ so that the corresponding map θ is indeed an injection.

The first step in our construction is to specify a function

$$\gamma: \mathbb{N} \to \mathbb{N}$$

with the following properties: we have $\gamma_i \leq i \ (i \in \mathbb{N})$ and, for each $n \in \mathbb{N}$ and each $r = (r_1, \ldots, r_n) \in \mathbb{N}^n$, there exists $k \in \mathbb{N}$ such that

$$(\gamma(k+1), \dots, \gamma(k+n)) = (r_1, \dots, r_n).$$
 (10.2)

Such a function is easily constructed by listing all the elements in the countable set

$$\bigcup \{(r_1,\ldots,r_n) \in \mathbb{N}^n : n \in \mathbb{N}\}\$$

in one sequence and by regarding the elements in this listing as successive parts of a function in $\mathbb{N}^{\mathbb{N}}$. Note that, in this case, there are infinitely many values of $k \in \mathbb{N}$ such that equation (10.2) holds for each specified value of r.

For each $i \in \mathbb{N}$ with $i \geq 2$, we define

$$E_i = \{ j \in \mathbb{N} \setminus \{1\} : \gamma(j) = i \},\$$

and we take $E_1 = \{1\}$ so that $\{E_i : i \in \mathbb{N}\}$ is a partition of \mathbb{N} , and each E_i save for E_1 is infinite. Further, min $E_i \geq i$ $(i \in \mathbb{N})$.

We now take a 'rapidly increasing sequence' $(c_i : i \in \mathbb{N}) \in \mathbb{N}^{\mathbb{N}}$ with $c_1 = 1$.

In fact, we shall write $(c_j : j \in \mathbb{N})$ as $(a_1, b_1, a_2, b_2, \dots)$, where

$$1 = a_1 < b_1 < a_2 < b_2 < \cdots.$$

The growth conditions that we shall impose are:

$$a_{i+1} > ia_i \quad (i \in \mathbb{N}) \tag{10.3}$$

and

$$b_i > i \cdot (i(1+a_i))! \cdot i^{i(1+a_i)} \cdot b_{i-1}^{i(1+a_i)} \quad (i \ge 2).$$
 (10.4)

Clearly, we can choose the sequence $(c_i : i \in \mathbb{N})$ to satisfy these constraints.

For each $i \in \mathbb{N}$, we define

$$g_i = \sum \{b_j X^{a_j} : j \in E_i\} \in M \subset \mathfrak{F}, \tag{10.5}$$

Note that, since $a_i \geq i$ and min $E_i \geq i$ for each $i \in \mathbb{N}$, we have $\mathbf{o}(g_i) \geq i$ $(i \in \mathbb{N})$, as required in the above remarks.

Our claim will follow easily from the following lemma. We continue to denote the semigroup $(\mathbb{Z}^+)^{<\omega}$ by S.

LEMMA 10.2. Let $m \in \mathbb{N}$. Let $(r_1, \ldots, r_m, 0, 0, \ldots) \in S$ be such that $r_1 \leq r_2 \leq \cdots \leq r_m$, and let $k \in \mathbb{N}$ be such that k > m and $(\gamma(k+1), \ldots, \gamma(k+m)) = (r_1, \ldots, r_m)$. Set $P = \sum_{i=1}^m a_{k+i}$ and $Q = \prod_{i=1}^m b_{k+i}$.

(i) We have

$$\pi_P(g_{r_1}\cdots g_{r_m})\geq Q.$$

(ii) Provided that the sequence $(c_j: j \in \mathbb{N})$ satisfies equations (10.3) and (10.4), we have

$$\pi_P(g_{s_1}\cdots g_{s_n}) \leq Q/k.$$

for each
$$(s_1, ..., s_n, 0, 0, ...) \in S$$
 with $\{s_1, ..., s_n\} \neq \{r_1, ..., r_m\}$.

We now prove that the fact that θ is injective follows from Lemma 10.2.

As in equation (10.1), each element $f \in A$ can be written in the form

$$f = \sum \beta_{(t_1, \dots, t_m)} X_{t_1} \cdots X_{t_m},$$

where $t_1 \leq t_2 \leq \cdots \leq t_m$. Take such an element with $f \neq 0$; we shall show that $\theta(f) \neq 0$. We may suppose for convenience that $||f||_1 = 1$. Choose a specific element $t = (t_1, \ldots, t_m, 0, 0, \ldots) \in S$ for which $\beta_t \neq 0$. Then there exists $k \in \mathbb{N}$ with $k > 1/|\beta_t|$ and such that $(\gamma(k+1), \ldots, \gamma(k+m)) = (t_1, \ldots, t_m)$. Define P and Q with respect to the elements $t \in S$ and $k \in \mathbb{N}$ as in Lemma 10.2. By clauses (i) and (ii) of that lemma, we have

$$|\pi_P(\beta_t g_{t_1} \cdots g_{t_m})| \ge Q |\beta_t|.$$

and

$$|\pi_{P}(\theta(f) - \beta_{t}g_{t_{1}} \cdots g_{t_{m}})| = \left|\pi_{P}\left(\sum_{s \in S} \beta_{s}g_{s_{1}} \cdots g_{s_{n}} : \{s_{1}, \dots, s_{n}\} \neq \{t_{1}, \dots, t_{m}\}\right)\right|$$

$$\leq \sup\{\pi_{P}(g_{s_{1}} \cdots g_{s_{n}}) : \{s_{1}, \dots, s_{n}\} \neq \{t_{1}, \dots, t_{m}\}\}$$

$$\leq Q/k,$$

where we recall that $\sum_{s \in S} |\beta_s| = 1$. It follows that

$$|\pi_P(\theta(f))| \ge Q \cdot (|\beta_t| - 1/k) > 0,$$

and so $\theta(f) \neq 0$ in \mathfrak{F} , as required to complete the proof of Theorem 10.1.

It remains to prove the two clauses of Lemma 10.2. Let k, P, and Q be as in that lemma. We recall that, for each $(r_1, \ldots, r_m, 0, 0, \ldots) \in S$, there does indeed exist $k \in \mathbb{N}$ such that k > m and $(\gamma(k+1), \ldots, \gamma(k+m)) = (r_1, \ldots, r_m)$.

(i) For each $j \in \mathbb{N}_m$, we have $\gamma(k+j) = r_j$, so that $k+j \in E_{r_j}$, and hence equation (10.5) shows that $\pi_{a_{k+j}}(g_{r_j}) = b_{k+j}$. It follows that

$$\pi_P(g_{r_1} \cdots g_{r_m}) = \sum \{ \pi_{p_1}(g_{r_1}) \cdots \pi_{p_m}(g_{r_m}) : p_1, \dots, p_m \in \mathbb{Z}^+, \ p_1 + \dots + p_m = P \}$$

$$\geq \pi_{a_{k+1}}(g_{r_1}) \cdots \pi_{a_{k+m}}(g_{r_m})$$

$$= b_{k+1} \cdots b_{k+m} = Q.$$

This establishes clause (i).

(ii) The proof of this clause is more complicated.

We first define the (reverse) lexicographic ordering on $S = (\mathbb{Z}^+)^{<\omega}$. Indeed, let

$$s = (s_1, \dots, s_m, 0, 0, \dots), \quad t = (t_1, \dots, t_n, 0, 0, \dots) \in S,$$

and set s > t if $s_j > t_j$, where $j = \max\{i \in \mathbb{N} : s_i \neq t_i\}$. (Such a maximum exists.) Further, set $s \geq t$ if s > t or s = t. Then it is clear that (S, \leq) is a well-ordered set. (In fact, (S, \leq) is a well-ordered semigroup, in the terminology of [6, Definition 1.2.11].)

