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Abstract. We consider Fréchet algebras which are subalgebras of the algebra F = C [[X]]

of formal power series in one variable and of Fn = C [[X1, . . . , Xn]] of formal power series in n

variables, where n ∈ N. In each case, these algebras are taken with the topology of coordinatewise
convergence.

We begin with some basic definitions about Fréchet algebras, (F )-algebras, and other topo-
logical algebras, and recall some of their properties; we discuss Michael’s problem from 1952 on
the continuity of characters on these algebras and some results on uniqueness of topology.

A ‘test algebra’ U for Michael’s problem for commutative Fréchet algebras has been described
by Clayton and by Dixon and Esterle. We prove that there is an embedding of U into F, and so
there is a Fréchet algebra of power series which is a test case for Michael’s problem.

We also discuss homomorphisms from Fréchet algebras into F. We prove that such a homo-
morphism is either continuous or a surjection, so answering a question of Dales and McClure
from 1977. As corollaries, we note that a subalgebra A of F containing C[X] that is a Banach
algebra is already a Banach algebra of power series, in the sense that the embedding of A into F

is automatically continuous, and that each (F )-algebra of power series has a unique (F )-algebra
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topology. We also prove that it is not true that results analogous to the above hold when we
replace F by F2.

1. Algebraic definitions. All the algebras that will arise in this paper will have ground
field the complex field, C; for a background in the algebra that we shall use, see [4, 6, 27],
for example.

Let A be an algebra over C. As in [6], the product map on A is denoted by

mA : (a, b) 7→ a · b = ab, A×A→ A;

the set (A, · ) is the multiplicative semigroup of A.
A character on A is a non-zero homomorphism from A onto C ; the collection of all

characters on A is the character space of A, denoted by ΦA.
Let A be a unital algebra, with identity eA. Then a ∈ A is invertible if there exists

b ∈ A with ab = ba = eA, and then we write b = a−1 for the inverse of a; the collection
of invertible elements in A is denoted by InvA, so that InvA is a subsemigroup of (A, · ).
Clearly we have (ab)−1 = b−1a−1 (a, b ∈ InvA).

We recall that an ideal P in a commutative algebra A is a prime ideal if P 6= A and if
either a ∈ P or b ∈ P whenever a, b ∈ A and ab ∈ P . Thus P is a prime ideal if and only
if the quotient algebra A/P is an integral domain. For example, every maximal modular
ideal in A is a prime ideal.

Let A and B be algebras, and let θ : A → B be a homomorphism. Then θ is an
embedding if it is injective, and in this case we often regard A as a subalgebra of B; we
say that A embeds in B if there is such an embedding. An embedding θ : A → B is an
isomorphism if it is also a surjection; A is isomorphic to B, written A ∼= B, if there is
such an isomorphism.

In this paper, we shall consider in particular subalgebras of the algebras of formal
power series in one and several variables over C ; these latter algebras of formal power
series are denoted by

F = C [[X]] and Fn = C[[X1, . . . , Xn]],

respectively, where n ∈ N. A description of these algebras is given in [6, §1.6]; we recall
some notation and some of their basic properties.

Formally F consists of sequences α = (αk) = (αk : k ∈ Z+), where Z+ = {0, 1, 2, . . . },
with coordinatewise addition and scalar multiplication and algebra multiplication deter-
mined by the rule that δk ? δ` = δk+` for k, ` ∈ Z+, where δk = (δj,k : j ∈ Z+), the
characteristic function of {k}. Less formally, F consists of the formal sums

∞∑
k=0

αkX
k,

with the obvious product. Thus (F, ? ) is a commutative algebra with an identity denoted
by 1; in fact, we shall usually denote the product of two elements of F by juxtaposition.
We regard the algebra C[X] of polynomials in one variable as a unital subalgebra of F in
the obvious way.
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Throughout, we shall write

πk : α 7→ αk, F→ C,

for the coordinate projections, defined for each k ∈ Z+. In particular, π0 is the unique
character on F. For f ∈ F with f 6= 0, the order of f is o(f) = min{k : πk(f) 6= 0}; we
set o(0) =∞, and follow usual conventions on the ordering of Z+ ∪ {∞}.

For k ∈ N, where N = {1, 2, . . . }, set

Mk =
{
f =

∞∑
k=0

αkX
k ∈ F : α0 = α1 = · · · = αk−1 = 0

}
= {f ∈ F : o(f) ≥ k}

(and take M0 = F). Then, for each k ∈ Z+, the set Mk is an ideal in F, Mk+1 ⊂Mk with
dim(Mk/Mk+1) = 1, and every non-zero ideal of F has the form Mk for some k ∈ Z+.
Further, M = M1 is the unique maximal ideal of F, and

Mk = M [k] = Mk = XkF (k ∈ Z+),

in the notation of [6]. Clearly MkM` = Mk+` (k, ` ∈ Z+), and so there are precisely two
prime ideals in F, namely the maximal ideal M and {0}. Further,

Inv F = {f ∈ F : π0(f) 6= 0}.

For f ∈ Inv F and k ∈ N, there exists g ∈ Inv F with gk = f . Indeed, suppose that
f = 1 +

∑∞
j=1 αjX

j , and we seek g of the form 1 +
∑∞
j=1 βjX

j . Then we take β1 with
kβ1 = α1, and then note that, for j ≥ 2, the formula for βj is kβj = αj + γ, where γ
depends on only β1, . . . , βj−1. It follows that each f ∈ F with o(f) = k ∈ N has the form
(Xg)k for some g ∈ Inv F.

For example, expX ∈ F is the series
∑∞
k=0X

k/k!.
Let f ∈ M and g ∈ F. Then we can define the ‘composition series’ g ◦ f ∈ F by

‘substitution’ in the obvious way; for example, we can define exp f ∈ F.
Suppose that f =

∑∞
k=0 αkX

k ∈ F is such that
∑∞
k=0 |αk|Rk < ∞ for each R > 0.

Then we can regard f as an entire function defined on C; in this case, exp f satisfies the
same condition and is also an entire function, and hence an element of F.

Now take n ∈ N. Let r = (r1, . . . , rn) ∈ (Z+)n, and set

|r| = r1 + · · ·+ rn.

A monomial is the characteristic function of an element, say r, of (Z+)n, and the degree
of the monomial is |r|. For j = 1, . . . , n, we write Xj for the monomial corresponding to
the element (δj,1, . . . , δj,n) ∈ (Z+)n. For k ∈ Z+, a homogeneous polynomial of degree k
is a linear combination (necessarily finite) of monomials of degree k . An element of

Fn = C[[X1, . . . , Xn]]

is defined to be a sequence (fk : k ∈ Z+), where each fk is a homogeneous polynomial
of degree k (and f0 is a multiple of the identity 1). The product of two homogeneous
polynomials of degree k and `, respectively, is a homogeneous polynomial of degree k+ `,
and in this way we define a product on Fn making it into a commutative algebra with
identity 1. A generic element of Fn is denoted by∑

{αrXr : r ∈ (Z+)n} =
∑{

α(r1,...,rn)X
r1
1 · · ·Xrn

n : (r1, . . . , rn) ∈ (Z+)n
}
.
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The algebra C[X1, . . . , Xn] of polynomials in n variables consists of the finite sums of
monomials in Fn, and is identified with a subalgebra of Fn.

Throughout, we shall write

πr : α 7→ αr, Fn → C,

for the coordinate projections, defined for each r ∈ (Z+)n. In particular, π0 is the unique
character on Fn (where 0 = (0, . . . , 0)).

Let f = (fk : k ∈ Z+) ∈ Fn with f 6= 0, where fk is a homogeneous polynomial of
degree k. Then the order of f is

o(f) = min{k : fk 6= 0},

and the term fk is the initial form of f [27, p. 130]. Take f, g ∈ Fn with f, g 6= 0, and
suppose that fk and g` are the initial forms of f and g, respectively. Then fg 6= 0, so
that Fn is an integral domain; we have o(fg) = o(f) + o(g) and fkg` is the initial form
of fg. We set o(0) =∞.

For k ∈ Z+ ∪ {∞}, set

Mk := {f ∈ Fn : o(f) ≥ k}.

Then, for each k ∈ Z+ ∪ {∞}, the set Mk is an ideal in Fn. Also, we see that

MkM` = Mk+` (k, ` ∈ Z+)

and that, for each k ∈ Z+, we have dim(Mk/Mk+1) =
(
k+n−1

k

)
<∞, so that each Mk is

an ideal of finite codimension in Fn, and Mk is generated by the monomials of degree k.
Further, M1, sometimes written as Mn (with M = M1) to show the dependence on n, is
the unique maximal ideal in Fn, and, for each k ∈ N, we have Mk

1 = Mk, so that

Inv Fn = {f ∈ Fn : π0(f) 6= 0} and Mk
1 =

∑
{XrFn : |r| = k}.

Clearly,
⋂
{Mk : k ∈ N} = {0}.

Each ideal in Fn is finitely-generated, and so Fn is noetherian [27, VII, Corollary
p. 139 and Theorem 4′]. However, when n ≥ 2, there are certainly ideals in Fn which are
not of finite codimension. For example, this is the case for the ideal P = X2F2 in F2.
Indeed, it is clear that P is a prime ideal in F2 and that F2/P ∼= F.

The topology of coordinatewise convergence, called τc, is a metrizable topology on Fn
(see below). In this topology, a sequence (fk)k≥1 in Fn converges to f ∈ Fn if and only
if πr(fk) → πr(f) as k → ∞ for each r ∈ (Z+)n. In particular, a series

∑∞
k=1 fk in Fn

converges whenever (fk)k≥1 is such that, for each s ∈ (Z+)n, we have πs(fk) = 0 for all
sufficiently large k ∈ N. For example, for each f ∈ Mn and each sequence (βk)k≥1, the
series

∑∞
k=1 βkf

k converges in Fn.
The following result is given in [27, pp. 135,136]; it is also noted there that each

homomorphism from Fm to Fn has the specified form.
For n ∈ N, we set Nn = {1, . . . , n}.

Lemma 1.1. Let m,n ∈ N, and take f1, . . . , fm ∈Mn. Then the map

θ :
∑
{αrXr : r ∈ (Z+)m} 7→

∑
{αrfr11 · · · frmm : r ∈ (Z+)m}, Fm → Fn, (1.1)

is a continuous homomorphism with θ(Xi) = f i (i ∈ Nm).
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Proof. It suffices to note that, for each s ∈ (Z+)n, we have πs(fr11 · · · frmm ) = 0 for all
but finitely many values of r ∈ (Z+)m, and so the sum on the right-hand side of (1.1)
converges in Fn. It is then clear that θ is a homomorphism.

We shall use the following lemma from [27, p. 136].

Lemma 1.2. Let n ∈ N, and let f1, . . . , fn ∈ Fn have initial forms X1, . . . , Xn, res-
pectively. Then the substitution map θ : g 7→ g(f1, . . . , fn), Fn → Fn, is an auto-
morphism of Fn with θ(Xi) = f i (i ∈ Nn). Thus there is an automorphism ψ of Fn such
that ψ(f i) = Xi (i ∈ Nn).

2. Embeddings of Fm in Fn. As a background to our future results, we shall consider
when the algebras Fn can be embedded into each other. Of course, there is a trivial
embedding of Fm into Fn whenever n ≥ m. We shall first show that each Fn can be
embedded in F2; this well-known result is essentially in [27], but we give some details for
this specific result.

Let A be a commutative, unital algebra, and let a1, . . . , an be distinct elements of A.
Then {a1, . . . , an} is said to be algebraically independent in A if p(a1, . . . , an) 6= 0 for
each non-zero polynomial p ∈ C[X1, . . . , Xn].

Lemma 2.1. There is a sequence (fj)j≥1 in F such that {1, f1, . . . , fn} is algebraically
independent in F for each n ∈ N.

Proof. Set f0 = 1 and f1 = X, and then define (fj)j≥2 inductively by setting

fj+1 = exp fj (j ∈ N).

