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Abstract. Narrow operators are those operators de�ned on function spaces which are �small�
at signs, i.e., at {−1, 0, 1}-valued functions. We summarize here some results and problems on
them. One of the most interesting things is that if E has an unconditional basis then each
operator on E is a sum of two narrow operators, while the sum of two narrow operators on L1

is narrow. Recently this notion was generalized to vector lattices. This generalization explained
the phenomena of sums: the set of all regular narrow operators is a band in the vector lattice of
all regular operators (in particular, a subspace). In L1 all operators are regular, and in spaces
with unconditional bases narrow operators with non-narrow sum are non-regular. Nevertheless,
a new lattice approach has led to new interesting problems.

1. Introduction. Most classes of operators which are not isomorphic embeddings are

characterized by some kind of a �smallness� conditions. Narrow operators are those op-

erators de�ned on function spaces which are �small� at signs, i.e. at {−1, 0, 1}-valued
functions. The idea to consider such operators has led to interesting problems which can

be applied to Geometric Functional Analysis.

We present here the most signi�cant results and open problems on narrow operators,

as to our point of view. The simplest ones are accompanied with proofs, and some more

complicated results are explained by sketches.

1.1. History of the notion. Formally the notion of narrow operators was introduced

by Plichko and the author in 1990 (see [PlPo] and [Pop3]) for operators acting from a

rearrangement invariant (r.i.) function F -space with an absolutely continuous norm to

an F -space. But in fact, these operators were studied by several authors before 1990,

2010 Mathematics Subject Classi�cation : Primary 46B20; Secondary 46B03, 46B10.
Key words and phrases : vector lattice, band, symmetric Banach space, absolutely continuous
norm, complemented subspace, order completeness of a vector lattice, unconditional basis, nar-
row operator, hereditarily narrow operator, Dunford-Pettis operator, weakly compact operator,
numerical radius, Daugavet property.
The paper is in �nal form and no version of it will be published elsewhere.

DOI: 10.4064/bc92-0-21 [299] c© Instytut Matematyczny PAN, 2011



300 M. POPOV

including Bourgain and Rosenthal [BoRo], Johnson, Maurey, Schechtman and Tzafriri

[JMST]. Ghoussoub and Rosenthal [GhRo] (1983) considered the operators from L1 that

are exactly non-narrow, and called them �norm-sign-preserving� operators. Also several

papers of Rosenthal [Ros3], [Ros4], [Ros5] contain results on narrow operators. The �rst

systematic study of narrow operators was done by Plichko and Popov in the above men-

tioned paper [PlPo]. The notion of narrow operators was extended to C(K)-spaces by

V. Kadets and the author [KaPo2] (1996). Next, a new notion of narrow operators de�ned

on Banach spaces with the Daugavet property was introduced by V. Kadets, Shvidkoy

and Werner in [KSW] (2001). Recently, the notion of narrow operators was extended to

vector lattices by O. Maslyuchenko, Mykhaylyuk and Popov in [MMyP2] (2009).

In this survey we do not deal with narrow operators in C(K)-spaces introduced by

V. Kadets and the author, and narrow operators in Banach spaces with the Daugavet

property introduced by V. Kadets, Shvidkoy and Werner.

1.2. Our notation. Throughout the paper E is assumed to be a Köthe F -space on

a �nite atomless1 measure space (Ω,Σ, µ). This means that E is a metric linear space

with an invariant2 metric ρ of equivalence classes of Σ-measurable functions x : Ω → K

where K ∈ {R,C}, such that if x ∈ E, y ∈ L0(µ) and |y| ≤ |x| then y ∈ E and

‖y‖ ≤ ‖x‖ (here L0(µ) denotes the set of all equivalence classes of Σ-measurable functions;

‖x‖ = ρ(x, 0) and the inequality u ≤ v for u, v ∈ L0(µ) means that u(ω) ≤ v(ω) holds

a.e. on Ω). It is also supposed that 1 = 1Ω ∈ E (by 1A we denote the characteristic

function of a set A ∈ Σ). Σ+ means {A ∈ Σ : µ(A) > 0}; for a given A ∈ Σ we set

Σ(A) = {B ∈ Σ : B ⊆ A}, Σ(A)+ = Σ(A) ∩ Σ+ and E(A) = {x ∈ E : suppx ⊆ A}.
For the Borel σ-algebra on [0, 1] we �x the notation B, and by λ we denote the Lebesgue

measure on B.
The letters E,F are reserved for function spaces or vector lattices, and X,Y for general

Banach or F -spaces, for which by L(X,Y ) we denote the set of all continuous linear

operators; L(X) = L(X,X). BX stands for the closed unit ball of a Banach space X.