We define $\alpha: S \to \mathbb{Z}^+$ and $\beta: S \to \mathbb{N}$ by

$$\alpha(t) = \sum t_i a_i, \quad \beta(t) = \prod b_i^{t_i} \quad (t = (t_1, \dots, t_n, 0, 0, \dots) \in S).$$

(Of course, this sum and product are finite.)

For each $R \in \mathbb{Z}^+$, we define

$$\mathcal{N}_R = \{ t \in S : \alpha(t) = R \}.$$

Thus each set \mathcal{N}_R is finite and $\{\mathcal{N}_R : R \in \mathbb{N}\}$ is a partition of S. Further, for each $R, M \in \mathbb{Z}^+$, we define

$$\mathcal{N}_{R}^{(M)} = \mathcal{N}_{R} \cap S^{(M)} = \{ r \in \mathcal{N}_{R} : |r| = M \}.$$

We shall be particularly interested in the case where R = P, in the notation of our lemma. Let $u = (u_i)$ be the element of S such that

$$u_{k+1} = \dots = u_{k+m} = 1, \quad u_i = 0 \quad (i \notin \{k+1, \dots, k+m\}),$$

so that $u \in \mathcal{N}_P^{(m)}$. Our subsidiary *claim* is that u is the maximum element of (\mathcal{N}_P, \leq) . Indeed, assume towards a contradiction that $v \in \mathcal{N}_P$ with v > u, and define

$$j = \max\{i \in \mathbb{N} : v_i \neq u_i\}.$$

Suppose that j > k + m, so that $v_j \ge 1$. Then

$$\alpha(v) \ge a_j \ge a_{k+m+1} > (k+m)a_{k+m}$$

by (10.3), and so $\alpha(v) > a_{k+1} + \cdots + a_{k+m} = P$, a contradiction of the fact that $v \in \mathcal{N}_P$. Suppose that $k < j \le k + m$. Then $v_j \ge 2$, and now

$$0 = \alpha(v) - \alpha(u) = \sum_{i=1}^{j} (v_i - u_i) a_i \ge a_j - \sum_{i=k+1}^{j-1} a_i > 0$$

by (10.3), again a contradiction.

Finally, suppose that $j \leq k$. Then $v_j \geq 1$ and $v_{k+1} = \cdots = v_{k+m} = 1$, and so

$$\alpha(v) \ge v_j + P > P$$
,

again a contradiction of the fact that $v \in \mathcal{N}_P$.

Thus, for each possible choice of j, we have a contradiction, and so our subsidiary claim is proved.

Next, for each $n \in \mathbb{N}$, define $\eta_n : (\mathbb{Z}^+)^n \to S$ by

$$\eta_n(s_1,\ldots,s_n)=(\eta_n(s_1,\ldots,s_n)(i):i\in\mathbb{N}),$$

where

$$\eta_n(s_1, \dots, s_n)(i) = \begin{cases} 1 & \text{when } i \in \{s_1, \dots, s_n\}, \\ 0 & \text{when } i \notin \{s_1, \dots, s_n\}. \end{cases}$$

The map η_n is not injective; indeed, we have $\eta_n(s_1,\ldots,s_n)=\eta_n(t_1,\ldots,t_n)$ if and only if $\{s_1,\ldots,s_n\}=\{t_1,\ldots,t_n\}$, and so the inverse image of each element of the range of η_n has cardinality at most n!.

Now take $(s_1, \ldots, s_n, 0, 0, \ldots) \in S$ with $\{s_1, \ldots, s_n\} \neq \{r_1, \ldots, r_m\}$ and $s_1 \leq \cdots \leq s_n$. We have

$$\pi_P(g_{s_1}\cdots g_{s_n}) = \sum b_{p_1}\cdots b_{p_n},$$

where the sum is taken over all elements $p_1, \ldots, p_n \in \mathbb{N}$ such that $a_{p_1} + \cdots + a_{p_n} = P$ and $p_i \in E_{s_i}$ $(i \in \mathbb{N}_n)$. The above sum involves only sequences (p_1, \ldots, p_n) such that $\eta_n(p_1, \ldots, p_n) \in \mathcal{N}_P^{(n)}$. (For example, we could take n = m and

$$(p_1,\ldots,p_n)=(k+1,\ldots,k+m)).$$

Since $\{s_1, \ldots, s_n\} \neq \{r_1, \ldots, r_m\}$, we have $\eta_n(p_1, \ldots, p_n) \neq u$. (This last constraint is only applicable in the special case where n = m.) Thus we have the estimate

$$0 \le \pi_P(g_{s_1} \cdots g_{s_n}) \le n! \cdot \sum \{\beta(v) : v \in \mathcal{N}_P^{(n)}, v \ne u \}.$$
 (10.6)

Take $v \in \mathcal{N}_P^{(n)}$ with $v \neq u$, and set $j = \max\{i \in \mathbb{N} : v_i \neq u_i\}$. Since v < u, we have $v_j < u_j$, so that $j \in \{k+1,\ldots,k+m\}$, $v_j = 0$, $v_{j+1} = \cdots = v_{k+m} = 1$, and $v_i = 0$ $(i \geq k+m+1)$. This shows that

$$|\{v \in \mathcal{N}_P^{(n)}, v \neq u\}| \le (j-1)^n.$$
 (10.7)

We have

$$\sum_{i=k+1}^{k+m} a_i = P = \alpha(v) = \sum_{i=j+1}^{k+m} a_i + \sum_{i=1}^{j-1} v_i a_i.$$
 (10.8)

However, $a_i \geq 1 \ (i \in \mathbb{N})$ and

$$n = |v| = k + m - j + \sum_{i=1}^{j-1} v_i,$$

so that

$$\sum_{i=1}^{j-1} v_i \ge n - m,$$

and hence it follows from equation (10.8) that

$$\sum_{i=k+1}^{j} a_i = \sum_{i=1}^{j-1} v_i a_i \ge n - m.$$

Thus we have

$$n \le m + \sum_{i=k+1}^{j} a_i \le m(1 + a_j).$$

Since $m \leq k < j$, it follows that

$$n \le j(1+a_j). \tag{10.9}$$

We also have $v_j = 0$, $u_j = 1$, and $\sum v_i = n$, and so

$$\frac{\beta(v)}{Q} = \frac{\beta(v)}{b_{k+1} \cdots b_{k+m}} = \frac{\beta(v)}{\beta(u)} = b_j^{-1} \cdot \prod_{i=1}^{j-1} b_i^{v_j - u_j} \le b_j^{-1} \cdot b_{j-1}^n,$$

whence

$$\beta(v) \le Q \cdot b_j^{-1} \cdot b_{j-1}^n. \tag{10.10}$$

It follows from equations (10.6), (10.7), (10.9), and (10.10) that

$$0 \le \pi_P(g_{s_1} \cdots g_{s_n}) \le (j(1+a_j))! \cdot (j-1)^{j(1+a_j)} \cdot Q \cdot b_j^{-1} \cdot b_{j-1}^{j(1+a_j)}.$$

From equation (10.4), we have

$$0 \le \pi_P(g_{s_1} \cdots g_{s_n}) \le Q/j.$$

Since j > k, we have $\pi_P(g_{s_1} \cdots g_{s_n}) \leq Q/k$, and thus we have established clause (ii) of Lemma 10.2.