As above, we can regard each fj as an entire function, and in particular as a function
on R. We note that fmj (x)/fj+1(x)→ 0 as x→∞ in R for each j,m ∈ N.

Let n ∈ N. Then we claim that {1, f1, . . . , fn} is algebraically independent in F.
Indeed, suppose that p(1, f1, . . . , fn) = 0, where p ∈ C[X1, . . . , Xn+1]. Then there exist
αr ∈ C such that ∑

{αrfr11 · · · frnn : r ∈ (Z+)n} = 0,

where the sum is a finite sum.
Assume towards a contradiction that not all the numbers αr in this sum are zero.

Choose the maximum value of rn, say sn, such that αr 6= 0 for some

r = (r1, . . . , rn−1, sn) ∈ (Z+)n.

Then choose the maximum value of rn−1, say sn−1, such that αr 6= 0 for some

r = (r1, . . . , rn−2, sn−1, sn) ∈ (Z+)n.

Continue in this way to find a specific s = (s1, . . . , sn) ∈ (Z+)n with αs 6= 0. We see that

0 =
∑
{αrfr11 (x) · · · frnn (x) : r ∈ (Z+)n}/fs11 (x) · · · fsnn (x)→ αs as x→∞,

a contradiction.
Thus the result holds.

An extension of the following theorem will be given in Theorem 9.1.
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Theorem 2.2. Let n ∈ N. Then there is an embedding of Fn in F2.

Proof. Set Fn = C [[X1, . . . , Xn]] and F2 = C [[Y1, Y2]].
We may suppose that n ≥ 3. As in Lemma 2.1, there is an algebraically independent

set {1, f1, . . . , fn} in F. Each element of Fn has the form g = (gk : k ∈ Z+), where gk is
a homogeneous polynomial of degree k for each k ∈ Z+. Define

θ : g = (gk) 7→
∞∑
k=0

Y k2 gk(f1(Y1), . . . , fn(Y1)), Fn → F2.

It is clear that θ is a homomorphism.
Suppose that θ(g) = 0, and take k ∈ Z+. Then gk(f1(Y1), . . . , fn(Y1)) = 0 in F. How-

ever gk is a polynomial in C[X1, . . . , Xn] and {1, f1, . . . , fn} is algebraically independent,
and so gk = 0. Thus g = 0, and so θ is an injection, and hence an embedding.

We now seek to show that F2 does not embed in F. This is surely well-known, but we
were unable to find a specific reference.

Lemma 2.3. Assume that there is an embedding of F2 into F. Then there is an embedding
θ : F2 → F and k ∈ N such that Xk ∈ θ(F2).

Proof. Let θ : F2 → F be an embedding. Then θ(X1) ∈ M \ {0}, and so o(θ(X1)) = k

for some k ∈ N. Hence there exists f ∈ Inv F with θ(X1) = (Xf)k. By Lemma 1.2, there
is an automorphism ψ of F with ψ(Xf) = X. Set θ = ψ ◦ θ : F2 → F. Then θ is an
embedding, and θ(X1) = ψ((Xf)k) = Xk. Hence Xk ∈ θ(F2).

Let A be a unital subalgebra of a unital algebra B. An element b ∈ B is integral over
A if there is a monic polynomial p ∈ A[X] with p(b) = 0 ; the algebra B is integral over A
if each b ∈ B is integral over A. Suppose that B is a finitely generated A-module. Then
B is integral over A [18, Chapter VIII, Corollary 5.4].

Lemma 2.4. Let θ : F2 → F be an embedding such that Xk ∈ θ(F2) for some k ∈ N.
Then F is integral over θ(F2).

Proof. Set A = θ(F2). Then it is sufficient to show that F is a finitely generated A-module.
We shall show that, as an A-module, F is generated by {1, X, . . . ,Xk−1}.

Let f ∈ F, say f =
∑∞
k=0 αkX

k. For j = 0, . . . , k − 1, set hj =
∑∞
i=0 αj+ikX

ik.
Then h0, . . . , hk−1 ∈ A and f = h0 + Xh1 + · · · + Xk−1hk−1, and so F is generated by
{1, X, . . . ,Xk−1}.

We shall use the following standard result from [4, Theorem 5.10], for example; it is
a precursor of the famous ‘going-up’ theorem.

Lemma 2.5. Let A be a unital subalgebra of an algebra B, and let P be a prime ideal of
A. Then there is a prime ideal Q of B with Q ∩A = P .

Theorem 2.6. Take n ≥ 2. Then there is no embedding of Fn into F.

Proof. Assume towards a contradiction that there is an embedding of Fn into F. Then
there is an embedding θ : F2 → F; again set A = θ(F2). By Lemma 2.3, we may suppose
that there exists k ∈ N such that Xk ∈ A. By Lemma 2.4, F is integral over A. Next
set P = θ(X2F2), a prime ideal in A. By Lemma 2.5, there is a prime ideal Q of F
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with Q ∩ A = P . But the only two prime ideals Q of F are {0} and M; it is clear
that {0} ∩ A = {0} ( P and that M ∩ A = θ(M2) ) P . Thus we have the required
contradiction.

A second proof of the above theorem will be given in Theorem 11.8, below.

3. Higher point derivations. We shall be interested in homomorphisms from algebras
into F; these can be defined in terms of certain higher point derivations. For a study of
higher point derivations on commutative Banach algebras, see [7, 8, 9].

Definition 3.1. Let A be an algebra, and let τ be a Hausdorff topology on A such that
(A, τ) is a topological linear space. Then (A, τ) is a topological algebra if the product map
mA is continuous.

Definition 3.2. Let A be an algebra, and let ϕ ∈ ΦA. Then a sequence

(dn) = (dn : n ∈ Z+)

of linear functionals on A is a higher point derivation at ϕ if d0 = ϕ and if

dn(ab) =
n∑
j=0

dj(a)dn−j(b) (a, b ∈ A,n ∈ N).

A higher point derivation (dn) is non-degenerate if d0 6= 0 and d1 6= 0.
Suppose that (A, τ) is a topological algebra. Then a higher point derivation (dn) on

A is continuous if each of the linear functionals dn for n ∈ Z+ is continuous with respect
to τ , discontinuous if at least one of the dn is discontinuous, and totally discontinuous if
each of the dn for n ∈ N is discontinuous.

For example, consider O(D), the algebra of all analytic functions on the open unit
disc D, and, for f ∈ O(D), set

dn(f) =
f (n)(0)
n!

(n ∈ Z+).

Then the sequence (dn : n ∈ Z+) is a non-degenerate, continuous higher point derivation
at the evaluation character ε0 : f 7→ f(0) of O(D).

Let A be a unital algebra, and let ϕ ∈ ΦA. Suppose that (dn : n ∈ Z+) is a higher
point derivation at ϕ. Then the map

θ : a 7→
∞∑
n=0

dn(a)Xn, A→ F,

is a homomorphism with π0 ◦ θ = ϕ. Conversely, if θ : A→ F is a homomorphism, then
(πn ◦ θ : n ∈ Z+) is a higher point derivation at the character π0 ◦ θ on A. We shall
always identify homomorphisms into F with higher point derivations in this way.

Similarly, one can identify homomorphisms from an algebra A into Fn (where n ∈ N)
with a suitable sequence (dr : r ∈ (Z+)n) of linear functionals on A.

The following easy remark is known.

Proposition 3.3. Let A be an algebra, and let (dn) be a non-degenerate higher point
derivation at a character of A.
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(i) The set {dn : n ∈ Z+} is linearly independent.
(ii) For each k ∈ Z+, there are a0, . . . , ak ∈ A such that

di(aj) = δi,j (i, j = 0, . . . , k).

(iii) For n ∈ N and a1, . . . , an ∈ ker d0, we have

dn(a1 · · · an) = d1(a1) · · · dn(an).

Proof. (i) First suppose that αd0 + βd1 = 0. Choose u ∈ A with d0(u) = 1, so that
d0(u2) = 1 and d1(u2) = 2z, where z = d1(u). If z = 0, then α = 0, and then β = 0
because d1 6= 0. If z 6= 0, then α+ βz = α+ 2βz = 0, and so α = β = 0. Thus {d0, d1} is
linearly independent.

Now choose v ∈ A with d0(v) = 0 and d1(v) = 1. For k ∈ N, we have

d0(vk) = · · · = dk−1(vk) = 0

and dk(vk) = 1. It follows easily from this that the set {dn : n ∈ Z+} is linearly indepen-
dent.

(ii) and (iii) These follow immediately.

4. (F )-algebras and Fréchet algebras. There is considerable variation of terminology
in the literature about these algebras. We shall use the following definitions, copying [6].
An early important source on these algebras is [28]; a fine recent account is that of [14].

A topological linear space E is an (F )-space if there is a complete metric defining the
topology of E; a locally convex space which is an (F )-space is a Fréchet space. The space
E is locally bounded if there is a bounded neighbourhood of the origin in E.

Definition 4.1. A topological algebra (A, τ) is an (F )-algebra if there is a complete
metric on A which defines the topology τ .

(These algebras are called ‘Fréchet topological algebras’ in [14].)
A metric d on a linear space E is translation-invariant if

d(x+ z, y + z) = d(x, y) (x, y, z ∈ E).

In this case d(x, y) = d(x − y, 0) (x, y ∈ E). Let E be a topological linear space whose
topology is specified by a metric. Then its topology is also specified by a translation-
invariant metric [26, Theorem 1.24]. We can also suppose that, for each x ∈ E, we have

d(αnx, 0)→ 0 whenever αn → 0 in C. (4.1)

Thus our (F )-space is the same as an ‘F -space’ in [26].
Here is an easy remark. Let A be an algebra which is also a complete metrizable

space. Suppose that the product mA : A×A→ A is separately continuous. Then A is an
(F )-algebra with respect to the topology determined by the metric.

Quite a lot of remarks, especially those related to the Baire category theorem, which
are normally stated for Banach algebras, are actually true for (F )-algebras. Some par-
ticular results hold for separable (F )-algebras. For example, if I is a closed ideal in a
separable (F )-algebra A, and I2 has finite codimension in A, then I2 is automatically
closed; see [6].
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Note that the Gel’fand–Mazur theorem holds for locally convex (F )-algebras: a locally
convex (F )-algebra which is a division algebra is isomorphic to C. It seems to be an open
question whether or not every (F )-algebra which is a division algebra is isomorphic to C.

Note that there are topologically simple, commutative locally convex (F )-algebras;
of course the existence of topologically simple, commutative Banach algebras is a very
famous open problem.

Definition 4.2. Let A = (A, τ) be an (F )-algebra. Then A is a Fréchet algebra if the
topology τ can be defined by a sequence (pk : k ∈ N) of algebra seminorms.

In this case, we can suppose without loss of generality that the sequence (pk : k ∈ N)
of algebra seminorms is increasing, in the sense that

pk(a) ≤ pk+1(a) (a ∈ A, k ∈ N).

We write (A, (pk)) for the corresponding Fréchet algebra.
Our Fréchet algebras are sometimes called ‘complete, metrizable locally m-convex

algebras’; Helemskĭı [17, Chapter V] calls them ‘polynormed algebras’. The seminal work
is [23]; for a new account that has results on Fréchet algebras, see [2].

For example, define

pk

( ∞∑
j=0

αjX
j
)

=
k∑
j=0

|αj | (k ∈ N)

for
∑
αjX

j ∈ F. Then (F, (pk)) is a Fréchet algebra. The topology so defined on F is the
topology of coordinatewise convergence, τc.

Now fix n ∈ N, and define

pk

(∑
{αrXr : r ∈ (Z+)n}

)
=
∑{

|αr| : r ∈ (Z+)n, |r| ≤ k
}

for
∑
{αrXr : r ∈ (Z+)n} ∈ Fn. Clearly (Fn, τc) = (Fn, (pk)) is also a Fréchet algebra; the

topology τc is again that of coordinatewise convergence. In this topology, the subalgebra
C [X1, . . . , Xn] of polynomials is dense. The space (Fn, τc) is not locally bounded.