According to Semenov [Sem] (1964), a Köthe Banach space E is called a symmetric

space if the following condition holds

for each x ∈ L0(µ) and y ∈ E if d|x| = d|y| then x ∈ E and ‖x‖ = ‖y‖. (∗)

Here dz : R → [0, µ(Ω)] is the distribution function of a real function z ∈ L0(µ) de�ned

as

dz(t) = µ{ω ∈ Ω : z(ω) < t}.

We remark that if E is a Banach space then E ⊆ L1(µ) by the de�nition of Köthe

function space. Nevertheless, we consider a more general case.

Definition 1.1. A Köthe function F -space E is called a symmetric F -space if (∗) holds.

All the spaces Lp(µ) with 0 ≤ p ≤ ∞ are symmetric F -spaces. For more information

on symmetric F -spaces see [PlPo].

1= non-atomic; to our point of view, the word �atomless� re�exes its sense better
2i.e. ρ(x, y) = ρ(x+ z, y + z)
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A close notion is a rearrangement invariant function space . The di�erence is that in

the de�nition of a r.i. function space given in [LiTz, p. 118] one has two additional condi-

tions which are unessential for our purposes. Moreover, we consider symmetric spaces on

arbitrary atomless �nite measure spaces. The restriction to �nite measure spaces is just

for convenience of notation in de�nitions and formulation of the results (in the de�ni-

tion of narrow operator on a σ-�nite or even arbitrary in�nite measure space one should

consider the sets of �nite measure only).

We remark that a symmetric space E on [0, 1] with an absolutely continuous norm

and the normalized condition ‖1[0,1]‖E = 1 is a r.i. function space.

1.3. De�nitions and useful observations. We say that a Köthe F -space E has an

absolutely continuous norm if for each x ∈ E and each decreasing sequence An ∈ Σ
with empty intersection one has lim

n→∞

∥∥x · 1An∥∥ = 0. The space Lp(µ) has an absolutely

continuous norm if 0 < p <∞ and does not have if p =∞.

An element x ∈ L0(µ) is called a sign if x takes values in the set {−1, 0, 1}, and a sign

on A ∈ Σ if it is a sign with suppx = A. A sign x is said to be of mean zero, provided∫
Ω

x dµ = 0.

Definition 1.2. Let E be a Köthe F -space and X be an F -space. An operator T ∈
L(E,X) is called narrow if for each A ∈ Σ+ and each ε > 0 there exists a mean zero sign

x on A such that ‖Tx‖ < ε. If for each A ∈ Σ+ there exists a mean zero sign x on A such

that Tx = 0 then T is called strictly narrow 3.

The same de�nition can be applied to a larger class of mappings. In particular, to

prove that every order-to-norm continuous AM -compact operator (see Subsection 7.1 for

the de�nitions) from a vector lattice without the assumption about absolute continuity

of its norm to a Banach space is narrow, the authors in [MMyP2] (2009) used narrow

non-linear maps.

The following lemma gives a useful su�cient condition for an operator to be narrow.

Lemma 1.3. Let E have an absolutely continuous norm. Then an operator T ∈ L(E,X)
is narrow if and only if for each A ∈ Σ and each ε > 0 there are B ∈ Σ(A) and a sign x

on B such that µ(B) ≥ µ(A)/2 and ‖Tx‖ < ε. In particular, the condition on a sign to

be of mean zero in the de�nition is not necessary.

The �only if� part is evident. One can prove �if� by a recursive construction of mea-

surable subsets B1 ⊆ A, B2 ⊆ A \ B1, . . . [PlPo, p. 54]. On the other hand, we do not

know whether Lemma 1.3 is true without the absolute continuity of the norm of E. In

particular, the following problem is unsolved.

Problem 1.4. Does De�nition 1.2 remain the same for E = L∞ if one omits the condi-

tion on a sign to be of mean zero?

Problem 1.4 is open for both narrow and strictly narrow operators. The answer is

a�rmative for order-to-norm continuous operators [KMMMP] (2009) (see Subsection 7.1

for the de�nitions).

3actually, the strict narrowness is a property of the operator kernel.
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The following lemma is a useful reformulation of the de�nition of narrow operator.

Lemma 1.5. Let T ∈ L(E,X) be a narrow operator. Then for each A ∈ Σ, ε > 0 and an

integer n ≥ 1 there is a partition A = A′ t A′′ to disjoint subsets of measures µ(A′) =
(1−2−n) µ(A) and µ(A′′) = 2−nµ(A) such that ‖Th‖ < ε, where h = 1A′ − (2n−1) 1A′′ .

