FUNCTION SPACES IX BANACH CENTER PUBLICATIONS, VOLUME 92 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2011

DIEUDONNÉ OPERATORS ON THE SPACE OF BOCHNER INTEGRABLE FUNCTIONS

MARIAN NOWAK

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra 65-516 Zielona Góra, ul. Prof. Szafrana 4a, Poland E-mail: M.Nowak@wmie.uz.zgora.pl

Abstract. A bounded linear operator between Banach spaces is called a Dieudonné operator (=weakly completely continuous operator) if it maps weakly Cauchy sequences to weakly convergent sequences. Let (Ω, Σ, μ) be a finite measure space, and let X and Y be Banach spaces. We study Dieudonné operators $T : L^1(X) \to Y$. Let $i_{\infty} : L^{\infty}(X) \to L^1(X)$ stand for the canonical injection. We show that if X is almost reflexive and $T : L^1(X) \to Y$ is a Dieudonné operator, then $T \circ i_{\infty} : L^{\infty}(X) \to Y$ is a weakly compact operator. Moreover, we obtain that if $T : L^1(X) \to Y$ is a bounded linear operator and $T \circ i_{\infty} : L^{\infty}(X) \to Y$ is weakly compact, then T is a Dieudonné operator.

1. Introduction and preliminaries. Throughout the paper $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ are real Banach spaces and X^* , Y^* and Z^* denote their Banach duals respectively. By B(X), B(Y) and B(Z) we will denote the closed unit balls in X, Y and Z respectively. Let $\mathcal{L}(X, Y)$ stand for the space of all bounded linear operators from Xto Y. We denote by $\sigma(L, K)$ the weak topology with respect to a dual pair $\langle L, K \rangle$. Recall that a subset A of L is said to be *conditionally* $\sigma(L, K)$ -compact whenever each sequence in A contains a $\sigma(L, K)$ -Cauchy subsequence. A Banach space X is said to be *almost reflexive* if every norm-bounded subset of X is conditionally weakly compact (see [C]). The fundamental ℓ^1 -Rosenthal theorem [R] says that a Banach space X is almost reflexive if and only if it contains no isomorphic copy of ℓ^1 . For terminology concerning vector lattices we refer to [AB]. By \mathbb{N} and \mathbb{R} we denote the sets of natural and real numbers.

A bounded linear operator $T : Z \to Y$ is called a *Dieudonné operator* (= weakly completely continuous operator) if it maps weakly Cauchy sequences in Z to weakly convergent sequences in Y (see [BC1], [BC2], [ABBL]).

Key words and phrases: Dieudonné operators, weakly completely continuous operators, weakly compact operators, conditional compactness.

The paper is in final form and no version of it will be published elsewhere.

²⁰¹⁰ Mathematics Subject Classification: 47B38, 47B05, 46E40.

In this paper we study Dieudonné operators T from the Banach space of Bochner integrable functions $L^1(X)$ (over a finite measure space) to Y. We prove that if X is an almost reflexive Banach space and $T : L^1(X) \to Y$ is a Dieudonné operator, then the restriction of T to $L^{\infty}(X)$ is a weakly compact operator (see Theorem 2.2 below). Moreover, we show that if the restriction to $L^{\infty}(X)$ of a bounded linear operator T : $L^1(X) \to Y$ is weakly compact, then T is a Dieudonné operator (see Theorem 2.4 below).

The following general characterization of Dieudonné operators between Banach spaces will be useful.

PROPOSITION 1.1. For a bounded linear operator $T : Z \to Y$ the following statements are equivalent:

- (i) T is a Dieudonné operator.
- (ii) T maps conditionally weakly compact sets in Z into relatively weakly compact sets in Y.

Proof. (i) \Rightarrow (ii) Assume that T is a Dieudonné operator, and let A be a conditionally weakly compact set in Z. We shall show that T(A) is a relatively weakly sequentially compact set in Y. Indeed, let (y_n) be a sequence in T(A), i.e., $y_n = T(z_n)$, where $z_n \in A$. Hence there exists a weakly Cauchy subsequence (z_{k_n}) of (z_n) . It follows that $y_{k_n} =$ $T(z_{k_n}) \to y \in Y$ for $\sigma(Y, Y^*)$. This means that T(A) is relatively weakly sequentially compact in Y, and by the Eberlain-Šmulian theorem, T(A) is relatively weakly compact in Y, as desired.