We note that every ideal in the algebra Fn is closed in the topology τc. Indeed we
note the following pleasant result of Żelazko [29].

Proposition 4.3. Let A be a commutative Fréchet algebra. Then all ideals in A are
closed if and only if A is noetherian.

5. The continuity of characters. We now consider when characters on a topological
algebra are continuous.

Definition 5.1. Let (A, τ) be a topological algebra. The set of continuous characters on
A is denoted by ΣA. The algebra A is functionally continuous if every character on A is
continuous, so that ΣA = ΦA.

It is standard fact, proved at the beginning of any course on Banach algebras in a few
lines, that all characters on a Banach algebra are continuous. Thus Banach algebras are
functionally continuous.
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It is a remarkable fact (see [6, §4.10]) that the question whether or not every commu-
tative Fréchet algebra is functionally continuous is open. This question was specifically
discussed in the seminal work [23] of Michael, and so it is often called Michael’s problem.
It is likely that the question was already discussed by Mazur in Warsaw before 1939.

It is easy to find non-metrizable, complete LMC algebras that are not functionally con-
tinuous. However, we do not know an example of an (F )-algebra, even non-commutative,
that is not functionally continuous.

A strong partial result of Arens [3] asserts that each commutative Fréchet algebra A
which has a finite subset S that polynomially generates A, in the sense that the subalge-
bra of elements that are polynomials in the elements of S is dense in A, is functionally
continuous; see [6, Corollary 4.10.11]. It follows that ΣA is dense in ΦA in the relative
topology σ(A×, A), where A× denotes the space of all linear functionals on A. Various
other results showing that specific commutative Fréchet algebras are functionally contin-
uous are given in [6, §4.10]. For example, it is shown in [6, Corollary 4.10.12] that each
commutative Fréchet algebra for which ΣA is countable is functionally continuous.

A remarkable result of Dixon and Esterle [11], given as [6, Corollary 4.10.16], shows
that, under the assumption that there is a commutative Fréchet algebra which is not
functionally continuous, the following result about analytic maps in several complex vari-
ables holds true: for each fixed k ≥ 2 and each sequence (Fn)n≥1 of analytic maps from
Ck into Ck, the set {

(zn) ∈
∏

Ck : Fn(zn+1) = zn (n ∈ N)
}

is non-empty. An example of a sequence (Fn)n≥1 such that the above set is empty would
lead to a proof that each commutative Fréchet algebra is functionally continuous; no such
example is known.

Various ‘test algebras’ for the functional continuity of commutative Fréchet algebras
have been given. These are commutative Fréchet algebras A with the property that all
commutative Fréchet algebras are functionally continuous provided that this is the case
for the specific algebra A. The first such test algebra, called U , is due to Clayton in 1975
[5]. A deep study of Michael’s problem and of the test algebra U is given in [13], where
other test algebras are mentioned; we shall describe the algebra U below.

There are various papers in the literature which claim, explicitly or implicitly, a pos-
itive solution to Michael’s problem, but none seems to have convinced the community.

Unfortunately we cannot mark our conference with a solution of Michael’s problem,
much as we would like to in this Polish setting. However we shall make a remark on this
question in §9.

6. The separating space. A sequence (xn)n≥1 in a topological linear space is a null
sequence if xn → 0 as n→∞.

Let E and F be (F )-spaces, and let T : E → F be a linear map. Then the separating
space, S(T ), of T is defined to be the space of elements y ∈ F such that there is a
null sequence (xn)n≥1 in E with limn→∞ Txn = y. It is easily checked that S(T ) is a
closed linear subspace of F ; the closed graph theorem for (F )-spaces (see [2, §2.12] or
[26, Theorem 2.15]) asserts that T is continuous if and only if S(T ) = {0}.
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Now suppose that A and B are (F )-algebras and that θ : A→ B is a homomorphism
such that θ(A) is dense in B. Then it is easily checked that S(θ) is a closed ideal in B.

Let B be an (F )-algebra. Then a closed ideal I in B is a separating ideal if, for each
sequence (bn)n≥1 in B, the nest

(
b1 · · · bnI : n ∈ N

)
of closed right ideals in B stabilizes,

in the sense that there exists n0 ∈ N such that

b1 · · · bnI = b1 · · · bn0I (n ≥ n0).

The following is a special case of [6, Theorem 5.2.15].

Theorem 6.1. Let A be a locally bounded (F )-algebra and B be an (F )-algebra, and let
θ : B → A be a homomorphism such that θ(B) is dense in A. Then S(θ) is a separating
ideal in A.

7. Algebras of power series. The following definition is standard.

Definition 7.1. Let A = (A, τ) be an (F )-algebra (respectively, a Fréchet algebra, a
Banach algebra). Then A is an (F )-algebra of power series (respectively, a Fréchet algebra
of power series, a Banach algebra of power series) if C[X] ⊂ A ⊂ F and if the embedding
of (A, τ) into (F, τc) is continuous.

There are many examples of Banach algebras of power series in [6]. An early exposition
of Banach algebras of powers series and of their automorphisms and derivations was given
by Grabiner in [15]. Fréchet algebras of power series are considered in [1, 13, 16, 21, 22,
24, ?, ?, 25], inter alia.

We also give the obvious generalization of this definition to several variables.

Definition 7.2. Let n ∈ N, and let A = (A, τ) be an (F )-algebra (respectively, a Fréchet
algebra, a Banach algebra). Then A is an (F )-algebra (respectively, a Fréchet algebra,
a Banach algebra) of power series in n variables if C[X1, . . . , Xn] ⊂ A ⊂ Fn and if the
embedding of (A, τ) into (Fn, τc) is continuous.

We shall discuss the uniqueness of topology for certain topological algebras. Our
terminology is the following.

Definition 7.3. Let A = (A, τ) be an (F )-algebra. Then A has a unique (F )-algebra
topology if any topology with respect to which A is an (F )-algebra is equal to τ .

Let A = (A, τ) be a Fréchet algebra. Then A has a unique Fréchet-algebra topology if
any topology with respect to which A is a Fréchet algebra is equal to τ .

The uniqueness of topology for Banach algebra of power series was first considered
in [19] and taken up in [20]. The uniqueness of the Fréchet algebra topology on F was
first established in [1]. The following theorem is given in [6, Theorem 4.6.1 and Corollary
4.6.2].

Theorem 7.4. Let n ∈ N. Then (Fn, τc) is a Fréchet algebra, and Fn has a unique
(F )-algebra topology. The algebra (Fn, τc) is not a Banach algebra with respect to any
norm.
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The following is essentially a theorem of Loy [22]; it is proved in [6, Theorem 5.2.20]
in the case where n = 1 and A is a Banach algebra of power series, but the argument of
that proof applies more generally.

Theorem 7.5. Let A be a locally bounded Fréchet algebra of power series in n variables,
and let B be a functionally continuous Fréchet algebra. Then every homomorphism from
B into A is continuous. In particular, A has a unique Fréchet-algebra topology.

This result was generalized by the second author in [24, Theorem 4.1 and Corol-
lary 4.2].

Theorem 7.6. Let A be a Fréchet algebra of power series such that A ( F, and let B
be a Fréchet algebra. Then every homomorphism θ : B → A such that dim θ(B) > 1 is
continuous. Further, A has a unique Fréchet algebra topology.

It is necessary to exclude the case where dim θ(B) = 1 in the above theorem because it
may be that there is a discontinuous character ϕ on B, and this would give a discontinuous
homomorphism b 7→ ϕ(b)1, B → A. It is also necessary to exclude the case where A = F

because it is a theorem of Dales and McClure that there is a discontinuous epimorphism
from certain Banach algebras onto F; see Theorem 11.1, below.

We shall see in Corollary 11.7 that the second part of Theorem 7.6 can be generalized
further: each (F )-algebra of power series has a unique (F )-algebra topology. However this
leaves open the following queries.

Query. Let A be an (F )-algebra of power series, and let B be a functionally continuous
(F )-algebra. Is every homomorphism from B into A automatically continuous? Does an
(F )-algebra of power series in n variables (where n ≥ 2) have a unique (F )-algebra
topology?

Later, we shall consider the functional continuity of topological algebras of power
series in n variables. Here we state an obvious corollary of the theorem of Arens that was
mentioned in §5.

Theorem 7.7. Let n ∈ N, and let A be Fréchet algebra of power series in n variables
such that C[X1, . . . , Xn] is dense in A. Then A is functionally continuous.

We remark that the algebra F has played a key role in automatic continuity theory
through the following result that is a special case of a more general theorem of Allan [1];
see also [6, Theorem 5.7.1].

Theorem 7.8. There is a norm ‖ · ‖ on F such that (F, ‖ · ‖) is a normed algebra.

The following more general result is due to Haghany [16]; see also [6, Theorem 5.7.7].

Theorem 7.9. Let n ∈ N. Then there is a norm ‖ · ‖ on Fn such that (Fn, ‖ · ‖) is a
normed algebra.

All these results, and related results, are given in [6, §5.7].
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8. The algebra of absolutely convergent power series

Definition 8.1. A formal power series
∑
αnX

n in F is an absolutely convergent power
series if there exists ε > 0 such that

∞∑
n=0

|αn| εn <∞. (8.1)

The collection of all such absolutely convergent power series is clearly a subalgebra of
F containing C[X]; it is denoted by C{X}. The sum of such a series defines an analytic
function, say f ∈ O(∆ε), where ∆ε := {z ∈ C : |z| < ε}, for some ε > 0.

The algebra C{X} is a topological algebra with respect to a certain inductive limit
topology; in this topology, we have fn → 0 if and only if there exists ε > 0 such that each
fn for n ∈ N satisfies (8.1) and, further, the corresponding functions in O(∆ε) converge
uniformly on all compact subspaces of ∆ε. However this inductive limit topology is not
metrizable.

We first make an elementary remark on power series. Indeed, consider an element
f =

∑∞
n=0 αnX

n ∈ C{X}. Then f has a radius of convergence, denoted by rf ; indeed,
by Hadamard’s formula, rf = 1/ρ, where

ρ = lim sup
n→∞

n
√
|an|.

We note the triviality that, if f =
∑∞
n=0 αnX

n and g =
∑∞
n=0 βnX

n in C{X}, where
|βn| ≥ |an|, then rg ≤ rf .

Theorem 8.2. There is no topology τ on C{X} such that (C{X}, τ) is an (F )-algebra
of power series.

Proof. Assume towards a contradiction that there is a complete metric d that defines
the topology τ on C{X}; we may suppose that d is translation-invariant and satisfies
equation (4.1).

For n ∈ N, define

fn(z) = (1− nz)−1 = 1 +
∞∑
j=1

njzj (z ∈ ∆1/n),

so that fn ∈ C{X} and rfn = 1/n, and then choose αn > 0 such that d(αnfn, 0) < 1/2n.
Now consider the series

∞∑
n=1

αnfn,

with partial sums Fn =
∑n
j=1 αjfj . For m,n ∈ N with m < n, we have

d(Fm, Fn) = d(αm+1fm+1 + · · ·+ αnfn, 0) ≤
n∑

j=m+1

d(αjfj , 0) < 1/2m,

and so the series is a Cauchy series. Since d is a complete metric, the series converges in
(C{X}, τ), say f =

∑∞
n=1 αnfn.
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For k ∈ Z+, the map πk : (C{X}, τ)→ C, is continuous, and so

πk(f) =
∞∑
n=1

πk(αnfn) =
∞∑
n=1

αnn
k.

In particular, for each m ∈ N, we have πk(f) ≥ πk(αmfm), and so

rf ≤ rαmfm = rfm = 1/m.

This is true for each m ∈ N, a contradiction of the fact that rf > 0.
The result follows.