For the proof one should use the de�nition n times.

2. Each �small� operator is narrow. From now on, up to Section 7 unless otherwise

stated, we always assume that the norm of E is absolutely continuous.

Recall that a linear operator T from a vector lattice (in particular, from a Köthe

F -space) E to an F -space X is called AM -compact if it sends order bounded sets from E

to relatively compact sets in X. If E is a Banach lattice then an AM -compact operator

is automatically continuous. Obviously, each compact operator is AM -compact, but not

conversely (for example, the conditional expectation operator in Lp(µ) for 1 ≤ p < ∞
with respect to a purely atomic sub-σ-algebra is AM -compact but not compact).

Proposition 2.1. Let E be a Köthe F -space with an absolutely continuous norm and let

X be an F -space. Then each AM -compact operator T ∈ L(E,X) is narrow.

Proof. Given any A ∈ Σ+ and ε > 0, we consider a Rademacher system (rn) in E(A)
(see [AbAl, p. 497]). Then the set {Trn : n ∈ N} is relatively compact and hence, there

are numbers n 6= m such that ‖Th‖ < ε where h = (rn− rm)/2. Since h is a sign on some

B ∈ Σ(A) with µ(B) = µ(A)/2, by Lemma 1.3, T is narrow.

Recall that an operator T ∈ L(X,Y ) between Banach spaces is called a Dunford-Pettis
operator if T sends weakly null sequences from X to norm null sequences in Y .

Proposition 2.2. Let E be a symmetric Banach space with an absolutely continuous

norm and X be a Banach space. Then every Dunford-Pettis operator T ∈ L(E,X) is

narrow.

Proof. Given any A ∈ Σ+, consider a Rademacher system (rn) in E(A) (see [AbAl,

p. 497]). Since rn
w−→ 0 [LiTz, p. 160], we have that ‖Trn‖ → 0.

Recall that an operator T ∈ L(L1(µ), X) is said to be representable if there is y ∈
L∞(X) such that

Tx =
∫

Ω

xy dµ

for all x ∈ L1(µ). For more information on representable operators we refer the reader to

[DiUh].

Proposition 2.3. Let X be a Banach space. Then each representable and hence, each

weakly compact operator T ∈ L
(
L1(µ), X

)
is narrow.

Proof. Each representable operator is Dunford-Pettis [DiUh, p. 74] and each weakly com-

pact operator de�ned on L1(µ) is representable [DiUh, p. 75].

Proposition 2.4. Let E be a Köthe Banach space and X be a Banach space. Suppose

that for each A ∈ Σ+ there exists a Rademacher type system on A which is equivalent
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to the unit vector basis of `2. Then each absolutely summing operator T ∈ L(E,X) is

narrow.

Proof. Fix A ∈ Σ+. Let (rk) be a Rademacher type system on A equivalent to the

unit vector basis of `2. The unconditional convergence of the series
∞∑
n=1

1
n rn implies that

∞∑
n=1

1
n ‖Trn‖ <∞ and hence lim inf

n
‖Trn‖ = 0.

By using the de�nition, it is easy to prove the following property of narrow operators.

Proposition 2.5 ([PlPo]). If E is a symmetric Banach space, X is a Banach space and

an operator T ∈ L(E,X) is narrow then for each ε > 0 there exists a subspace E0 of E

isometrically isomorphic to the closed linear span of the Haar system (hn)∞n=2 without

the �rst term such that the restriction T |E0 of T to E0 is compact and ‖T |E0‖ < ε.

Let ωα be any cardinal. We consider the measure space
(
{−1, 1}ωα , σα, µα

)
on the

ωα-th power of the two-point set {−1, 1} which is a compact Abelian group with the Haar

measure µα at the cylindrical σ-algebra σα (for more details see [PlPo]). For any F -space

X by dimX we mean the least cardinality of subsets of X with dense linear span.

Theorem 2.6. Let E be a symmetric F -space on
(
{−1, 1}ωα , σα, µα

)
and X be an

F -space with dimX < ℵα. Then every operator T ∈ L(E,X) is narrow.

Proof. Fix any A ∈ σ+
α and ε > 0. One of the consequences of Maharam's theorem

([Mah] (1942), [PlPo]) says that there exists a �Rademacher� system (rβ)β<ωα in L0(A)
of cardinality ℵα. Since dimX < ℵα, there are indices β 6= γ < ωα such that ‖Th‖ < ε

where h = (rβ − rγ)/2. By Lemma 1.3, T is narrow.

