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Abstract. A bounded linear operator between Banach spaces is called a Dieudonné operator

(=weakly completely continuous operator) if it maps weakly Cauchy sequences to weakly con-

vergent sequences. Let (Ω,Σ, µ) be a finite measure space, and let X and Y be Banach spaces.

We study Dieudonné operators T : L1(X) → Y . Let i∞ : L∞(X) → L1(X) stand for the

canonical injection. We show that if X is almost reflexive and T : L1(X) → Y is a Dieudonné

operator, then T ◦ i∞ : L∞(X)→ Y is a weakly compact operator. Moreover, we obtain that if

T : L1(X)→ Y is a bounded linear operator and T ◦ i∞ : L∞(X)→ Y is weakly compact, then

T is a Dieudonné operator.

1. Introduction and preliminaries. Throughout the paper (X, ‖ · ‖X), (Y, ‖ · ‖Y )
and (Z, ‖ · ‖Z) are real Banach spaces and X∗, Y ∗ and Z∗ denote their Banach duals
respectively. By B(X), B(Y ) and B(Z) we will denote the closed unit balls in X, Y and
Z respectively. Let L(X,Y ) stand for the space of all bounded linear operators from X

to Y . We denote by σ(L,K) the weak topology with respect to a dual pair 〈L,K〉. Recall
that a subset A of L is said to be conditionally σ(L,K)-compact whenever each sequence
in A contains a σ(L,K)-Cauchy subsequence. A Banach space X is said to be almost
reflexive if every norm-bounded subset of X is conditionally weakly compact (see [C]).
The fundamental `1-Rosenthal theorem [R] says that a Banach space X is almost reflexive
if and only if it contains no isomorphic copy of `1. For terminology concerning vector
lattices we refer to [AB]. By N and R we denote the sets of natural and real numbers.

A bounded linear operator T : Z → Y is called a Dieudonné operator (= weakly
completely continuous operator) if it maps weakly Cauchy sequences in Z to weakly
convergent sequences in Y (see [BC1], [BC2], [ABBL]).
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In this paper we study Dieudonné operators T from the Banach space of Bochner
integrable functions L1(X) (over a finite measure space) to Y . We prove that if X is
an almost reflexive Banach space and T : L1(X) → Y is a Dieudonné operator, then
the restriction of T to L∞(X) is a weakly compact operator (see Theorem 2.2 below).
Moreover, we show that if the restriction to L∞(X) of a bounded linear operator T :
L1(X)→ Y is weakly compact, then T is a Dieudonné operator (see Theorem 2.4 below).

The following general characterization of Dieudonné operators between Banach spaces
will be useful.

Proposition 1.1. For a bounded linear operator T : Z → Y the following statements are
equivalent :

(i) T is a Dieudonné operator.
(ii) T maps conditionally weakly compact sets in Z into relatively weakly compact sets

in Y .

Proof. (i)⇒(ii) Assume that T is a Dieudonné operator, and let A be a conditionally
weakly compact set in Z. We shall show that T (A) is a relatively weakly sequentially
compact set in Y . Indeed, let (yn) be a sequence in T (A), i.e., yn = T (zn), where zn ∈ A.
Hence there exists a weakly Cauchy subsequence (zkn) of (zn). It follows that ykn =
T (zkn) → y ∈ Y for σ(Y, Y ∗). This means that T (A) is relatively weakly sequentially
compact in Y , and by the Eberlain-Šmulian theorem, T (A) is relatively weakly compact
in Y , as desired.

(ii)⇒(i) Assume that T maps conditionally weakly compact sets in Z to relatively
weakly sequentially compact sets in Y . To show that T is a Dieudonné operator, assume
that (zn) is a weakly Cauchy sequence in Z. Since the set {zn : n ∈ N} is conditionally
weakly compact, the set {T (zn) : n ∈ N} is relatively weakly compact in Y . Hence by the
Eberlein-Šmulian theorem {T (zn) : n ∈ N} is relatively weakly sequentially compact in Y .
It follows that there exist a subsequence (zkn) of (zn) and y ∈ Y such that T (zkn) → y

for σ(Y, Y ∗). On the other hand, since T is (σ(Z,Z∗), σ(Y, Y ∗))-continuous (see [AB,
Theorem 17.1]), we obtain that (T (zn)) is a weakly Cauchy sequence in Y . It follows that
T (zn)→ y for σ(Y, Y ∗), and this means that T is a Dieudonné operator.