9. Formal power series algebras over semigroups. Let S be a semigroup, so that
S is a non-empty set with an associative binary operation (s, t) 7→ st, S×S → S. In the
case where S is an abelian semigroup, we shall often write s+ t for the image of (s, t).

We shall again write δs for the characteristic function of {s} for s ∈ S.
We shall consider only countable semigroups S which have a family {Sn : n ∈ N} of

finite subsets satisfying the following conditions, where In = S \ Sn (n ∈ N):

Sn ⊂ Sn+1, SIn ∪ InS ⊂ In (n ∈ N),
⋃
{Sn : n ∈ N} = S. (∗)

Note that this implies that, for each t ∈ S, there are only finitely many pairs (r, s) ∈ S×S
such that rs = t. In this case we shall consider CS , the linear space of all functions from
S into C, made into an algebra (FS , ? ) by the requirement that δr ? δs = δrs for all
r, s ∈ S. Thus, for f, g ∈ CS and t ∈ S, we have

(f ? g)(t) =
∑
{f(r)g(s) : r, s ∈ S, rs = t},

a finite sum. This algebra is called the formal power series algebra over S; it is a Fréchet
algebra with respect to the topology τc of pointwise convergence on S, which is specified
by the increasing sequence (pn : n ∈ N) of algebra seminorms, where pn is given by

pn(f) =
∑
{|f(s)| : s ∈ Sn} (f ∈ CS).

Clearly, FS is commutative whenever S is abelian. In fact, we shall again denote the
product in FS by juxtaposition.

For example, consider the case where S = Z+ or S = (Z+)n, where n ∈ N. Then FS
is equal to F or Fn, respectively, algebras which we have already discussed.

Now let S = (Z+)ω, the abelian semigroup of all Z+-valued sequences, with co-
ordinatewise addition (so that S does not satisfy (∗)), and the subsemigroup S = (Z+)<ω

consisting of all sequences in (Z+)ω that are eventually 0; this latter semigroup is count-
able and does satisfy (∗), where we take the subsets Sn to satisfy (∗) to consist of the
sequences s = (sk) ∈ (Z+)<ω such that sk = 0 (k > n) and s1 + · · ·+ sn ≤ n. A generic
element s of (Z+)<ω which is not equal to the zero sequence (0, 0, . . . , ) can be written
uniquely as

s = (s1, . . . , sn, 0, 0, . . . )

with n ∈ N defined by the requirement that sn ∈ N; when we specify a non-zero element
of (Z+)<ω, we shall suppose that it has this form. The corresponding formal power series
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algebra over (Z+)<ω is denoted by F∞. (In [13] and elsewhere, this algebra is denoted
by C N[[X]].) Thus a generic element of F∞ again has the form∑{

αrX
r : r ∈ (Z+)n

}
=
∑
{α(r1,...,rn)X

r1
1 · · ·Xrn

n : (r1, . . . , rn) ∈ (Z+)n},

but now there is no restriction on the value of n ∈ N. Further, the seminorms pn such
that (pn : n ∈ N) defines the Fréchet-algebra topology τc on F∞ are given by

pn

(∑
αrX

r
)

=
∑{

|αr| : r ∈ (Z+)n, |r| ≤ n
}

(n ∈ Z+),

as in [13, p. 545]. We may regard each algebra Fn as a subalgebra of F∞ in an obvious
way, and then

⋃
{Fn : n ∈ N} is a dense subalgebra of (F∞, τc).

This algebra F∞ is not noetherian. For example, consider the ideal I generated by
the elements X1, X2, . . . in F∞. Then the element∑{

1
j
Xj : j ∈ N

}
belongs to I, but not to I, and so I is not closed in F∞. (In [13], Esterle remarks
that principal ideals in F∞ are closed, but that he does not know whether or not all
finitely-generated ideals in F∞ are closed.)

Essentially as before, a monomial is the characteristic function of an element, say r,
of (Z+)<ω, and the degree of the monomial is |r|. For k ∈ Z+, a homogeneous element
of degree k is an ‘infinite linear combination’ of monomials of degree k ; the set of these
elements is the linear subspace F

(k)
∞ of F∞, and the component of an element f ∈ F∞ in

F
(k)
∞ is denoted by f (k), so that f =

∑∞
k=0 f

(k) in (F∞, τc). Clearly we have

F(k)
∞ · F(`)

∞ ⊂ F(k+`)
∞ (k, ` ∈ Z+),

and so
F∞ =

⋃
{F(k)
∞ : k ∈ Z+}

is a graded algebra. This algebra is an integral domain.
There is another way of writing elements of F∞; for this, each monomial Xr1

1 · · ·Xrn
n

is written uniquely as

Xt1Xt2 · · ·Xtm , where t1 ≤ t2 ≤ · · · ≤ tm and m = |r| . (9.1)

We note that there is a unique character on F∞, namely the evaluation character

ε0 : f 7→ f(0, 0, . . . ), F∞ → C.

Indeed, let ϕ be a character on F∞. Then ϕ | Fn is a character on Fn for each n ∈ N, and
so ϕ(Xr) = 0 for each monomial Xr. It follows that the only continuous character on F∞
is ε0. By an earlier remark, this implies that F∞ is functionally continuous, and so the
only character on F∞ is ε0. Alternatively, let f ∈ F∞ be such that f(0, 0, . . . ) 6= 0. Then
the argument of [27, Theorem 2] shows directly that f ∈ Inv F∞, and it follows that the
unique character is ε0; this remark shows that ker ε0 is the unique maximal ideal in F∞,
as noted in [13].

We now note that there is an embedding of F∞ into F2, so extending Theorem 2.2.
For r = (r1, . . . , rn, 0, 0, . . . ) ∈ (Z+)<ω, set

w(r) = r1 + 2r2 + · · ·+ nrn
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for the weighted order of r. Thus w(r+ s) = w(r) +w(s) (r, s ∈ (Z+)<ω). We note that,
for each k ∈ Z+, there are only finitely many elements r of the semigroup (Z+)<ω with
w(r) = k, and so each element of F∞ can be written as

f =
∞∑
k=0

{∑
αrX

r : r ∈ (Z+)n with w(r) = k
}
,

where the inner sum is finite.

Theorem 9.1. There is an embedding of F∞ in F2.

Proof. As before we write F2 = C[[Y1, Y2]]. Let (fj)∞j=1 in F be the sequence in F specified
in Lemma 2.1 such that {1, f1, . . . , fn} is algebraically independent for each n ∈ N.

Take f ∈ F∞, as above, and set

θ(f) =
∞∑
k=0

Y k2

{∑
αrf

r1
1 · · · frnn : r ∈ (Z+)n with w(r) = k

}
.

Then it is clear that θ : F∞ → F2 is a continuous homomorphism (using the fact that
w(r + s) = w(r) + w(s) (r, s ∈ (Z+)n)). Suppose that θ(f) = 0. Then, for each k ∈ Z+,
we have {∑

αrf
r1
1 · · · frnn : r ∈ (Z+)n with w(r) = k

}
= 0.

Since this sum is finite and since {1, f1, . . . , fn} is algebraically independent in F, it follows
that αr = 0 for each r ∈ (Z+)n with w(r) = k, and so f = 0. Thus θ is an embedding.

Definition 9.2. For m ∈ N, set

Um =
{
f =

∑
{αrXr : r ∈ (Z+)<ω} ∈ F∞ : qm(f) :=

∑
|αr|m|r| <∞

}
,

and then set
U =

⋂
{Um : m ∈ N}.

It is clear that each Um is a unital subalgebra of F∞ and that (Um, qm) is a Banach
algebra continuously embedded in F∞. Thus U is a unital subalgebra of F∞, and (U , (qm))
is a unital, commutative Fréchet algebra continuously embedded in F∞. The algebra U
contains each monomial Xr.

The algebra U was first introduced in this context by Clayton [5]; it is studied further
in [11, 13].

It is noted in [11] that the map

ϕ 7→ (ϕ(Xi) : i ∈ N), ΦU → `∞,

is a continuous bijection. It can be said that U is the algebra of all entire functions on `∞.
Extended versions of the following theorem are given in [5, 11, 13]; in [11, Proposi-

tion 2.1], there is a non-commutative version of the theorem. We writeM for the closed
maximal ideal {f ∈ U : f(0, 0, . . . ) = 0} and

I =
⋃
{X1U + · · ·+XnU : n ∈ N},

a prime ideal in U .
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Theorem 9.3. The following statements are equivalent:

(a) all characters on the commutative Fréchet algebra (U , (qm)) are continuous;
(b) there is a non-zero character on the quotient algebraM/I;
(c) every commutative Fréchet algebra is functionally continuous.

There is a study of the quotient algebraM/I in [13].
In distinction from the uniqueness of topology results that we stated for each algebra

Fn in Theorem 7.4, we have the following result from [25].

Theorem 9.4. The algebra (F∞, τc) is a Fréchet algebra, but it does not have a unique
Fréchet algebra topology.

We shall also require in a future proof the non-commutative version of F∞.
We now take S to be the free semigroup in countably many (non-commuting) elements

X1, X2, . . . . Thus, S consists of finite sequences i = (i1, . . . , im) in Nm for some m ∈ N,
and the product is given by concatenation, so that

(i1, . . . , im) + (j1, . . . , jn) = (i1, . . . , im, j1, . . . , jn);
we shall write X⊗ i = Xi1 ⊗Xi2 ⊗ · · ·⊗Xin for a generic element of S. This semigroup S
is countable and also satisfies condition (∗), above, and so we can consider FS , the formal
power series algebra over S; as in [25], we shall set

B = FS = Cnc[[X1, X2, . . . ]]

for the corresponding algebra. In the case where i = (i1, . . . , in) in Nn, we obtain a ‘non-
commutative monomial’ of rank n, and, almost as before, the space of ‘infinite linear
combinations’ of monomials of rank n forms a linear subspace B(n) of B, the natural
decomposition making B into a graded algebra. We can write each b ∈ B uniquely as
b =

∑∞
n=1 b

(n), essentially as before.
We shall also require the ‘averaging map’ on B. For n ∈ N, let Sn be the symmetric

group on n symbols, and define σ̃ on B(n) by

σ̃(Xi1 ⊗Xi2 ⊗ · · · ⊗Xin) =
1
n!

∑{
Xiσ(1) ⊗Xiσ(2) ⊗ · · · ⊗Xiσ(n) : σ ∈ Sn

}
.

We then extend σ̃ to a continuous linear map on B to obtain the symmetrizing map σ̃

(cf . [6, p. 27]). The elements b ∈ B with σ̃(b) = b are the symmetric elements of B.
For n ∈ N, there is a continuous linear embedding εn : F

(n)
∞ → B(n) defined by the

requirement that
εn(Xi1 · · ·Xin) = σ̃(Xi1 ⊗Xi2 ⊗ · · · ⊗Xin);

the map εn is well-defined because

σ̃(Xi1 ⊗Xi2 ⊗ · · · ⊗Xin) = σ̃(Xj1 ⊗Xj2 ⊗ · · · ⊗Xjn)

whenever Xi1 · · ·Xin = Xj1 · · ·Xjn , the latter happening exactly when {i1, . . . , in} is a
permutation of {j1, . . . , jn}. From these maps, we obtain a continuous linear embedding
ε : F∞ → B. Clearly, the symmetrizing map σ̃ is a projection from B onto the subspace
Bsym of B consisting of the symmetric elements. There is a product in Bsym, denoted
by ∨, so that

u ∨ v = σ̃(u⊗ v) (u, v ∈ Bsym);
now (Bsym,∨) is a commutative, unital algebra.
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Proposition 9.5. Let m,n ∈ N. Then σ̃(εm(f) ⊗ εn(g)) = εm+n(fg) for all f ∈ F
(m)
∞

and g ∈ F
(n)
∞ .

Proof. This is clear in the special case where f = Xi1 · · ·Xim and g = Xj1 · · ·Xjn . The
general case follows because εm, εn and εm+n are continuous linear maps.