This completes the proof of Theorem 10.1. ■

COROLLARY 10.3. There is a Fréchet algebra of power series which is a test case for the functional continuity of the class of commutative Fréchet algebras.

Since \mathfrak{F}_2 is a subalgebra of \mathfrak{F}_{∞} , it follows from Theorem 2.6 that there is no embedding of \mathfrak{F}_{∞} into \mathfrak{F} .

The above proof shows that the semigroup algebra $\ell^1(S)$, where $S = (\mathbb{Z}^+)^{<\omega}$ is the free semigroup on countably many generators is a Banach algebra of power series. We shall now show the somewhat surprising fact that the 'much bigger' semigroup algebra $\ell^1(S_{\mathfrak{c}})$, where $S_{\mathfrak{c}}$ denotes the free semigroup on \mathfrak{c} generators, is also Banach algebra of power series. Of course, \mathfrak{c} is the largest cardinal for which such a statement could be true. The proof depends on the following lemma that is surely well known.

LEMMA 10.4. There is a family $\{E_{\alpha} : \alpha < \mathfrak{c}\}\$ of subsets of \mathbb{N} such that the set

$$F_{\alpha_1} \cap \cdots \cap F_{\alpha_n}$$

is an infinite subset of \mathbb{N} for each $n \in \mathbb{N}$ and each $\alpha_1, \ldots, \alpha_n < \mathfrak{c}$, where each set F_{α} is equal to either E_{α} or to its complement $\mathbb{N} \setminus E_{\alpha}$.

Proof. Let $D = \{0,1\}^{\mathfrak{c}}$ be the Cantor cube of size \mathfrak{c} , so that D is a compact, Hausdorff space with respect to the product topology. It is a special case of the famous Hewitt–Marczewski–Pondiczery theorem (see [12, 2.3.15]) that D is separable; let C be a countable, dense subset of D. Since D has no isolated points, it is clear that $U \cap C$ is infinite for each non-empty, open subset U of D.

A generic element of D has the form $\varepsilon = (\varepsilon_{\alpha} : \alpha < \mathfrak{c})$, where each ε_{α} is 0 or 1. For each $\alpha < \mathfrak{c}$, set $D_{\alpha} = \{\varepsilon \in D : \varepsilon_{\alpha} = 0\}$, so that the complement of D_{α} in D is the set $D'_{\alpha} = \{\varepsilon \in D : \varepsilon_{\alpha} = 1\}$. A family of basic open sets for D consists of the finite intersections U of sets of the form D_{α} or D'_{α} , and $U \cap C$ is infinite for each such set U.

Set $E_{\alpha} = D_{\alpha} \cap C$ for $\alpha < \mathfrak{c}$, and identify C bijectively with \mathbb{N} . It is clear that the family $\{E_{\alpha} : \alpha < \mathfrak{c}\}$ has the required property.

THEOREM 10.5. There is a continuous embedding of the semigroup algebra $\ell^1(S_c)$ into \mathfrak{F} such that the range contains $\mathbb{C}[X]$, and so $\ell^1(S_c)$ is a Banach algebra of power series.

Proof. In fact, there is a continuous embedding (of norm 1) of $\ell^1(S_{\mathfrak{c}})$ into $\ell^1(S)$, where $S = (\mathbb{Z}^+)^{<\omega}$, such that the range contains the specific element X_1 . Given this, it will follow immediately from Theorem 10.1(i) that the required continuous embedding will exist.

Choose a sequence (r_i) for which $r_{i+1} > r_i^2$ $(i \in \mathbb{N})$, and then use Lemma 10.4 to choose a family $\{E_{\alpha} : \alpha < \mathfrak{c}\}$ of subsets of $R := \{r_i : i \in \mathbb{N}\}$ such that $F_{\alpha_1} \cap \cdots \cap F_{\alpha_n}$ is an infinite subset of R for each $n \in \mathbb{N}$ and each $\alpha_1, \ldots, \alpha_n < \mathfrak{c}$, where each set F_{α} is equal to either E_{α} or to its complement $R \setminus E_{\alpha}$.

For each $K, M \in \mathbb{N}$ with $K \leq M$, the integers of the form $\sum_{i=K}^{M} n_i r_i$, with $n_i \in \mathbb{Z}^+$ and $n_i < r_K$ for $i = K, \ldots, M$, are all distinct. Indeed, the minimum distance between any two distinct integers of this form is r_K . Suppose that $n_i \in \mathbb{Z}^+$ and $n_i < r_K$ for $i = K, \ldots, M$ and that two sums $\sum_{i=K}^{M} m_i r_i$ and $\sum_{i=1}^{M} n_i r_i$ are equal, where $m_i, n_i \in \mathbb{Z}^+$ for $i \in \mathbb{N}$ and $K, M \in \mathbb{N}$ with $K \leq M$, then either $m_i = n_i$ $(i \in \mathbb{N})$, or the sum $\sum_{i=1}^{K-1} m_i \geq r_K/r_{K-1} \geq \sqrt{r_K}$.

We now define the map $\theta: \ell^1(S_{\mathfrak{c}}) \to \ell^1(S)$ to be the unique continuous homomorphism such that, for each $\alpha < \mathfrak{c}$, we have

$$\theta(X_{\alpha}) = \sum \left\{ \frac{1}{2^{i}} X_{i} : i \in E_{\alpha} \right\}.$$

It is obvious that such a map θ exists and that θ is a homomorphism with $\|\theta\|=1$.

We claim that θ is also injective. To see this, assume towards a contradiction that $\theta(f) = 0$ for some $f \in \ell^1(S_{\mathfrak{c}})$, where f has a coefficient equal to 1 at the monomial $\prod_{i=1}^N X_{\alpha_i}^{n_i}$ (where the α_i are distinct ordinals, with each $\alpha_i < \mathfrak{c}$). Write $d = \sum_{i=1}^N n_i$ for the total degree of this latter monomial, and choose an element $g \in \ell^1(S_{\mathfrak{c}})$ of finite support such that $||f - g||_1 < 1/2d!$, say the support of g is $\{\beta_i : i \in \mathbb{N}_M\}$ for some $M \geq N$. Take $i \in \mathbb{N}_M$. By Lemma 10.4, the set $E_{\beta_i} \setminus \bigcup_{j \neq i} E_{\beta_j}$ is infinite, and so we may choose $s_i \in E_{\beta_i} \setminus \bigcup_{j \neq i} E_{\beta_j}$. Set $R = \sum_{i=1}^N s_i n_i$. Then the coefficient of the monomial $Q := \prod_{i=1}^N X_{s_i}^{n_i}$ in $\theta(g)$ is exactly 2^{-R} . However, the coefficient of Q in $\theta(X_{\beta_1} X_{\beta_2} \cdots X_{\beta_k})$ is zero unless we have k = d and we can rearrange the β_j in such a way that $s_1 \in E_{\beta_j}$ for $j = 1, \ldots, n_1, s_2 \in E_{\beta_j}$ for $j = n_1 + 1, \ldots, n_1 + n_2$, and so on. In this latter case, the coefficient we obtain is $2^{-R} \cdot p$, where p is the number of such rearrangements divided by a combinatorial factor, which is 1 if the β_j are themselves distinct, but will be greater than 1 if there are some repetitions in the sequence β_j . Of course, p cannot exceed d!, and so the coefficient of Q in $\theta(f - g)$ is at most $2^{-R} \cdot d$! $\|f - g\|_1 \leq 2^{-R-1}$. Thus $\theta(f)$ has a coefficient of at least 2^{-R-1} in Q, so that $\theta(f) \neq 0$, contrary to hypothesis.