(ii) \Rightarrow (i) Assume that T maps conditionally weakly compact sets in Z to relatively weakly sequentially compact sets in Y. To show that T is a Dieudonné operator, assume that (z_n) is a weakly Cauchy sequence in Z. Since the set $\{z_n : n \in \mathbb{N}\}$ is conditionally weakly compact, the set $\{T(z_n) : n \in \mathbb{N}\}$ is relatively weakly compact in Y. Hence by the Eberlein-Šmulian theorem $\{T(z_n) : n \in \mathbb{N}\}$ is relatively weakly sequentially compact in Y. It follows that there exist a subsequence (z_{k_n}) of (z_n) and $y \in Y$ such that $T(z_{k_n}) \to y$ for $\sigma(Y, Y^*)$. On the other hand, since T is $(\sigma(Z, Z^*), \sigma(Y, Y^*))$ -continuous (see [AB, Theorem 17.1]), we obtain that $(T(z_n))$ is a weakly Cauchy sequence in Y. It follows that $T(z_n) \to y$ for $\sigma(Y, Y^*)$, and this means that T is a Dieudonné operator.

2. Dieudonné operators on $L^1(X)$. From now we assume that (Ω, Σ, μ) is a complete finite measure space. Let $\mathbb{1}_A$ denote the characteristic function of a set $A \in \Sigma$. By $L^0(X)$ we denote the set of μ -equivalence classes of all strongly Σ -measurable functions $f: \Omega \to X$. For $f \in L^0(X)$ let us set $\tilde{f}(\omega) = ||f(\omega)||_X$ for $\omega \in \Omega$. Let

$$L^{1}(X) = \left\{ f \in L^{0}(X) : \|f\|_{L^{1}(X)} := \|\tilde{f}\|_{L^{1}} = \int_{\Omega} \tilde{f}(\omega) \, d\mu < \infty \right\}$$

and

$$L^{\infty}(X) = \left\{ f \in L^{0}(X) : \|f\|_{L^{\infty}(X)} := \operatorname{ess\,sup}_{\omega \in \Omega} \widetilde{f}(\omega) < \infty \right\}.$$

If $X = \mathbb{R}$ we simply write L^1 and L^{∞} . For a subset H of $L^1(X)$ let $\widetilde{H} = \{\widetilde{f} : f \in H\}.$ The following characterization of conditional weak compactness in $L^1(X)$ will be of importance (see [T, Corollary 9], [N, Theorem 2.7, Proposition 2.1]).

PROPOSITION 2.1. Assume that X is an almost reflexive Banach space. Then for a subset H of $L^1(X)$ the following statements are equivalent:

- (i) H is conditionally weakly compact in $L^1(X)$.
- (ii) \widetilde{H} is conditionally weakly compact in L^1 .
- (iii) H is a bounded and uniformly integrable subset of L^1 .
- (iv) \widetilde{H} is a bounded subset of L^1 and the functional p_H on L^{∞} defined for $v \in L^{\infty}$ by

$$p_H(v) = \sup_{f \in H} \int_{\Omega} \widetilde{f}(\omega) |v(\omega)| \, d\mu$$

is an order continuous seminorm.

Now we are ready to establish a relationship between a Dieudonné operator $T: L^1(X) \to Y$ and the restriction of T to $L^{\infty}(X)$.

Let $i_{\infty}: L^{\infty}(X) \to L^{1}(X)$ denote the canonical injection.

THEOREM 2.2. Let X be an almost reflexive Banach space and let Y be a Banach space. Let $T: L^1(X) \to Y$ be a Dieudonné operator. Then the operator $T \circ i_{\infty}: L^{\infty}(X) \to Y$ is weakly compact.

Proof. In view of Proposition 1.1 we will prove that $B(L^{\infty}(X))$ is a conditionally weakly set in $L^{1}(X)$. Indeed, making use of Proposition 2.1 it is enough to show that the functional $p_{B(L^{\infty}(X))}$ on L^{∞} defined for $v \in L^{\infty}$ by

$$p_{B(L^{\infty}(X))}(v) = \sup_{f \in B(L^{\infty}(X))} \int_{\Omega} \widetilde{f}(\omega) |v(\omega)| \, d\mu$$

is an order continuous seminorm. Note that $p_{B(L^{\infty}(X))}(v) = ||v||_{L^1}$ for every $v \in L^{\infty} \subset L^1$.