It follows that (Bsym,∨) is naturally identified with ε(F∞) as an algebra.
We shall require the concept of ‘tensor products by rows’, taken from [25].
First, for each n ∈ Z+, let Pn : B→ B be the linear map such that Pn(1) = 0 and

Pn(Xi1 ⊗Xi2 ⊗ · · · ⊗Xim) =
{

0 when i1 6= n,
Xi2 ⊗ · · · ⊗Xim when i1 = n.

Now let λ1, λ2 : B(1) → C be two linear functionals. We define the tensor product by
rows , λ1 ⊗ λ2 : B(2) → C, by

(λ1 ⊗ λ2)(b) = λ1

( ∞∑
j=1

λ2(Pjb)Xj

)
(b ∈ B(2)).

Finally, let n ∈ N, and let λ1, . . . , λn : B(1) → C be n linear functionals. Then we
define the tensor product by rows, λ1 ⊗ · · · ⊗ λn : B(n) → C, inductively by

(λ1 ⊗ · · · ⊗ λn)(b) = λ1

( ∞∑
j=1

(λ2 ⊗ · · · ⊗ λn)(Pjb)Xj

)
(b ∈ B(n)).

The first lemma that we shall use is the following; it is essentially obvious.

Lemma 9.6. Let S be a semigroup satisfying (∗), and suppose that there are linear func-
tionals λs : B(1) → C for each s ∈ S. Let s ∈ S and n ∈ N, and set

λ =
∑
{λr1 ⊗ · · · ⊗ λrn : r1, . . . , rn ∈ S, r1 + · · ·+ rn = s}.

Then λ = λ ◦ σ̃.

The second lemma that we shall use is the following, taken from [25, Lemma 1.10].
In this lemma, the tensor product of no linear functionals is deemed to be the identity
map, regarded as a linear functional on C = B(0).

Lemma 9.7. Let m,n ∈ N, and let λ1, . . . , λm+n be linear functionals on B(1). Then

(λ1 ⊗ · · · ⊗ λm+n)(a⊗ b) = (λ1 ⊗ · · · ⊗ λm)(a)(λm+1 ⊗ · · · ⊗ λm+n)(b)

for each a ∈ B(m) and b ∈ B(n).

10. Semigroup algebras. Now let S be an arbitrary semigroup. Then the Banach
space ` 1(S) consists of all sums

f =
∑
{αsδs : s ∈ S},

where αs ∈ C (s ∈ S), such that
∑
{|αs| : s ∈ S} <∞. Of course, this space is a Banach

space for the norm ‖ · ‖1, specified by

‖f‖1 =
∑
{|αs| : s ∈ S}

(
f =

∑
s∈S

αsδs ∈ ` 1(S)
)
,
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and it is a Banach algebra with respect to a unique product ? again specified by the
condition that δs ? δt = δst for all s, t ∈ S. This algebra is called the semigroup algebra
over S. There have been many recent studies of this Banach algebra; for example, see [10],
where more details are given.

For example, consider the semigroup S = (Z+)<ω, described above. For k ∈ Z+, we
set

S(k) =
{

(rj) ∈ S : |r| =
∞∑
j=1

rj = k
}
.

Then S =
⋃
{S(k) : k ∈ Z+}, and S(k) · S(`) ⊂ S(k+`) for k, ` ∈ Z+, so that S is graded

in a natural way. Further,

` 1(S) =
( ∞⊕
k=0

` 1(S(k))
)

1
,

is a graded algebra; here ( · )1 denotes an `1-sum. We shall often write A = ` 1(S) for this
semigroup algebra, and then A(k) = ` 1(S(k)) and A =

∑
{A(k) : k ∈ Z+} is a graded

algebra. There is a natural embedding of A into F∞, and this embedding takes each A(k)

into F
(k)
∞ , so that A is a graded subalgebra of F∞.

Again, a generic element of A can also be written as

f =
∑

β(t1,...,tm)Xt1Xt2 · · ·Xtm , (10.1)

where t1 ≤ t2 ≤ · · · ≤ tm, as in equation (9.1), and
∑∣∣β(t1,...,tm)

∣∣ = ‖f‖1.
Let U be the test algebra which was described above for Michael’s problem. Then

clearly there is a continuous embedding of U into ` 1(S).
Set E = ` 1(Z+), so that E is a Banach space, and recall that, for each n ∈ N, the

Banach space ` 1((Z+)n) can be identified as a Banach space with the n-fold projective
tensor product

En :=
⊗̂n

E = E ⊗̂π · · · ⊗̂π E.

As in [6, Example 2.2.46(ii)], we form the projective tensor algebra of E; this is⊗̂
E = {u = (un) : un ∈ En (n ∈ N)} ,

with product denoted by ⊗, so that

(up)⊗ (vq) =
( ∑
p+q=r

up ⊗ vq : r ∈ Z+
)

;

we obtain a non-commutative, unital algebra.
We again have the concept of a symmetric element and a symmetrizing map σ̃, as

in [6]. The subspace of
⊗̂
E consisting of the symmetric elements is denoted by

∨̂
E; it

is the range of the map σ̃, and is itself an algebra with respect to the product ∨, where

(up) ∨ (vq) =
( ∑
p+q=r

σ̃(up ⊗ vq) : r ∈ Z+
)

;

we obtain a commutative, unital algebra (
∨̂
E,∨), called the projective symmetric algebra

of E.
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For n ∈ N, define

pn(u) =
n∑
i=0

‖ui‖1
(
u = (ui) ∈

∨̂
E
)
.

Then each pn is an algebra seminorm on
∨̂
E, and (

∨̂
E, (pn)n≥1,∨) is a commutative,

unital Fréchet algebra which is naturally identified with a subalgebra of (Bsym,∨).
We now set

B =
{
u = (un) ∈

∨̂
E : ‖u‖1 :=

∞∑
n=0

‖un‖1 <∞
}
.

As in [6, Example 2.2.46(ii)], (B, ‖ · ‖ ,∨) is a commutative, unital Banach algebra; it is
a subalgebra of the projective symmetric algebra (

∨̂
E,∨).

Again set A = ` 1(S), where S = (Z+)<ω. The restriction of the map ε to A is an
isometric unital isomorphism of A onto the above algebra B.

It was shown in [6, §5.5] how to construct continuous higher point derivations of
infinite order on the above algebra A = ` 1(S), and hence how to construct continuous
homomorphisms from (A, ‖ · ‖1) into (F, τc). However, it is not clear to us how to modify
this argument to obtain a continuous embedding of A into F; such an embedding will be
exhibited in the following theorem.

Theorem 10.1. (i) There is a continuous embedding θ of ` 1((Z+)<ω) into (F, τc) such
that θ(X1) = X, and so the Banach algebra ` 1((Z+)<ω) is (isometrically isomorphic to)
a Banach algebra of power series.

(ii) The Fréchet algebra U is (isometrically isomorphic to) a Fréchet algebra of power
series.

Proof. Set S = (Z+)<ω and A = ` 1(S), as above. We shall construct a continuous, unital
homomorphism θ : (F∞, τc)→ (F, τc) such that θ | A : (A, ‖ · ‖1)→ (F, τc) is a continuous
embedding with θ(X1) = X, and so θ(U) ⊃ C[X]. In this case, θ(A) is a Banach algebra
of power series, with respect to the norm transfered from A, and so A is isometrically
isomorphic to a Banach algebra of power series. Since the embedding of U into A is
continuous, θ(U) is a Fréchet algebra of power series. Thus the result will be established.

Our first remark is the following. Let (gi : i ∈ N) be a sequence in F with g1 = X

such that o(gi) ≥ i (i ∈ N). Then there is a unique continuous, unital homomorphism
θ : (F∞, τc) → (F, τc) with θ(Xi) = gi (i ∈ N). Since θ(X1) = X, we have θ(U) ⊃ C[X],
and so all the required conditions are satisfied save perhaps for the fact that θ | A is an
injection. (We note for future reference in Theorem 12.3 that the element

θ
( ∞∑
i=2

Xi/i
2
)

belongs to X2F.)
Our main claim is that we can choose the sequence (gi : i ∈ N) so that the corres-

ponding map θ is indeed an injection.
The first step in our construction is to specify a function

γ : N→ N
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with the following properties: we have γi ≤ i (i ∈ N) and, for each n ∈ N and each
r = (r1, . . . , rn) ∈ Nn, there exists k ∈ N such that

(γ(k + 1), . . . , γ(k + n)) = (r1, . . . , rn). (10.2)

Such a function is easily constructed by listing all the elements in the countable set⋃
{(r1, . . . , rn) ∈ Nn : n ∈ N}

in one sequence and by regarding the elements in this listing as successive parts of a
function in NN. Note that, in this case, there are infinitely many values of k ∈ N such
that equation (10.2) holds for each specified value of r.

For each i ∈ N with i ≥ 2, we define

Ei = {j ∈ N \ {1} : γ(j) = i},

and we take E1 = {1} so that {Ei : i ∈ N} is a partition of N, and each Ei save for E1 is
infinite. Further, minEi ≥ i (i ∈ N).

We now take a ‘rapidly increasing sequence’ (ci : i ∈ N) ∈ N N with c1 = 1.
In fact, we shall write (cj : j ∈ N) as (a1, b1, a2, b2, . . . ), where

1 = a1 < b1 < a2 < b2 < · · · .

The growth conditions that we shall impose are:

ai+1 > iai (i ∈ N) (10.3)

and
bi > i · (i(1 + ai))! · ii(1+ai) · bi(1+ai)i−1 (i ≥ 2). (10.4)

Clearly, we can choose the sequence (ci : i ∈ N) to satisfy these constraints.
For each i ∈ N, we define

gi =
∑
{bjXaj : j ∈ Ei} ∈M ⊂ F, (10.5)

Note that, since ai ≥ i and minEi ≥ i for each i ∈ N, we have o(gi) ≥ i (i ∈ N), as
required in the above remarks.

Our claim will follow easily from the following lemma. We continue to denote the
semigroup (Z+)<ω by S.

Lemma 10.2. Let m ∈ N. Let (r1, . . . , rm, 0, 0, . . . ) ∈ S be such that r1 ≤ r2 ≤ · · · ≤ rm,
and let k ∈ N be such that k > m and (γ(k + 1), . . . , γ(k + m)) = (r1, . . . , rm). Set
P =

∑m
i=1 ak+i and Q =

∏m
i=1 bk+i.

(i) We have
πP (gr1 · · · grm) ≥ Q.

(ii) Provided that the sequence (cj : j ∈ N) satisfies equations (10.3) and (10.4), we
have

πP (gs1 · · · gsn) ≤ Q/k.

for each (s1, . . . , sn, 0, 0, . . . ) ∈ S with {s1, . . . , sn} 6= {r1, . . . , rm}.

We now prove that the fact that θ is injective follows from Lemma 10.2.
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As in equation (10.1), each element f ∈ A can be written in the form

f =
∑

β(t1,...,tm)Xt1 · · ·Xtm ,

where t1 ≤ t2 ≤ · · · ≤ tm. Take such an element with f 6= 0 ; we shall show that
θ(f) 6= 0. We may suppose for convenience that ‖f‖1 = 1. Choose a specific element
t = (t1, . . . , tm, 0, 0, . . . ) ∈ S for which βt 6= 0. Then there exists k ∈ N with k > 1/ |βt|
and such that (γ(k + 1), . . . , γ(k + m)) = (t1, . . . , tm). Define P and Q with respect to
the elements t ∈ S and k ∈ N as in Lemma 10.2. By clauses (i) and (ii) of that lemma,
we have

|πP (βtgt1 · · · gtm)| ≥ Q |βt| .

and

|πP (θ(f)− βtgt1 · · · gtm)| =
∣∣∣πP(∑

s∈S
βsgs1 · · · gsn : {s1, . . . , sn} 6= {t1, . . . , tm}

)∣∣∣
≤ sup{πP (gs1 · · · gsn) : {s1, . . . , sn} 6= {t1, . . . , tm}}
≤ Q/k,

where we recall that
∑
s∈S |βs| = 1. It follows that

|πP (θ(f))| ≥ Q · (|βt| − 1/k) > 0,

and so θ(f) 6= 0 in F, as required to complete the proof of Theorem 10.1.
It remains to prove the two clauses of Lemma 10.2. Let k, P , and Q be as in that

lemma. We recall that, for each (r1, . . . , rm, 0, 0, . . . ) ∈ S, there does indeed exist k ∈ N
such that k > m and (γ(k + 1), . . . , γ(k +m)) = (r1, . . . , rm).