Therefore θ is injective, as required.

11. Homomorphisms into \mathfrak{F} . At one stage, it was conjectured that every homomorphism from a Banach algebra into \mathfrak{F} would be automatically continuous. This was proved to be false by a construction of Dales and McClure [8]; for an improved version of this construction, see [6, Theorem 5.5.19].

Theorem 11.1. There is a commutative, unital Banach algebra A which has a totally discontinuous higher point derivation at a character of A, and such that this higher point derivation defines a discontinuous epimorphism from A onto \mathfrak{F} .

It is noted in [8] that the algebra A of the above theorem can be taken to be a uniform algebra or a regular Banach function algebra.

The authors of [8] also asked (somewhat casually) if *every* discontinuous homomorphism from a Banach algebra into \mathfrak{F} had to be an epimorphism. This question was discussed in [24]. We shall now prove that this is indeed the case; in fact, we establish a stronger form of this conjecture.

THEOREM 11.2. Let A be an (F)-algebra, and let $(d_n : n \in \mathbb{Z}^+)$ be a non-degenerate, discontinuous higher point derivation on A. Then the map

$$\theta: a \mapsto \sum_{n=0}^{\infty} d_n(a) X^n, \quad A \to \mathfrak{F},$$

is an epimorphism.

Proof. The topology of A is given by a complete, translation-invariant metric, say ρ .

We first note that, if d_0 is discontinuous, then so is d_1 . Indeed, take $(a_n)_{n\geq 1}$ to be a null sequence in A with $d_0(a_n)=1$ $(n\in\mathbb{N})$, and choose $b\in A$ with $d_0(b)=0$ and $d_1(b)=1$. Then $a_nb\to 0$ in A and $d_1(a_nb)=1$ $(n\in\mathbb{N})$, and so d_1 is discontinuous.

We define k to be the minimum value of $n \in \mathbb{N}$ such that d_n is discontinuous; such a value of k exists.

By Proposition 3.3, there are $b_0, \ldots, b_k \in A$ such that

$$d_i(b_j) = \delta_{i,j} \quad (i, j = 0, \dots, k);$$

we fix these elements b_0, \ldots, b_k .

We first *claim* that there is a null sequence $(a_n)_{n\geq 1}$ in A such that, for each $n\in\mathbb{N}$, we have

$$d_j(a_n) = 0 \quad (j = 0, \dots, k - 1) \quad \text{and} \quad d_k(a_n) = 1.$$
 (11.1)

Indeed, if d_0 is discontinuous, so that k=1, the above sequence $(a_n b)_{n\geq 1}$ satisfies the requirement. Now suppose that d_0 is continuous. Then there is a null sequence $(c_n)_{n\geq 1}$ in A with $d_k(c_n)=1$ $(n\in\mathbb{N})$. Set

$$a_n = c_n - \sum_{i=0}^{k-1} d_i(c_n)b_i \quad (n \in \mathbb{N}).$$

Since d_0, \ldots, d_{k-1} are continuous, $(a_n)_{n\geq 1}$ is also a null sequence. Also, equation (11.1) holds. This gives the claim.

Now consider a fixed sequence $(\alpha_n : n \in \mathbb{Z}^+)$; we shall seek an element $c \in A$ such that

$$\theta(c) = \sum_{n=0}^{\infty} \alpha_n X^n.$$

The element c will be $\lim_{i\to\infty} c_i$, where the sequence $(c_i:i\geq k-1)$ is defined inductively as follows. First, we set

$$c_{k-1} = \sum_{j=0}^{k-1} \alpha_j b_j.$$

Next, fix $i \geq k$, and assume inductively that c_{k-1}, \ldots, c_{i-1} have been specified. Then we set

$$c_i = c_{i-1} + \beta_i b_1^{i-k} a_{m_i},$$

where $\beta_i = \alpha_i - d_i(c_{i-1})$ and $m_i \in \mathbb{N}$ is chosen so that, for each $\ell = k, \ldots, i$, we have

$$\rho(\beta_i b_1^{i-\ell} a_{m_i}, 0) = \rho\left(\sum_{j=\ell}^{i-1} \beta_j b_1^{j-\ell} a_{m_j}, \sum_{j=\ell}^{i} \beta_j b_1^{j-\ell} a_{m_j}\right) \le \frac{1}{2^i}.$$
 (11.2)

The latter condition can be satisfied because $a_n \to 0$ as $n \to \infty$, since the product in A is continuous, and since the metric is translation-invariant. This completes the inductive definition of the sequence $(c_i : i \ge k - 1)$.

We note that

$$d_j(c_i) = d_j(c_{i-1}) \quad (j = k, \dots, i)$$

and that the choice of the elements c_i is such that

$$d_j(c_i) = \alpha_j \quad (j = 0, \dots, i).$$

Thus the limit $\lim_{i\to\infty} \theta(c_i)$ exists, and is equal to $\sum_{n=0}^{\infty} \alpha_n X^n$. On the other hand, it is clear from equation (11.2) that the series

$$\beta_k a_{m_k} + \beta_{k+1} b_1 a_{m_{k+1}} + \beta_{k+2} b_1^2 a_{m_{k+2}} + \cdots$$

converges in A, and so $\lim_{i\to\infty} c_i$ exists in A, say $\lim_{i\to\infty} c_i = c$. We now *claim* that $\theta(c) = \lim_{i\to\infty} \theta(c_i)$, which will complete the proof.

To establish this claim, it suffices to show that, for each $n \in \mathbb{N}$ and each $\ell \geq k+n-1$, the difference

$$\theta(c) - \theta(c_{\ell})$$

belongs to M^n , where $M = X\mathfrak{F}$ is the maximal ideal of \mathfrak{F} . However,

$$c - c_{\ell} = \beta_{\ell+1} b_{1}^{\ell+1-k} a_{m_{\ell+1}} + \beta_{\ell+2} b_{1}^{\ell+2-k} a_{m_{\ell+2}} + \beta_{\ell+3} b_{1}^{\ell+3-k} a_{m_{\ell+2}} + \cdots$$
$$= b_{1}^{\ell+1-k} \left(\beta_{\ell+1} a_{m_{\ell+1}} + \beta_{\ell+2} b_{1} a_{m_{\ell+2}} + \beta_{\ell+3} b_{1} a_{m_{\ell+3}} + \cdots \right),$$

and the inner sum converges by equation (11.2). Thus $c - c_{\ell} \in b_1^{\ell+1-k}A \subset b_1^nA$. This implies that $\theta(c) - \theta(c_{\ell}) \in \theta(b_1)^n \mathfrak{F} \subset M^n$, as required for the claim.

This concludes the proof of the theorem.

The first corollary shows that the time-honoured definition of a Banach algebra of power series contains a redundant clause.

COROLLARY 11.3. Let A be a subalgebra of \mathfrak{F} containing $\mathbb{C}[X]$ such that $(A, \|\cdot\|)$ is a Banach algebra with respect to some norm. Then $(A, \|\cdot\|)$ is a Banach algebra of power series.

Proof. We must show that the embedding of $(A, \|\cdot\|)$ into (\mathfrak{F}, τ_c) is continuous.

Assume that the embedding is discontinuous. Then, by the theorem, $A = \mathfrak{F}$. By Theorem 7.4, \mathfrak{F} has a unique (F)-algebra topology, and so $(\mathfrak{F}, \|\cdot\|)$ is a Banach algebra, a contradiction of Theorem 7.4. \blacksquare

Essentially the same argument shows the following.