Before stating our next result we recall the following theorem (see [D, p. 227], [AB, Theorem 10.17]).

THEOREM 2.3 (A. Grothendieck). A subset A of a Banach space Y is relatively weakly compact if and only if for each $\varepsilon > 0$ there exists a relatively weakly compact subset K_{ε} of Y with $A \subset \varepsilon B(Y) + K_{\varepsilon}$.

THEOREM 2.4. Let $T : L^1(X) \to Y$ be a bounded linear operator and assume that $T \circ i_{\infty} : L^{\infty}(X) \to Y$ is a weakly compact operator. Then $T : L^1(X) \to Y$ is a Dieudonné operator.

Proof. Note that $T(B(L^{\infty}(X)))$ is relatively weakly compact in Y. Let H be a conditionally weakly compact subset of $L^1(X)$. Then \tilde{H} is a uniformly integrable subset of L^1 (see [BC, Theorem 2.2]). For $f \in L^1(X)$ and $\lambda > 0$ let

$$A_{f,\lambda} = \big\{ \omega \in \Omega : f(\omega) > \lambda \big\}.$$

Then

$$\lim_{\lambda \to \infty} \sup_{f \in H} \int_{A_{f,\lambda}} \widetilde{f}(\omega) \, d\mu = \lim_{\lambda \to \infty} \sup_{f \in H} \| \mathbb{1}_{A_{f,\lambda}} f \|_{L^{\infty}(X)} = 0.$$

Let $\varepsilon > 0$ be given. Then there exists $\lambda_{\varepsilon} > 0$ such that $\|\mathbb{1}_{A_{f,\lambda_{\varepsilon}}}f\|_{L^{1}(X)} \leq \frac{\varepsilon}{\|T\|}$ for all $f \in H$. Hence for $f \in H$ we have $\|T(\mathbb{1}_{A_{f,\lambda_{\varepsilon}}}f)\|_{Y} \leq \varepsilon$. Moreover, $\mathbb{1}_{\Omega \setminus A_{f,\lambda_{\varepsilon}}}(\omega)\tilde{f}(\omega) \leq \lambda_{\varepsilon}$ for $\omega \in \Omega$, so $\|\mathbb{1}_{\Omega \setminus A_{f,\lambda_{\varepsilon}}}f\|_{L^{\infty}(X)} \leq \lambda_{\varepsilon}$, i.e., $\mathbb{1}_{\Omega \setminus A_{f,\lambda_{\varepsilon}}}f \in \lambda_{\varepsilon}B(L^{\infty}(X))$. Hence

 $T(f) = T(\mathbb{1}_{A_{f,\lambda_{\varepsilon}}}f) + T(\mathbb{1}_{\Omega \setminus A_{f,\lambda_{\varepsilon}}}f) \in \varepsilon B(Y) + \lambda_{\varepsilon}T(B(L^{\infty}(X))).$

Hence, in view of Theorem 2.3, T(H) is a relatively weakly compact subset of Y. By Proposition 1.1 T is a Dieudonné operator.

References

- [ABBL] C. A. Abbott, E. M. Bator, R. G. Bilyeu, P. W. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Cambridge Philos. Soc. 108 (1990), 325–335.
- [AB] C. D. Aliprantis, O. Burkinshaw, *Positive Operators*, Pure Appl. Math. 119, Academic Press, Orlando, 1985.
- [BC] H. Benabdellah, C. Castaing, Weak compactness criteria and convergences in $L_E^1(\mu)$, Collect. Math. 48 (1997), 423–448.
- [BC1] F. Bombal, P. Cembranos, Characterization of some classes of operators on spaces of vector-valued functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137–146.
- [BC2] F. Bombal, P. Cembranos, Dieudonné operators on C(K, E), Bull. Polish Acad. Sci. Math. 34 (1986), 301–305.
- [C] R. W. Cross, A characterization of almost reflexivity of normed function spaces, Proc. Roy. Irish Acad. Sect. A 92 (1992), 225–228.
- [D] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
- [N] M. Nowak, Weak sequential compactness and completeness in Köthe-Bochner spaces, Bull. Polish Acad. Sci. Math. 47 (1999), 209–220.
- [R] H. Rosenthal, A characterization of Banach spaces containing ℓ_1 , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413.
- [T] M. Talagrand, Weak Cauchy sequences in $L^1(E)$, Amer. J. Math. 106 (1984), 703–724.