(i) For each j ∈ Nm, we have γ(k + j) = rj , so that k + j ∈ Erj , and hence equation
(10.5) shows that πak+j (grj ) = bk+j . It follows that

πP (gr1 · · · grm) =
∑
{πp1(gr1) · · ·πpm(grm) : p1, . . . , pm ∈ Z+, p1 + · · ·+ pm = P}

≥ πak+1(gr1) · · ·πak+m(grm)

= bk+1 · · · bk+m = Q.

This establishes clause (i).
(ii) The proof of this clause is more complicated.
We first define the (reverse) lexicographic ordering on S = (Z+)<ω. Indeed, let

s = (s1, . . . , sm, 0, 0, . . . ), t = (t1, . . . , tn, 0, 0, . . . ) ∈ S,

and set s > t if sj > tj , where j = max{i ∈ N : si 6= ti}. (Such a maximum exists.)
Further, set s ≥ t if s > t or s = t. Then it is clear that (S,≤) is a well-ordered set. (In
fact, (S,≤) is a well-ordered semigroup, in the terminology of [6, Definition 1.2.11].)

We define α : S → Z+ and β : S → N by

α(t) =
∑

tiai, β(t) =
∏

b tii (t = (t1, . . . , tn, 0, 0, . . . ) ∈ S).

(Of course, this sum and product are finite.)
For each R ∈ Z+, we define

NR = {t ∈ S : α(t) = R}.
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Thus each set NR is finite and {NR : R ∈ N} is a partition of S. Further, for each
R,M ∈ Z+, we define

N (M)
R = NR ∩ S (M) = {r ∈ NR : |r| = M}.

We shall be particularly interested in the case where R = P , in the notation of our lemma.
Let u = (ui) be the element of S such that

uk+1 = · · · = uk+m = 1, ui = 0 (i 6∈ {k + 1, . . . , k +m}),

so that u ∈ N (m)
P . Our subsidiary claim is that u is the maximum element of (NP ,≤).

Indeed, assume towards a contradiction that v ∈ NP with v > u, and define

j = max{i ∈ N : vi 6= ui}.

Suppose that j > k +m, so that vj ≥ 1. Then

α(v) ≥ aj ≥ ak+m+1 > (k +m)ak+m

by (10.3), and so α(v) > ak+1 + · · ·+ak+m = P , a contradiction of the fact that v ∈ NP .
Suppose that k < j ≤ k +m. Then vj ≥ 2, and now

0 = α(v)− α(u) =
j∑
i=1

(vi − ui)ai ≥ aj −
j−1∑
i=k+1

ai > 0

by (10.3), again a contradiction.
Finally, suppose that j ≤ k. Then vj ≥ 1 and vk+1 = · · · = vk+m = 1, and so

α(v) ≥ vj + P > P,

again a contradiction of the fact that v ∈ NP .
Thus, for each possible choice of j, we have a contradiction, and so our subsidiary

claim is proved.
Next, for each n ∈ N, define ηn : (Z+)n → S by

ηn(s1, . . . , sn) = (ηn(s1, . . . , sn)(i) : i ∈ N),

where

ηn(s1, . . . , sn)(i) =
{

1 when i ∈ {s1, . . . , sn},
0 when i 6∈ {s1, . . . , sn}.

The map ηn is not injective; indeed, we have ηn(s1, . . . , sn) = ηn(t1, . . . , tn) if and only
if {s1, . . . , sn} = {t1, . . . , tn}, and so the inverse image of each element of the range of ηn
has cardinality at most n!.

Now take (s1, . . . , sn, 0, 0, . . . ) ∈ S with {s1, . . . , sn} 6= {r1, . . . , rm} and s1 ≤ · · · ≤ sn.
We have

πP (gs1 · · · gsn) =
∑

bp1 · · · bpn ,

where the sum is taken over all elements p1, . . . , pn ∈ N such that ap1 + · · · + apn = P

and pi ∈ Esi (i ∈ Nn). The above sum involves only sequences (p1, . . . , pn) such that
ηn(p1, . . . , pn) ∈ N (n)

P . (For example, we could take n = m and

(p1, . . . , pn) = (k + 1, . . . , k +m)).
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Since {s1, . . . , sn} 6= {r1, . . . , rm}, we have ηn(p1, . . . , pn) 6= u. (This last constraint is
only applicable in the special case where n = m.) Thus we have the estimate

0 ≤ πP (gs1 · · · gsn) ≤ n! ·
∑
{β(v) : v ∈ N (n)

P , v 6= u }. (10.6)

Take v ∈ N (n)
P with v 6= u, and set j = max{i ∈ N : vi 6= ui}. Since v < u, we

have vj < uj , so that j ∈ {k + 1, . . . , k + m}, vj = 0, vj+1 = · · · = vk+m = 1, and
vi = 0 (i ≥ k +m+ 1). This shows that

|{v ∈ N (n)
P , v 6= u}| ≤ (j − 1)n. (10.7)

We have
k+m∑
i=k+1

ai = P = α(v) =
k+m∑
i=j+1

ai +
j−1∑
i=1

viai. (10.8)

However, ai ≥ 1 (i ∈ N) and

n = |v| = k +m− j +
j−1∑
i=1

vi,

so that
j−1∑
i=1

vi ≥ n−m,

and hence it follows from equation (10.8) that
j∑

i=k+1

ai =
j−1∑
i=1

viai ≥ n−m.

Thus we have

n ≤ m+
j∑

i=k+1

ai ≤ m(1 + aj).

Since m ≤ k < j, it follows that

n ≤ j(1 + aj). (10.9)

We also have vj = 0, uj = 1, and
∑
vi = n, and so

β(v)
Q

=
β(v)

bk+1 · · · bk+m
=
β(v)
β(u)

= b−1
j ·

j−1∏
i=1

b
vj−uj
i ≤ b−1

j · bnj−1,

whence
β(v) ≤ Q · b−1

j · bnj−1. (10.10)

It follows from equations (10.6), (10.7), (10.9), and (10.10) that

0 ≤ πP (gs1 · · · gsn) ≤ (j(1 + aj))! · (j − 1)j(1+aj) · Q · b−1
j · bj(1+aj)j−1 .

From equation (10.4), we have

0 ≤ πP (gs1 · · · gsn) ≤ Q/j.

Since j > k, we have πP (gs1 · · · gsn) ≤ Q/k, and thus we have established clause (ii) of
Lemma 10.2.
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This completes the proof of Theorem 10.1.

Corollary 10.3. There is a Fréchet algebra of power series which is a test case for the
functional continuity of the class of commutative Fréchet algebras.

Since F2 is a subalgebra of F∞, it follows from Theorem 2.6 that there is no embedding
of F∞ into F.

The above proof shows that the semigroup algebra ` 1(S), where S = (Z+)<ω is the
free semigroup on countably many generators is a Banach algebra of power series. We
shall now show the somewhat surprising fact that the ‘much bigger’ semigroup algebra
` 1(Sc), where Sc denotes the free semigroup on c generators, is also Banach algebra of
power series. Of course, c is the largest cardinal for which such a statement could be true.
The proof depends on the following lemma that is surely well known.

Lemma 10.4. There is a family {Eα : α < c} of subsets of N such that the set

Fα1 ∩ · · · ∩ Fαn
is an infinite subset of N for each n ∈ N and each α1, . . . , αn < c, where each set Fα is
equal to either Eα or to its complement N \ Eα.

Proof. Let D = {0, 1}c be the Cantor cube of size c, so that D is a compact, Hausdorff
space with respect to the product topology. It is a special case of the famous Hewitt–
Marczewski–Pondiczery theorem (see [12, 2.3.15]) that D is separable; let C be a count-
able, dense subset of D. Since D has no isolated points, it is clear that U ∩ C is infinite
for each non-empty, open subset U of D.

A generic element of D has the form ε = (εα : α < c), where each εα is 0 or 1. For
each α < c, set Dα = {ε ∈ D : εα = 0}, so that the complement of Dα in D is the
set D′α = {ε ∈ D : εα = 1}. A family of basic open sets for D consists of the finite
intersections U of sets of the form Dα or D′α, and U ∩ C is infinite for each such set U .

Set Eα = Dα ∩ C for α < c, and identify C bijectively with N. It is clear that the
family {Eα : α < c} has the required property.

Theorem 10.5. There is a continuous embedding of the semigroup algebra ` 1(Sc) into
F such that the range contains C[X], and so ` 1(Sc) is a Banach algebra of power series.

Proof. In fact, there is a continuous embedding (of norm 1) of ` 1(Sc) into ` 1(S), where
S = (Z+)<ω, such that the range contains the specific element X1. Given this, it will fol-
low immediately from Theorem 10.1(i) that the required continuous embedding will exist.

Choose a sequence (ri) for which ri+1 > r2i (i ∈ N), and then use Lemma 10.4 to
choose a family {Eα : α < c} of subsets of R := {ri : i ∈ N} such that Fα1 ∩ · · · ∩ Fαn
is an infinite subset of R for each n ∈ N and each α1, . . . , αn < c, where each set Fα is
equal to either Eα or to its complement R \ Eα.

For each K,M ∈ N with K ≤ M , the integers of the form
∑M
i=K niri, with ni ∈ Z+

and ni < rK for i = K, . . . ,M , are all distinct. Indeed, the minimum distance between
any two distinct integers of this form is rK . Suppose that ni ∈ Z+ and ni < rK for
i = K, . . . ,M and that two sums

∑M
i=K miri and

∑M
i=1 niri are equal, where mi, ni ∈ Z+

for i ∈ N and K,M ∈ N with K ≤ M , then either mi = ni (i ∈ N), or the sum∑K−1
i=1 mi ≥ rK/rK−1 ≥

√
rK .
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We now define the map θ : ` 1(Sc) → ` 1(S) to be the unique continuous homo-
morphism such that, for each α < c, we have

θ(Xα) =
∑{

1
2i
Xi : i ∈ Eα

}
.

It is obvious that such a map θ exists and that θ is a homomorphism with ‖θ‖ = 1.
We claim that θ is also injective. To see this, assume towards a contradiction that

θ(f) = 0 for some f ∈ ` 1(Sc), where f has a coefficient equal to 1 at the monomial∏N
i=1X

ni
αi (where the αi are distinct ordinals, with each αi < c). Write d =

∑N
i=1 ni

for the total degree of this latter monomial, and choose an element g ∈ ` 1(Sc) of finite
support such that ‖f − g‖1 < 1/2d!, say the support of g is {βi : i ∈ NM} for some
M ≥ N . Take i ∈ NM . By Lemma 10.4, the set Eβi \

⋃
j 6=iEβj is infinite, and so we may

choose si ∈ Eβi \
⋃
j 6=iEβj . Set R =

∑N
i=1 sini. Then the coefficient of the monomial

Q :=
∏N
i=1X

ni
si in θ(g) is exactly 2−R. However, the coefficient of Q in θ(Xβ1Xβ2 · · ·Xβk)

is zero unless we have k = d and we can rearrange the βj in such a way that s1 ∈ Eβj
for j = 1, . . . , n1, s2 ∈ Eβj for j = n1 + 1, . . . , n1 + n2, and so on. In this latter case, the
coefficient we obtain is 2−R · p, where p is the number of such rearrangements divided by
a combinatorial factor, which is 1 if the βj are themselves distinct, but will be greater
than 1 if there are some repetitions in the sequence βj . Of course, p cannot exceed d !,
and so the coefficient of Q in θ(f − g) is at most 2−R · d ! · ‖f − g‖1 ≤ 2−R−1. Thus θ(f)
has a coefficient of at least 2−R−1 in Q, so that θ(f) 6= 0, contrary to hypothesis.