COROLLARY 11.4. Let A be a subalgebra of \mathfrak{F} containing $\mathbb{C}[X]$ such that (A, τ) is an (F)-algebra (respectively, a Fréchet algebra) with respect to some topology τ . Then (A, τ) is an (F)-algebra (respectively, a Fréchet algebra) of power series.

We do not know whether or not a Fréchet algebra of power series is functionally continuous. However we can state the following (rather trivial) immediate consequence of Corollary 11.4.

COROLLARY 11.5. Let A be a subalgebra of \mathfrak{F} containing $\mathbb{C}[X]$ such that (A, τ) is an (F)-algebra with respect to some topology τ . Then the character $\pi_0: A \to \mathbb{C}$ is continuous.

COROLLARY 11.6. There is no topology τ on $\mathbb{C}\{X\}$ such that $(\mathbb{C}\{X\},\tau)$ is an (F)-algebra.

Proof. Assume towards a contradiction that there is such a topology. Then, by Corollary 11.4, $(\mathbb{C}\{X\}, \tau)$ is an (F)-algebra of power series. But this is a contradiction of Theorem 8.2. \blacksquare

The next corollary generalizes [6, Theorem 4.6.1] and [24, Corollary 4.2].

COROLLARY 11.7. Let (A, τ) be an (F)-algebra of power series. Then A has a unique (F)-algebra topology.

Proof. Let (A, σ) be an (F)-algebra for a topology σ . By Corollary 11.4, (A, σ) is an (F)-algebra of power series. Let $(a_n)_{n\geq 1}$ be a sequence in A such that $a_n \to 0$ in (A, τ) and $a_n \to a$ in (A, σ) . For each $k \in \mathbb{N}$, the functional π_k is continuous on both (A, τ) and (A, σ) , and so $\pi_k(a) = 0$, whence a = 0. By the closed graph theorem for (F)-spaces, the embedding $\iota : (A, \tau) \to (A, \sigma)$ is a linear homeomorphism, and so $\sigma = \tau$.

We now note that the above results lead to a different proof of Theorem 2.6, which we restate in the form below.

Theorem 11.8. There is no embedding of \mathfrak{F}_2 into \mathfrak{F} .

Proof. Assume towards a contradiction that $\theta: \mathfrak{F}_2 \to \mathfrak{F}$ is an embedding. Then θ is not a surjection, for this would imply that $\mathfrak{F}_2 \cong \mathfrak{F}$, and this is impossible, for example because \mathfrak{F}_2 has many prime ideals, but \mathfrak{F} has only two prime ideals. Thus, by Theorem 11.2, the embedding $\theta: \mathfrak{F}_2 \to \mathfrak{F}$ is continuous, and so we may regard $A:=\theta(\mathfrak{F}_2)$ as a Fréchet subalgebra of \mathfrak{F} .

By [24, Theorem 3.3], the topology of A is given by a countable family of norms (not just seminorms), say by the sequence $(\|\cdot\|_n)_{n\geq 1}$. By Theorem 7.6, A has a unique Fréchet algebra topology, and so the topology given by the sequence $(\|\cdot\|_n)_{n\geq 1}$ on A is equivalent to the usual topology τ_c , given by the sequence $(p_n)_{n\geq 1}$ of seminorms. In particular, there exist $n\in\mathbb{N}$ and C>0 such that

$$||f||_1 \le Cp_n(f) \quad (f \in \mathfrak{F}_2).$$

But now $||X^{n+1}||_1 \le Cp_n(X^{n+1}) = 0$, a contradiction of the fact that $||\cdot||_1$ is a norm on \mathfrak{F}_2 .

Thus there is no such embedding $\theta: \mathfrak{F}_2 \to \mathfrak{F}$.

12. Homomorphisms into \mathfrak{F}_n . Throughout this section, we fix $n \geq 2$ in \mathbb{N} . Our first query is to seek an analogous result to Corollaries 11.3 and 11.4 when \mathfrak{F} is replaced by \mathfrak{F}_n . Indeed, the natural guess is that the following holds.

'Let A be a subalgebra of \mathfrak{F}_n containing $\mathbb{C}[X_1,\ldots,X_n]$ such that A is an (F)-algebra with respect to some topology τ . Then A is an (F)-algebra of power series in n variables.'

In fact, this is not true, as we shall show soon. However, we can prove a considerably weaker positive result. A major hurdle that arises when we replace \mathfrak{F} by \mathfrak{F}_n is that non-zero (necessarily closed) ideals in \mathfrak{F}_n are not necessarily of finite codimension. The version of the above that we shall prove is the following. We recall that the separating space $\mathfrak{S}(\theta)$ of a homomorphism θ was defined in §6.

THEOREM 12.1. Let $n \in \mathbb{N}$, let A be an (F)-algebra, and let $\theta : A \to \mathfrak{F}_n$ be a homomorphism such that $\theta(A)$ is dense in (\mathfrak{F}_n, τ_c) . Assume that $\mathfrak{S}(\theta)$ has finite codimension in \mathfrak{F}_n . Then θ is a surjection.

We note that, in the case where n=1, every non-zero ideal in \mathfrak{F} has finite codimension in \mathfrak{F} , and so the above result subsumes Theorem 11.2.

We shall first give a lemma; we maintain the notation of the theorem. The space of all linear functionals on \mathfrak{F}_n is denoted by \mathfrak{F}_n^* , with the duality specified by the pairing $\langle \cdot, \cdot \rangle$, and the annihilator in \mathfrak{F}_n^* of a subspace E of \mathfrak{F}_n is denoted by E^{\perp} .

LEMMA 12.2. Let I be a proper ideal of finite codimension in \mathfrak{F}_n , and let $f \in \mathfrak{F}_n$. Then there exists $a \in A$ such that $\theta(a) \in f + I$.

Suppose, further, that $f \in \mathfrak{S}(\theta)$. Then there is a null sequence $(a_k)_{k \geq 1}$ in A such that $\theta(a_k) \in f + I$ $(k \in \mathbb{N})$ and $\theta(a_k) \to f$ in (\mathfrak{F}_n, τ_c) as $k \to \infty$.

Proof. Let $\pi: \mathfrak{F}_n \to \mathfrak{F}_n/I$ be the quotient map. Since $\theta(A)$ is dense in \mathfrak{F}_n , it is clear that $(\pi \circ \theta)(A)$ is a dense linear subspace of the finite-dimensional space \mathfrak{F}_n/I , and so necessarily $(\pi \circ \theta)(A) = \mathfrak{F}_n/I$. This gives the first part of the lemma.

The space I^{\perp} is finite-dimensional, with basis $\{\lambda_1, \ldots, \lambda_m\}$, say, and there exist $f_1, \ldots, f_m \in \mathfrak{F}_n$ such that $\langle f_i, \lambda_j \rangle = \delta_{i,j}$ $(i, j = 1, \ldots, m)$. By the first clause, there exist $x_1, \ldots, x_m \in A$ with $\theta(x_i) \in f_i + I$ $(i = 1, \ldots, m)$.