2. Dieudonné operators on L1(X). From now we assume that (Ω,Σ, µ) is a complete
finite measure space. Let 1A denote the characteristic function of a set A ∈ Σ. By
L0(X) we denote the set of µ-equivalence classes of all strongly Σ-measurable functions
f : Ω→ X. For f ∈ L0(X) let us set f̃(ω) = ‖f(ω)‖X for ω ∈ Ω. Let

L1(X) =
{
f ∈ L0(X) : ‖f‖L1(X) := ‖f̃‖L1 =

∫
Ω

f̃(ω) dµ <∞
}

and
L∞(X) =

{
f ∈ L0(X) : ‖f‖L∞(X) := ess sup

ω∈Ω
f̃(ω) <∞

}
.

If X = R we simply write L1 and L∞. For a subset H of L1(X) let

H̃ = {f̃ : f ∈ H}.
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The following characterization of conditional weak compactness in L1(X) will be of
importance (see [T, Corollary 9], [N, Theorem 2.7, Proposition 2.1]).

Proposition 2.1. Assume that X is an almost reflexive Banach space. Then for a subset
H of L1(X) the following statements are equivalent:

(i) H is conditionally weakly compact in L1(X).
(ii) H̃ is conditionally weakly compact in L1.
(iii) H̃ is a bounded and uniformly integrable subset of L1.
(iv) H̃ is a bounded subset of L1 and the functional pH on L∞ defined for v ∈ L∞ by

pH(v) = sup
f∈H

∫
Ω

f̃(ω)|v(ω)| dµ

is an order continuous seminorm.

Now we are ready to establish a relationship between a Dieudonné operator
T : L1(X)→ Y and the restriction of T to L∞(X).

Let i∞ : L∞(X)→ L1(X) denote the canonical injection.

Theorem 2.2. Let X be an almost reflexive Banach space and let Y be a Banach space.
Let T : L1(X)→ Y be a Dieudonné operator. Then the operator T ◦ i∞ : L∞(X)→ Y is
weakly compact.

Proof. In view of Proposition 1.1 we will prove that B(L∞(X)) is a conditionally weakly
set in L1(X). Indeed, making use of Proposition 2.1 it is enough to show that the func-
tional pB(L∞(X)) on L∞ defined for v ∈ L∞ by

pB(L∞(X))(v) = sup
f∈B(L∞(X))

∫
Ω

f̃(ω)|v(ω)| dµ

is an order continuous seminorm. Note that pB(L∞(X))(v) = ‖v‖L1 for every
v ∈ L∞ ⊂ L1.

Before stating our next result we recall the following theorem (see [D, p. 227], [AB,
Theorem 10.17]).

Theorem 2.3 (A. Grothendieck). A subset A of a Banach space Y is relatively weakly
compact if and only if for each ε > 0 there exists a relatively weakly compact subset Kε

of Y with A ⊂ εB(Y ) +Kε.

Theorem 2.4. Let T : L1(X)→ Y be a bounded linear operator and assume that T ◦ i∞ :
L∞(X) → Y is a weakly compact operator. Then T : L1(X) → Y is a Dieudonné
operator.

Proof. Note that T (B(L∞(X))) is relatively weakly compact in Y . Let H be a condi-
tionally weakly compact subset of L1(X). Then H̃ is a uniformly integrable subset of L1

(see [BC, Theorem 2.2]). For f ∈ L1(X) and λ > 0 let

Af,λ =
{
ω ∈ Ω : f̃(ω) > λ

}
.

Then
lim
λ→∞

sup
f∈H

∫
Af,λ

f̃(ω) dµ = lim
λ→∞

sup
f∈H
‖1Af,λf‖L∞(X) = 0.
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Let ε > 0 be given. Then there exists λε > 0 such that ‖1Af,λε f‖L1(X) ≤ ε
‖T‖ for all

f ∈ H. Hence for f ∈ H we have ‖T (1Af,λε f)‖Y ≤ ε. Moreover, 1Ω\Af,λε (ω)f̃(ω) ≤ λε
for ω ∈ Ω, so ‖1Ω\Af,λε f‖L∞(X) ≤ λε, i.e., 1Ω\Af,λε f ∈ λεB(L∞(X)). Hence

T (f) = T (1Af,λε f) + T (1Ω\Af,λε f) ∈ εB(Y ) + λεT (B(L∞(X))).

Hence, in view of Theorem 2.3, T (H) is a relatively weakly compact subset of Y . By
Proposition 1.1 T is a Dieudonné operator.

References

[ABBL] C. A. Abbott, E. M. Bator, R. G. Bilyeu, P. W. Lewis, Weak precompactness, strong

boundedness, and weak complete continuity, Math. Proc. Cambridge Philos. Soc. 108

(1990), 325–335.

[AB] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Pure Appl. Math. 119, Academic

Press, Orlando, 1985.

[BC] H. Benabdellah, C. Castaing, Weak compactness criteria and convergences in L1
E(µ),

Collect. Math. 48 (1997), 423–448.

[BC1] F. Bombal, P. Cembranos, Characterization of some classes of operators on spaces of

vector-valued functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137–146.
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