Therefore θ is injective, as required.

11. Homomorphisms into F. At one stage, it was conjectured that every homo-
morphism from a Banach algebra into F would be automatically continuous. This was
proved to be false by a construction of Dales and McClure [8]; for an improved version
of this construction, see [6, Theorem 5.5.19].

Theorem 11.1. There is a commutative, unital Banach algebra A which has a totally
discontinuous higher point derivation at a character of A, and such that this higher point
derivation defines a discontinuous epimorphism from A onto F.

It is noted in [8] that the algebra A of the above theorem can be taken to be a uniform
algebra or a regular Banach function algebra.

The authors of [8] also asked (somewhat casually) if every discontinuous homo-
morphism from a Banach algebra into F had to be an epimorphism. This question was
discussed in [24]. We shall now prove that this is indeed the case; in fact, we establish a
stronger form of this conjecture.

Theorem 11.2. Let A be an (F )-algebra, and let (dn : n ∈ Z+) be a non-degenerate,
discontinuous higher point derivation on A. Then the map

θ : a 7→
∞∑
n=0

dn(a)Xn, A→ F,

is an epimorphism.

Proof. The topology of A is given by a complete, translation-invariant metric, say ρ.
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We first note that, if d0 is discontinuous, then so is d1. Indeed, take (an)n≥1 to be
a null sequence in A with d0(an) = 1 (n ∈ N), and choose b ∈ A with d0(b) = 0 and
d1(b) = 1. Then anb→ 0 in A and d1(anb) = 1 (n ∈ N), and so d1 is discontinuous.

We define k to be the minimum value of n ∈ N such that dn is discontinuous; such a
value of k exists.

By Proposition 3.3, there are b0, . . . , bk ∈ A such that

di(bj) = δi,j (i, j = 0, . . . , k);

we fix these elements b0, . . . , bk.
We first claim that there is a null sequence (an)n≥1 in A such that, for each n ∈ N,

we have
dj(an) = 0 (j = 0, . . . , k − 1) and dk(an) = 1. (11.1)

Indeed, if d0 is discontinuous, so that k = 1, the above sequence (anb)n≥1 satisfies the
requirement. Now suppose that d0 is continuous. Then there is a null sequence (cn)n≥1

in A with dk(cn) = 1 (n ∈ N). Set

an = cn −
k−1∑
i=0

di(cn)bi (n ∈ N).

Since d0, . . . , dk−1 are continuous, (an)n≥1 is also a null sequence. Also, equation (11.1)
holds. This gives the claim.

Now consider a fixed sequence (αn : n ∈ Z+); we shall seek an element c ∈ A such
that

θ(c) =
∞∑
n=0

αnX
n.

The element c will be limi→∞ ci, where the sequence (ci : i ≥ k − 1) is defined
inductively as follows. First, we set

ck−1 =
k−1∑
j=0

αjbj .

Next, fix i ≥ k, and assume inductively that ck−1, . . . , ci−1 have been specified. Then we
set

ci = ci−1 + βib
i−k
1 ami ,

where βi = αi − di(ci−1) and mi ∈ N is chosen so that, for each ` = k, . . . , i, we have

ρ(βibi−`1 ami , 0) = ρ
(i−1∑
j=`

βjb
j−`
1 amj ,

i∑
j=`

βjb
j−`
1 amj

)
≤ 1

2i
. (11.2)

The latter condition can be satisfied because an → 0 as n → ∞, since the product in A
is continuous, and since the metric is translation-invariant. This completes the inductive
definition of the sequence (ci : i ≥ k − 1).

We note that
dj(ci) = dj(ci−1) (j = k, . . . , i)
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and that the choice of the elements ci is such that

dj(ci) = αj (j = 0, . . . , i).

Thus the limit limi→∞ θ(ci) exists, and is equal to
∑∞
n=0 αnX

n. On the other hand, it is
clear from equation (11.2) that the series

βkamk + βk+1b1amk+1 + βk+2b
2
1amk+2 + · · ·

converges in A, and so limi→∞ ci exists in A, say limi→∞ ci = c. We now claim that
θ(c) = limi→∞ θ(ci), which will complete the proof.

To establish this claim, it suffices to show that, for each n ∈ N and each ` ≥ k+n−1,
the difference

θ(c)− θ(c`)

belongs to Mn, where M = XF is the maximal ideal of F. However,

c− c` = β`+1b
`+1−k
1 am`+1 + β`+2b

`+2−k
1 am`+2 + β`+3b

`+3−k
1 am`+2 + · · ·

= b`+1−k
1

(
β`+1am`+1 + β`+2b1am`+2 + β`+3b1am`+3 + · · ·

)
,

and the inner sum converges by equation (11.2). Thus c − c` ∈ b`+1−k
1 A ⊂ bn1A. This

implies that θ(c)− θ(c`) ∈ θ(b1)nF ⊂Mn, as required for the claim.
This concludes the proof of the theorem.

The first corollary shows that the time-honoured definition of a Banach algebra of
power series contains a redundant clause.

Corollary 11.3. Let A be a subalgebra of F containing C[X] such that (A, ‖ · ‖) is a
Banach algebra with respect to some norm. Then (A, ‖ · ‖) is a Banach algebra of power
series.

Proof. We must show that the embedding of (A, ‖ · ‖) into (F, τc) is continuous.
Assume that the embedding is discontinuous. Then, by the theorem, A = F. By

Theorem 7.4, F has a unique (F )-algebra topology, and so (F, ‖ · ‖) is a Banach algebra,
a contradiction of Theorem 7.4.

Essentially the same argument shows the following.

Corollary 11.4. Let A be a subalgebra of F containing C[X] such that (A, τ) is an
(F )-algebra (respectively, a Fréchet algebra) with respect to some topology τ . Then (A, τ)
is an (F )-algebra (respectively, a Fréchet algebra) of power series.

We do not know whether or not a Fréchet algebra of power series is functionally
continuous. However we can state the following (rather trivial) immediate consequence
of Corollary 11.4.

Corollary 11.5. Let A be a subalgebra of F containing C[X] such that (A, τ) is an (F )-
algebra with respect to some topology τ . Then the character π0 : A→ C is continuous.

Corollary 11.6. There is no topology τ on C{X} such that (C{X}, τ) is an (F )-algebra.

Proof. Assume towards a contradiction that there is such a topology. Then, by Corollary
11.4, (C{X}, τ) is an (F )-algebra of power series. But this is a contradiction of Theorem
8.2.
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The next corollary generalizes [6, Theorem 4.6.1] and [24, Corollary 4.2].

Corollary 11.7. Let (A, τ) be an (F )-algebra of power series. Then A has a unique
(F )-algebra topology.

Proof. Let (A, σ) be an (F )-algebra for a topology σ. By Corollary 11.4, (A, σ) is an
(F )-algebra of power series. Let (an)n≥1 be a sequence in A such that an → 0 in (A, τ)
and an → a in (A, σ). For each k ∈ N, the functional πk is continuous on both (A, τ) and
(A, σ), and so πk(a) = 0, whence a = 0. By the closed graph theorem for (F )-spaces, the
embedding ι : (A, τ)→ (A, σ) is a linear homeomorphism, and so σ = τ .

We now note that the above results lead to a different proof of Theorem 2.6, which
we restate in the form below.

Theorem 11.8. There is no embedding of F2 into F.

Proof. Assume towards a contradiction that θ : F2 → F is an embedding. Then θ is not a
surjection, for this would imply that F2

∼= F, and this is impossible, for example because
F2 has many prime ideals, but F has only two prime ideals. Thus, by Theorem 11.2, the
embedding θ : F2 → F is continuous, and so we may regard A := θ(F2) as a Fréchet
subalgebra of F.

By [24, Theorem 3.3], the topology of A is given by a countable family of norms (not
just seminorms), say by the sequence (‖ · ‖n)n≥1. By Theorem 7.6, A has a unique Fréchet
algebra topology, and so the topology given by the sequence (‖ · ‖n)n≥1 on A is equivalent
to the usual topology τc, given by the sequence (pn)n≥1 of seminorms. In particular, there
exist n ∈ N and C > 0 such that

‖f‖1 ≤ Cpn(f) (f ∈ F2).

But now
∥∥Xn+1

∥∥
1
≤ Cpn(Xn+1) = 0, a contradiction of the fact that ‖ · ‖1 is a norm

on F2.
Thus there is no such embedding θ : F2 → F.

12. Homomorphisms into Fn. Throughout this section, we fix n ≥ 2 in N. Our first
query is to seek an analogous result to Corollaries 11.3 and 11.4 when F is replaced by Fn.
Indeed, the natural guess is that the following holds.

‘Let A be a subalgebra of Fn containing C[X1, . . . , Xn] such that A is an (F )-algebra
with respect to some topology τ . Then A is an (F )-algebra of power series in n variables.’

In fact, this is not true, as we shall show soon. However, we can prove a considerably
weaker positive result. A major hurdle that arises when we replace F by Fn is that
non-zero (necessarily closed) ideals in Fn are not necessarily of finite codimension. The
version of the above that we shall prove is the following. We recall that the separating
space S(θ) of a homomorphism θ was defined in §6.
Theorem 12.1. Let n ∈ N, let A be an (F )-algebra, and let θ : A → Fn be a homo-
morphism such that θ(A) is dense in (Fn, τc). Assume that S(θ) has finite codimension
in Fn. Then θ is a surjection.

We note that, in the case where n = 1, every non-zero ideal in F has finite codimension
in F, and so the above result subsumes Theorem 11.2.
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We shall first give a lemma; we maintain the notation of the theorem. The space of
all linear functionals on Fn is denoted by F∗n, with the duality specified by the pairing
〈 ·, · 〉, and the annihilator in F∗n of a subspace E of Fn is denoted by E⊥.

Lemma 12.2. Let I be a proper ideal of finite codimension in Fn, and let f ∈ Fn. Then
there exists a ∈ A such that θ(a) ∈ f + I.

Suppose, further, that f ∈ S(θ). Then there is a null sequence (ak)k≥1 in A such that
θ(ak) ∈ f + I (k ∈ N) and θ(ak)→ f in (Fn, τc) as k →∞.

Proof. Let π : Fn → Fn/I be the quotient map. Since θ(A) is dense in Fn, it is clear
that (π ◦ θ)(A) is a dense linear subspace of the finite-dimensional space Fn/I, and so
necessarily (π ◦ θ)(A) = Fn/I. This gives the first part of the lemma.

The space I⊥ is finite-dimensional, with basis {λ1, . . . , λm}, say, and there exist
f1, . . . , fm ∈ Fn such that 〈fi, λj〉 = δi,j (i, j = 1, . . . ,m). By the first clause, there
exist x1, . . . , xm ∈ A with θ(xi) ∈ fi + I (i = 1, . . . ,m).

Now take a null sequence (bk)k≥1 in A such that θ(bk)→ f , and define

ak = bk +
m∑
i=1

〈f − θ(bk), λi〉xi (k ∈ N).

Then limk→∞ ak = limk→∞ bk = 0 and limk→∞ θ(ak) = limk→∞ θ(bk) = f . Take k ∈ N.
Then

〈θ(ak), λj〉 = 〈θ(bk), λj〉+
m∑
i=1

〈f − θ(bk), λi〉δi,j = 〈f, λj〉 (j = 1, . . . ,m),

and so θ(ak) ∈ f + I.

We shall now give our proof of Theorem 12.1. In the proof we shall write M for Mn,
the maximal ideal of Fn. Also, we take f1, . . . , fp ∈ S to be the generators of the ideal
S := S(θ), so that

S = f1Fn + · · ·+ fp Fn.