Now take a null sequence $(b_k)_{k\geq 1}$ in A such that $\theta(b_k)\to f$, and define

$$a_k = b_k + \sum_{i=1}^{m} \langle f - \theta(b_k), \lambda_i \rangle x_i \quad (k \in \mathbb{N}).$$

Then $\lim_{k\to\infty} a_k = \lim_{k\to\infty} b_k = 0$ and $\lim_{k\to\infty} \theta(a_k) = \lim_{k\to\infty} \theta(b_k) = f$. Take $k \in \mathbb{N}$. Then

$$\langle \theta(a_k), \lambda_j \rangle = \langle \theta(b_k), \lambda_j \rangle + \sum_{i=1}^m \langle f - \theta(b_k), \lambda_i \rangle \delta_{i,j} = \langle f, \lambda_j \rangle \quad (j = 1, \dots, m),$$

and so $\theta(a_k) \in f + I$.

We shall now give our proof of Theorem 12.1. In the proof we shall write M for \mathfrak{M}_n , the maximal ideal of \mathfrak{F}_n . Also, we take $f_1, \ldots, f_p \in \mathfrak{S}$ to be the generators of the ideal $\mathfrak{S} := \mathfrak{S}(\theta)$, so that

$$\mathfrak{S} = f_1 \mathfrak{F}_n + \dots + f_p \mathfrak{F}_n.$$

As before, the topology of A is given by a complete, translation-invariant metric, say ρ ; for $\eta > 0$, we set $A_{[\eta]} = \{a \in A : \rho(a,0) < \eta\}$.

Proof of Theorem 12.1. Let $f \in \mathfrak{F}_n$ be fixed; we are seeking an element $a \in A$ with $\theta(a) = f$.

Since M^2 is a proper ideal of finite codimension in \mathfrak{F}_n , it follows from Lemma 12.2 that there exist $x_1, \ldots, x_m \in A$ such that $\theta(x_i) \in X_i + M^2$ $(i = 1, \ldots, m)$. Set

$$N = \max\{\rho(x_1, 0), \dots, \rho(x_m, 0)\}.$$

For $k \in \mathbb{Z}^+$, take L_k to be the number of monomials (in *n* variables) of degree k, and choose $\varepsilon_k > 0$ such that

$$L_k \cdot N^{2k} \cdot \varepsilon_k < \frac{1}{(k+1)^2}. \tag{12.1}$$

We claim that there is a sequence $(a_k)_{k\geq 1}$ in A such that, for each $k\in\mathbb{N}$, we have

$$\theta(a_k) - f \in M^k \mathfrak{S} = \left(\sum_{|r|=k} X^r \mathfrak{F}_n\right) \mathfrak{S}$$
 (12.2)

and

$$a_{k+1} - a_k = \sum_{|r|=k} x^r b_{k,r}, \tag{12.3}$$

where $b_{k,r} \in A_{[\varepsilon_k]}$ for $r \in (\mathbb{Z}^+)^n$ with |r| = k. (Here we write $x^r = x_1^{r_1} \cdots x_n^{r_n} \in A$ when $r = (r_1, \ldots, r_n) \in (\mathbb{Z}^+)^n$.)

Since $M \mathfrak{S} = f_1 M + \cdots + f_p M$ is an ideal of finite codimension in \mathfrak{F}_n , it follows from Lemma 12.2 that there exists $a_1 \in A$ with $\theta(a_1) - f \in M \mathfrak{S}$.

We can write

$$\theta(a_1) - f = \sum_{i=1}^{p} \sum_{i=1}^{n} X_i f_j v_{i,j},$$

where $v_{i,j} \in \mathfrak{F}_n$ for $i = 1, \ldots, n$ and $j = 1, \ldots, p$. It follows from Lemma 12.2 that, for each $i = 1, \ldots, n$ and $j = 1, \ldots, p$, there exists $b_{i,j} \in A$ such that $\rho(b_{i,j}, 0) < \varepsilon_1/p$ and $\theta(b_{i,j}) \in f_j v_{i,j} + M^2 \mathfrak{S}$.

Now define

$$a_2 = a_1 + \sum_{j=1}^{p} \sum_{i=1}^{n} b_{i,j} x_i = a_1 + \sum_{i=1}^{n} c_i x_i,$$

say, where $c_1, \ldots, c_n \in A_{[1]}$. Thus we have (12.3) in the case where k = 1. Also

$$\theta(a_2) - f = \theta(a_1) - f - \sum_{j=1}^{p} \sum_{i=1}^{n} \theta(b_{i,j}) \theta(x_i)$$

$$= \sum_{j=1}^{p} \sum_{i=1}^{n} (X_i f_j v_{i,j} - \theta(b_{i,j}) \theta(x_i))$$

$$= \sum_{j=1}^{p} \sum_{i=1}^{n} (f_j (X_i - \theta(x_i)) v_{i,j} + \theta(x_i) (f_j v_{i,j} - \theta(b_{i,j}))) \in M^2 \mathfrak{S}$$

because $f_j \in \mathfrak{S}$, $X_i - \theta(x_i) \in M^2$, and $f_j v_{i,j} - \theta(b_{i,j}) \in M^2 \mathfrak{S}$. Thus we have (12.2) in the case where k = 2.

Assume inductively that we have chosen $a_k \in A$ such that (12.2) holds, say

$$\theta(a_k) - f = \sum_{j=1}^{p} \sum_{|r|=k} X^r f_j v_{r,j},$$

where $v_{r,j} \in \mathfrak{F}_n$ for |r| = k and $j = 1, \ldots, p$. Then, for each r and j, there exists $b_{r,j} \in A$ such that $\rho(b_{r,j}, 0) < \varepsilon_k/p$ and $\theta(b_{r,j}) \in f_j v_{r,j} + M^{k+1} \mathfrak{S}$. Now define

$$a_{k+1} = a_k + \sum_{j=1}^p \sum_{|r|=k} b_{r,j} x^r = a_k + \sum_{|r|=k} c_r x^r,$$

say, where $c_1, \ldots, c_n \in A_{[\varepsilon_k]}$. Then we have (12.3) for k.

Essentially the same calculation as above gives (12.2) for k+1: we use the facts that $X^r - \theta(x^r) \in M^{k+1}$ and $f_j v_{r,j} - \theta(b_{r,j}) \in M^{k+1} \mathfrak{S}$ when |r| = k.

This completes the inductive step in the proof of the claim. By induction we obtain the required sequence $(a_k)_{k\geq 1}$ in A.

It follows from equations (12.1) and (12.3) that the sequence $(a_k)_{k\geq 1}$ converges in A, say $a=\lim_{k\to\infty}a_k$. We shall prove that $\theta(a)=f$; for this, it is sufficient to show that

$$\theta(a) - f \in M^R \quad \text{for each} \quad R \in \mathbb{N}.$$
 (12.4)

Fix $R \in \mathbb{N}$, and take $k \geq R$. From (12.3), we can write $a_{k+1} - a_k$ as

$$\sum_{|s|=k} x^s d_{k,s},$$

where

$$\rho(d_{k,s},0) \le N^{k-R} \cdot \sum_{r} \rho(b_{k,r},0) \le L_k \cdot N^{2k-R} \cdot \varepsilon_k < \frac{1}{(k+1)^2}$$

for each $s \in (\mathbb{Z}^+)^n$. It follows that $d_s := \sum_{k=R}^{\infty} d_{k,s}$ exists in A for each $s \in (\mathbb{Z}^+)^n$, and that

$$a - a_R = \sum_{|s|=R} x^s d_s.$$

Thus

$$\theta(a) - \theta(a_R) = \sum_{|s|=R} \theta(x^s d_s) \in M^R.$$

But also $\theta(a_R) - f \in M^R$, and so (12.4) follows.

This completes the proof of Theorem 12.1.

We shall now show that the obvious analogue for \mathfrak{F}_2 of Corollary 11.3 is false.

THEOREM 12.3. There exists a Banach algebra $(A, \|\cdot\|)$ such that $\mathbb{C}[X_1, X_2] \subset A \subset \mathfrak{F}_2$, but such that the embedding $(A, \|\cdot\|) \to (\mathfrak{F}_2, \tau_c)$ is not continuous.

Proof. We set $S = (\mathbb{Z}^+)^{<\omega}$ and $A = \ell^1(S)$, as in Theorem 10.1. In fact, it is convenient to write \mathfrak{F}_2 as $\mathbb{C}[[X,Y]]$ and to reserve X_i for elements of A, as before. We regard $\mathfrak{F} = \mathbb{C}[[X]]$ as a subalgebra of $\mathbb{C}[[X,Y]]$; the obvious quotient map from $\mathbb{C}[[X,Y]]$ obtained by setting Y = 0 is denoted by

$$\pi: \sum_{i,j=0}^{\infty} \alpha_{i,j} X^i Y^j \mapsto \sum_{i=0}^{\infty} \alpha_{i,0} X^i, \quad \mathfrak{F}_2 \to \mathfrak{F}.$$

By Theorem 10.1, there is a continuous, unital embedding $\theta: A \to \mathfrak{F}$ such that $\theta(A) \supset \mathbb{C}[X]$. We set $f_i = \theta(X_i)$ $(i \in \mathbb{N})$. As in Theorem 10.1, we may suppose that $f_1 = X \in \mathfrak{F}$.

As before, we denote by $A^{(1)}$ the closed linear subspace of A spanned by the elements X_i for $i \in \mathbb{N}$, so that

$$A^{(1)} = \left\{ \sum_{i=1}^{\infty} \alpha_i X_i : \sum_{i=1}^{\infty} |\alpha_i| < \infty \right\},\,$$

and $A^{(1)}$ is isometrically isomorphic to ℓ^1 . Choose a non-zero linear functional λ on $A^{(1)}$ such that $\lambda(X_i) = 0$ $(i \in \mathbb{N})$ and

$$\lambda \left(\sum_{i=2}^{\infty} \frac{1}{i^2} X_i \right) = 1,$$

so that λ is discontinuous, and then define a linear map

$$\psi: u \mapsto \theta(u) + \lambda(u)Y, \quad A^{(1)} \to \mathfrak{F}_2.$$

Our main claim is that ψ can be extended to a homomorphism $\Psi: A \to \mathfrak{F}_2$ such that $\pi \circ \Psi = \theta$. To establish this claim, we shall prove the following slightly more general theorem, in which we maintain the above notation. Further, we again write \mathfrak{M}_2 for the unique maximal ideal of \mathfrak{F}_2 .

THEOREM 12.4. Let $\beta: A^{(1)} \to \mathfrak{M}_2$ be a linear map such that $\pi \circ \beta: A^{(1)} \to \mathfrak{F}$ is continuous. Then there is a unital homomorphism $\overline{\beta}: A \to \mathfrak{F}_2$, extending β , such that $\pi \circ \overline{\beta}: A \to \mathfrak{F}$ is continuous.

Proof. For each $i, j \in \mathbb{Z}^+$, there is a linear functional $\beta_{(i,j)}: A^{(1)} \to \mathbb{C}$ such that

$$\beta(f) = \sum \{ \beta_{(i,j)}(f) X^i Y^j : i, j \in \mathbb{Z}^+ \} \quad (f \in A^{(1)}).$$
 (12.5)

Note that $\beta_{(0,0)} = 0$ because the range of β on $A^{(1)}$ is contained in \mathfrak{M}_2 . We extend each linear functional $\beta_{(i,j)}$ to a linear functional $\beta_{(i,j)} : \mathfrak{F}_{\infty}^{(1)} \to \mathbb{C}$.

Next, we define a linear functional $\beta_{(i,j)}^{(n)}$ on $\mathfrak{F}_{\infty}^{(n)}$ for each $n \in \mathbb{N}$ by the following formula:

$$\beta_{(i,j)}^{(n)}(f) = \sum \{ (\beta_{(i^{(1)},j^{(1)})} \otimes \cdots \otimes \beta_{(i^{(n)},j^{(n)})}) (\varepsilon_n(f)) \} \quad (f \in \mathfrak{F}_{\infty}^{(n)}), \tag{12.6}$$

where the sum is taken over all *n*-tuples $((i^{(1)}, j^{(1)}), \dots, (i^{(n)}, j^{(n)})) \in ((\mathbb{Z}^+)^2)^n$ such that $(i^{(1)}, j^{(1)}) + \dots + (i^{(n)}, j^{(n)}) = (i, j)$.

We now *claim* that the map $\overline{\beta}: A \to \mathfrak{F}_2$, defined for $f \in \mathfrak{F}_{\infty}$ by the formula

$$\overline{\beta}(f) = \sum_{k=0}^{\infty} \left\{ \left(\sum \left\{ \beta_{(i,j)}^{(n)}(f^{(n)}) : n \in \mathbb{N}_{i+j} \right\} \right) X^{i} Y^{j} : i, j \in \mathbb{Z}^{+}, i+j=k \right\},$$
 (12.7)

where we set $\overline{\beta}^{(0)}(f) = f(0,0)1$, is a unital homomorphism $\overline{\beta}: A \to \mathfrak{F}_2$ satisfying the stated conditions.

First, we shall show that the map $\overline{\beta}$ is a homomorphism. The map $\overline{\beta}$ satisfies the equation

$$\overline{\beta}(f) = \sum_{n=1}^{\infty} \overline{\beta}(f^{(n)}) \quad (f \in A).$$
(12.8)

Thus, to prove that $\overline{\beta}(fg) = \overline{\beta}(f)\overline{\beta}(g)$ for all $f, g \in A$, it suffices to do this in the special case where $f = f^{(r)}$ and $g = g^{(n-r)}$ for some $n \in \mathbb{N}$ and $r \in \{0, \dots, n\}$. The result in this case is immediate if r = 0 or r = n, and so we may suppose that $n \geq 2$ and that 0 < r < n. Further inspection shows that it is sufficient to show that

$$\overline{\beta}_{(i,j)}^{(n)}(fg) = \sum \{ \overline{\beta}_{(i_1,j_1)}^{(r)}(f) \overline{\beta}_{(i_2,j_2)}^{(n-r)}(g) : (i_1,j_1) + (i_2,j_2) = (i,j) \}$$

whenever $i + j \ge n$.

By the definition in (12.6), we must verify that

$$\sum \{ (\beta_{(i^{(1)},j^{(1)})} \otimes \cdots \otimes \beta_{(i^{(n)},j^{(n)})}) (\varepsilon_n(fg)) \}$$

is equal to the product

$$\sum \{ (\beta_{(i^{(1)},j^{(1)})} \otimes \cdots \otimes \beta_{(i^{(r)},j^{(r)})}) (\varepsilon_r(f)) \} \sum \{ (\beta_{(i^{(1)},j^{(1)})} \otimes \cdots \otimes \beta_{(i^{(n-r)},j^{(n-r)})}) (\varepsilon_{n-r}(g)) \},$$

where the sums are taken over all *n*-tuples $((i^{(1)}, j^{(1)}), \ldots, (i^{(n)}, j^{(n)})) \in ((\mathbb{Z}^+)^2)^n$ such that $(i^{(1)}, j^{(1)}) + \cdots + (i^{(n)}, j^{(n)}) = (i, j)$. However, this follows from Proposition 9.5, Lemma 9.6, and Lemma 9.7, taking $a = \varepsilon_r(f)$ and $b = \varepsilon_{n-r}(g)$ in Proposition 9.5.