As before, the topology of A is given by a complete, translation-invariant metric,
say ρ; for η > 0, we set A[η] = {a ∈ A : ρ(a, 0) < η}.

Proof of Theorem 12.1. Let f ∈ Fn be fixed; we are seeking an element a ∈ A with
θ(a) = f .

Since M2 is a proper ideal of finite codimension in Fn, it follows from Lemma 12.2
that there exist x1, . . . , xm ∈ A such that θ(xi) ∈ Xi +M2 (i = 1, . . . ,m). Set

N = max{ρ(x1, 0), . . . , ρ(xm, 0)}.

For k ∈ Z+, take Lk to be the number of monomials (in n variables) of degree k, and
choose εk > 0 such that

Lk · N2k · εk <
1

(k + 1)2
. (12.1)

We claim that there is a sequence (ak)k≥1 in A such that, for each k ∈ N, we have

θ(ak)− f ∈Mk S =
(∑
|r|=k

XrFn

)
S (12.2)
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and
ak+1 − ak =

∑
|r|=k

xr bk,r, (12.3)

where bk,r ∈ A[εk] for r ∈ (Z+)n with |r| = k. (Here we write xr = xr11 · · ·xrnn ∈ A when
r = (r1, . . . , rn) ∈ (Z+)n.)

Since M S = f1M + · · ·+ fpM is an ideal of finite codimension in Fn, it follows from
Lemma 12.2 that there exists a1 ∈ A with θ(a1)− f ∈M S.

We can write

θ(a1)− f =
p∑
j=1

n∑
i=1

Xifjvi,j ,

where vi,j ∈ Fn for i = 1, . . . , n and j = 1, . . . , p . It follows from Lemma 12.2 that, for
each i = 1, . . . , n and j = 1, . . . , p, there exists bi,j ∈ A such that ρ(bi,j , 0) < ε1/p and
θ(bi,j) ∈ fjvi,j +M2 S.

Now define

a2 = a1 +
p∑
j=1

n∑
i=1

bi,jxi = a1 +
n∑
i=1

cixi,

say, where c1, . . . , cn ∈ A[1]. Thus we have (12.3) in the case where k = 1. Also

θ(a2)− f = θ(a1)− f −
p∑
j=1

n∑
i=1

θ(bi,j)θ(xi)

=
p∑
j=1

n∑
i=1

(Xifjvi,j − θ(bi,j)θ(xi))

=
p∑
j=1

n∑
i=1

(fj(Xi − θ(xi))vi,j + θ(xi)(fjvi,j − θ(bi,j))) ∈M2 S

because fj ∈ S, Xi − θ(xi) ∈ M2, and fjvi,j − θ(bi,j) ∈ M2 S. Thus we have (12.2) in
the case where k = 2.

Assume inductively that we have chosen ak ∈ A such that (12.2) holds, say

θ(ak)− f =
p∑
j=1

∑
|r|=k

Xrfjvr,j ,

where vr,j ∈ Fn for |r| = k and j = 1, . . . , p. Then, for each r and j, there exists br,j ∈ A
such that ρ(br,j , 0) < εk/p and θ(br,j) ∈ fjvr,j +Mk+1 S. Now define

ak+1 = ak +
p∑
j=1

∑
|r|=k

br,jx
r = ak +

∑
|r|=k

crx
r,

say, where c1, . . . , cn ∈ A[εk]. Then we have (12.3) for k.
Essentially the same calculation as above gives (12.2) for k+ 1: we use the facts that

Xr − θ(xr) ∈Mk+1 and fjvr,j − θ(br,j) ∈Mk+1 S when |r| = k.
This completes the inductive step in the proof of the claim. By induction we obtain

the required sequence (ak)k≥1 in A.
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It follows from equations (12.1) and (12.3) that the sequence (ak)k≥1 converges in A,
say a = limk→∞ ak. We shall prove that θ(a) = f ; for this, it is sufficient to show that

θ(a)− f ∈MR for each R ∈ N. (12.4)

Fix R ∈ N, and take k ≥ R. From (12.3), we can write ak+1 − ak as∑
|s|=k

xsdk,s,

where
ρ(dk,s, 0) ≤ Nk−R ·

∑
r

ρ(bk,r, 0) ≤ Lk · N2k−R · εk <
1

(k + 1)2

for each s ∈ (Z+)n. It follows that ds :=
∑∞
k=R dk,s exists in A for each s ∈ (Z+)n, and

that
a− aR =

∑
|s|=R

xsds.

Thus
θ(a)− θ(aR) =

∑
|s|=R

θ(xsds) ∈MR.

But also θ(aR)− f ∈MR, and so (12.4) follows.
This completes the proof of Theorem 12.1.

We shall now show that the obvious analogue for F2 of Corollary 11.3 is false.

Theorem 12.3. There exists a Banach algebra (A, ‖ · ‖) such that C [X1, X2] ⊂ A ⊂ F2,
but such that the embedding (A, ‖ · ‖)→ (F2, τc) is not continuous.

Proof. We set S = (Z+)<ω and A = ` 1(S), as in Theorem 10.1. In fact, it is convenient to
write F2 as C [[X,Y ]] and to reserveXi for elements of A, as before. We regard F = C [[X]]
as a subalgebra of C [[X,Y ]]; the obvious quotient map from C [[X,Y ]] obtained by setting
Y = 0 is denoted by

π :
∞∑

i,j=0

αi,jX
iY j 7→

∞∑
i=0

αi,0X
i, F2 → F.

By Theorem 10.1, there is a continuous, unital embedding θ : A → F such that
θ(A) ⊃ C[X]. We set fi = θ(Xi) (i ∈ N). As in Theorem 10.1, we may suppose that
f1 = X ∈ F.

As before, we denote by A(1) the closed linear subspace of A spanned by the elements
Xi for i ∈ N, so that

A(1) =
{ ∞∑
i=1

αiXi :
∞∑
i=1

|αi| <∞
}
,

and A(1) is isometrically isomorphic to ` 1. Choose a non-zero linear functional λ on A(1)

such that λ(Xi) = 0 (i ∈ N) and

λ

( ∞∑
i=2

1
i2
Xi

)
= 1,
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so that λ is discontinuous, and then define a linear map

ψ : u 7→ θ(u) + λ(u)Y, A(1) → F2.

Our main claim is that ψ can be extended to a homomorphism Ψ : A → F2 such
that π ◦Ψ = θ. To establish this claim, we shall prove the following slightly more general
theorem, in which we maintain the above notation. Further, we again write M2 for the
unique maximal ideal of F2.

Theorem 12.4. Let β : A(1) → M2 be a linear map such that π ◦ β : A(1) → F is
continuous. Then there is a unital homomorphism β : A → F2, extending β, such that
π ◦ β : A→ F is continuous.

Proof. For each i, j ∈ Z+, there is a linear functional β(i,j) : A(1) → C such that

β(f) =
∑
{β(i,j)(f)XiY j : i, j ∈ Z+} (f ∈ A(1)). (12.5)

Note that β(0,0) = 0 because the range of β on A(1) is contained in M2. We extend each
linear functional β(i,j) to a linear functional β(i,j) : F

(1)
∞ → C.

Next, we define a linear functional β(n)
(i,j) on F

(n)
∞ for each n ∈ N by the following

formula:

β
(n)
(i,j)(f) =

∑
{(β(i(1),j(1)) ⊗ · · · ⊗ β(i(n),j(n)))(εn(f))} (f ∈ F(n)

∞ ), (12.6)

where the sum is taken over all n-tuples ((i(1), j(1)), . . . , (i(n), j(n))) ∈ ((Z+)2)n such that
(i(1), j(1)) + · · ·+ (i(n), j(n)) = (i, j).

We now claim that the map β : A→ F2, defined for f ∈ F∞ by the formula

β(f) =
∞∑
k=0

{(∑{
β

(n)
(i,j)(f

(n)) : n ∈ Ni+j
})

XiY j : i, j ∈ Z+, i+ j = k
}
, (12.7)

where we set β
(0)

(f) = f(0, 0)1, is a unital homomorphism β : A → F2 satisfying the
stated conditions.

First, we shall show that the map β is a homomorphism. The map β satisfies the
equation

β(f) =
∞∑
n=1

β(f (n)) (f ∈ A). (12.8)

Thus, to prove that β(fg) = β(f)β(g) for all f, g ∈ A, it suffices to do this in the special
case where f = f (r) and g = g(n−r) for some n ∈ N and r ∈ {0, . . . , n}. The result in
this case is immediate if r = 0 or r = n, and so we may suppose that n ≥ 2 and that
0 < r < n. Further inspection shows that it is sufficient to show that

β
(n)

(i,j)(fg) =
∑
{β (r)

(i1,j1)(f)β
(n−r)
(i2,j2)(g) : (i1, j1) + (i2, j2) = (i, j)}

whenever i+ j ≥ n.
By the definition in (12.6), we must verify that∑

{(β(i(1),j(1)) ⊗ · · · ⊗ β(i(n),j(n)))(εn(fg))}



156 H. G. DALES, S. R. PATEL, AND C. J. READ

is equal to the product∑
{(β(i(1),j(1))⊗· · ·⊗β(i(r),j(r)))(εr(f))}

∑
{(β(i(1),j(1))⊗· · ·⊗β(i(n−r),j(n−r)))(εn−r(g))},

where the sums are taken over all n-tuples ((i(1), j(1)), . . . , (i(n), j(n))) ∈ ((Z+)2)n such
that (i(1), j(1)) + · · · + (i(n), j(n)) = (i, j). However, this follows from Proposition 9.5,
Lemma 9.6, and Lemma 9.7, taking a = εr(f) and b = εn−r(g) in Proposition 9.5.

Thus β is a homomorphism. Clearly β is unital.
We next show that β extends β. Suppose that f ∈ A(1). Then equation (12.7) becomes

β(f) =
∞∑
k=0

{β(1)
(i,j)(f)XiY j : i+ j = k};

by (12.5), the right-hand side is just β(f), as required.
Finally, we claim that π ◦ β : A → F is continuous. Evidently π ◦ β maps A(r) into

Mr for each r ∈ Z+, and so it is enough to show that (π ◦ β) | A(r) is continuous for
each r ∈ Z+. From equation (12.7), we see that

(π ◦ β)(f) =
∞∑
i=r

β
(r)
(i,0)(f)Xi (f ∈ A(r)),

and so it is enough to show that each β(r)
(i,0) is continuous for i ≥ r and r ∈ Z+. But the

fact that π ◦ β is continuous implies that the linear functionals β(i,0) are all continuous.
Further, the ‘tensor product by rows’ agrees with the usual tensor product when the linear
functionals are continuous, and so β(r)

(i,0), being a finite sum of r-fold tensor products of
continuous linear functionals of the form β(j,0), is indeed continuous for each i ≥ r and
r ∈ Z+, and so π ◦ β is continuous.

We can now complete the proof of Theorem 12.3.
The above theorem shows that ψ can be extended to a homomorphism Ψ : A → F2

such that π ◦Ψ = θ. The map Ψ is an embedding because θ is injective, and it is manifest
that Ψ is discontinuous. It is clear that Ψ(A) contains F and the element Ψ(

∑∞
i=2Xi/i

2),
which, by a remark in the proof of Theorem 10.1, has the form X2f + Y for some f ∈ F.
By Lemma 1.2, there is a continuous, unital automorphism χ of F2 such that χ(X) = X

and χ(X2f + Y ) = Y , and so χ ◦ Ψ : A→ F2 is a discontinuous embedding whose range
contains C[X,Y ], as required for the proof of the theorem (where we identify A with its
image in F2 under χ ◦ Ψ).

Corollary 12.5. There is a discontinuous embedding of the semigroup algebra ` 1(Sc)
into F2 such that the range contains C [X1, X2].

Proof. This follows easily from Theorem 10.5 and the above proof.
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