Thus $\overline{\beta}$ is a homomorphism. Clearly $\overline{\beta}$ is unital.

We next show that $\overline{\beta}$ extends β . Suppose that $f \in A^{(1)}$. Then equation (12.7) becomes

$$\overline{\beta}(f) = \sum_{k=0}^{\infty} \{ \beta_{(i,j)}^{(1)}(f) X^i Y^j : i+j=k \};$$

by (12.5), the right-hand side is just $\beta(f)$, as required.

Finally, we claim that $\pi \circ \overline{\beta} : A \to \mathfrak{F}$ is continuous. Evidently $\pi \circ \overline{\beta}$ maps $A^{(r)}$ into \mathfrak{M}^r for each $r \in \mathbb{Z}^+$, and so it is enough to show that $(\pi \circ \overline{\beta}) \mid A^{(r)}$ is continuous for each $r \in \mathbb{Z}^+$. From equation (12.7), we see that

$$(\pi \circ \overline{\beta})(f) = \sum_{i=r}^{\infty} \beta_{(i,0)}^{(r)}(f) X^i \quad (f \in A^{(r)}),$$

and so it is enough to show that each $\beta_{(i,0)}^{(r)}$ is continuous for $i \geq r$ and $r \in \mathbb{Z}^+$. But the fact that $\pi \circ \beta$ is continuous implies that the linear functionals $\beta_{(i,0)}$ are all continuous. Further, the 'tensor product by rows' agrees with the usual tensor product when the linear functionals are continuous, and so $\beta_{(i,0)}^{(r)}$, being a finite sum of r-fold tensor products of continuous linear functionals of the form $\beta_{(j,0)}$, is indeed continuous for each $i \geq r$ and $r \in \mathbb{Z}^+$, and so $\pi \circ \overline{\beta}$ is continuous.

We can now complete the proof of Theorem 12.3.

The above theorem shows that ψ can be extended to a homomorphism $\Psi:A\to \mathfrak{F}_2$ such that $\pi\circ\Psi=\theta$. The map Ψ is an embedding because θ is injective, and it is manifest that Ψ is discontinuous. It is clear that $\Psi(A)$ contains \mathfrak{F} and the element $\Psi(\sum_{i=2}^\infty X_i/i^2)$, which, by a remark in the proof of Theorem 10.1, has the form X^2f+Y for some $f\in\mathfrak{F}$. By Lemma 1.2, there is a continuous, unital automorphism χ of \mathfrak{F}_2 such that $\chi(X)=X$ and $\chi(X^2f+Y)=Y$, and so $\chi\circ\Psi:A\to\mathfrak{F}_2$ is a discontinuous embedding whose range contains $\mathbb{C}[X,Y]$, as required for the proof of the theorem (where we identify A with its image in \mathfrak{F}_2 under $\chi\circ\Psi$).

COROLLARY 12.5. There is a discontinuous embedding of the semigroup algebra $\ell^1(S_{\mathfrak{c}})$ into \mathfrak{F}_2 such that the range contains $\mathbb{C}[X_1, X_2]$.

Proof. This follows easily from Theorem 10.5 and the above proof.

Acknowledgments. This paper was written whilst the second author was visiting the Department of Pure Mathematics at the University of Leeds. He was supported by a Commonwealth Academic Staff Fellowship, which he acknowledges with grateful thanks. We are grateful to the referee for a careful reading of our manuscript, and to Richard Loy for some comments.

A lecture based on this paper was delivered by C. J. Read at the 19th International Conference on Banach Algebras, held at Będlewo, 14–24 July, 2009. The support for the meeting by the Polish Academy of Sciences, the European Science Foundation under the ESF-EMS-ERCOM partnership, and the Faculty of Mathematics and Computer Science of Adam Mickiewicz University at Poznań is gratefully acknowledged.

References

- [1] G. R. Allan, Embedding the algebra of formal power series in a Banach algebra, Proc. London Math. Soc. (3) 25 (1972), 329–340.
- [2] G. R. Allan, Introduction to Banach Spaces and Algebras, Oxford University Press, 2010.
- [3] R. Arens, Dense inverse limit rings, Michigan Math. Journal 5 (1958), 169–182.
- [4] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison—Wesley, Reading, MA, 1969.
- [5] D. Clayton, A reduction of the continuous homomorphism problem for F-algebras, Rocky Mountain J. Math. 5 (1975), 337–344.
- [6] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs 24, Clarendon Press, Oxford, 2000.
- [7] H. G. Dales and J. P. McClure, Higher point derivations on commutative Banach algebras,
 I, J. Functional Anal. 26 (1977), 166–189.
- [8] H. G. Dales and J. P. McClure, Higher point derivations on commutative Banach algebras,
 II, J. London Math. Soc. (2) 16 (1977), 313–325.
- [9] H. G. Dales and J. P. McClure, Higher point derivations on commutative Banach algebras, III, Proc. Edinburgh Math. Soc. 24 (1981), 31–40.
- [10] H. G. Dales, A. T.-M. Lau, and D. Strauss, Banach algebras on semigroups and on their compactifications, Mem. Amer. Math. Soc. 205 (2010), no. 966.
- [11] P. G. Dixon and J. R. Esterle, Michael's problem and the Poincaré-Bieberbach phenomenon, Bull. Amer. Math. Soc. 15 (1986), 127–187.
- [12] R. Engelking, General Topology, Monografie Matematyczne 60, PWN, Warsaw, 1977.
- [13] J. R. Esterle, Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras, Ann. Scient. École Normale Sup. 29 (1996), 539–582.
- [14] M. Fragoulopoulou, Topological Algebras with Involution, Elsevier, Amsterdam, 2005.
- [15] S. Grabiner, Derivations and automorphisms of Banach algebras of power series, Mem. Amer. Math. Soc. 146 (1974), 1–124.
- [16] G. Haghany, Norming the algebra of formal power series in n indeterminates, Proc. London Math. Soc. (3), 33 (1976), 476–496.
- [17] A. Ya. Helemskii, Banach and Locally Convex Algebras, Clarendon Press, Oxford, 1993.
- [18] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
- [19] B. E. Johnson, Continuity of linear operators commuting with continuous linear operators, Trans. Amer. Math. Soc. 128 (1967), 88–102.
- [20] R. J. Loy, Uniqueness of the complete norm topology and continuity of derivations on Banach algebras, Tôhoku Math. Journal (2), 22 (1970), 371–378.
- [21] R. J. Loy, Uniqueness of the Fréchet space topology on certain topological algebras, Bull. Austr. Math. Soc. 4 (1971), 1–7.
- [22] R. J. Loy, Local analytic structure in certain commutative topological algebras, Bull. Australian Math. Soc. 6 (1972), 161–167.

- [23] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- [24] S. R. Patel, Fréchet algebras, formal power series, and automatic continuity, Studia Math. 187 (2008), 125–136.
- [25] C. J. Read, Derivations with large separating subspace, Proc. Amer. Math. Soc. 130 (2002), 3671–3677.
- [26] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- [27] O. Zariski and P. Samuel, Commutative Algebra, II, Springer-Verlag, New York, 1960.
- [28] W. Żelazko, Metric generalizations of Banach algebras, Rozprawy Matematyczne 47 (1965).
- [29] W. Żelazko, A characterization of commutative Fréchet algebras with all ideals closed, Studia Math. 138 (2000), 293–300.