3. A �very� non-compact narrow operator. If E is a Köthe Banach space and F is a

purely atomic sub-σ-algebra of Σ with the atoms (Ai)i∈I then the conditional expectation

operator

MFx =
∑
i∈I

( 1
µ(Ai)

∫
Ai

x dµ
)
· 1Ai

from E to E is an AM -compact operator which is narrow and non-compact if I is in�nite.

Now we give a more interesting example.

Example 3.1. Consider E on the square [0, 1]2, and its elements as functions of two

variables and de�ne for any x ∈ E

(Px)(s, t) =
∫

[0,1]

x(s, t′) dt′. (3.1)

For a large class of Köthe Banach spaces E, the operator P : E → E is correctly

de�ned and bounded. For instance, it is correctly de�ned and bounded on every r.i. space

[LiTz, p. 122]. The operator P can also be considered as the conditional expectation

operator MF0 with respect to the sub-σ-algebra F0 =
{
A × [0, 1] : A ∈ B

}
of the Borel

σ-algebra on [0, 1]2. It is a good exercise to show that if P is correctly de�ned in E then

P is narrow (even strictly narrow!). This example can be extended to any symmetric

Banach space on any �nite atomless measure space [PlPo] (1990). In [DoPo] (2008) the
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authors give necessary and su�cient condition on an atomless sub- σ-algebra F of the

Borel σ-algebra B on [0, 1] such that MF is narrow (= strictly narrow).

Example 3.1 is the basis of the following nice result.

Theorem 3.2. Let E be a symmetric Banach space. Then there exists a subspace E0

of E isometrically isomorphic to E and two projections of E onto E0, one of which is

strictly narrow and another is not narrow.

In particular, it follows that the property of an operator to be narrow is not a property

of its image. In [PlPo] (1990) the reader can �nd a proof that Example 3.1 gives a

narrow projection of E onto the subspace E0 of E consisting of all functions x(s, t) ∈ E
depending only of the �rst variable s. An example of a non-narrow projection of E onto

E0 is constructed in [PoRa] (2002). Then in [Kra] (2009) it is shown that P in Example

3.1 is strictly narrow in Lp for any p, 1 ≤ p ≤ ∞, and in [DoPo] (2008) it is proved that

P is strictly narrow in any Köthe space on [0, 1] on which it is bounded.

4. Some deep results on narrow operators

4.1. Su�cient conditions for narrow operators in Lp for 1 ≤ p < 2. One of

the deepest results on narrow operators was announced by Bourgain [Bou, p. 54] (1981)

without a proof. He gave here only a citation to the Johnson-Maurey-Schechtman-Tzafriri

book [JMST] for the idea how one can prove it. In a private communication G. Schechtman

kindly con�rmed that one can deduce the proof from ideas of [JMST], and even outlined

me a sketch of the proof.

Theorem 4.1. Let 1 ≤ p < 2 and T ∈ L(Lp). If for each complemented subspace X of

Lp isomorphic to Lp the restriction T |X is not an into isomorphism then T is narrow.

We remark that this su�cient condition is not necessary (cf. Theorem 3.2). For p = 1
Theorem 4.1 was obtained by Rosenthal [Ros5, Theorem 1.5] (1984) and also can be

deduced from the results of En�o-Starbird's paper [EnSt] (1979). For p = 2 this result

holds evidently, and for p > 2 is false (consider, for example, the composition operator

Jr ◦ Ip from the remark after Theorem 6.10).

The peculiarity of L1 permits one to obtain weaker su�cient conditions for an operator

to be narrow. The following two results of Rosenthal give necessary and su�cient ones.

Theorem 4.2 ([Ros5]). An operator T ∈ L(L1) is narrow if and only if for any A ∈ B+

the restriction T |L1(A) is not an into isomorphism.

Theorem 4.3 ([GhRo], [Ros4]). Let X be any Banach space. An operator T ∈ L(L1, X)
is narrow if and only if for each A ∈ B+ and each ε > 0 there exist a set B ∈ B(A) and

a sign x on B such that ‖Tx‖ < ε‖x‖.

One should compare the last condition to that of Lemma 1.3. Another deep result is

due to Ghoussoub and Rosenthal. Recall that an injective operator T ∈ L(X,Y ) between
Banach spaces is called a Gδ-embedding if TK is a Gδ-set for each closed bounded K ⊂ X.

Theorem 4.4 ([GhRo]). No Gδ-embedding T ∈ L(L1, X) is narrow.
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4.2. For what spaces X is every operator T ∈ L(L1, X) narrow? This question

can be reformulated in a more convenient notion. According to Rosenthal [Ros3] (1981),

[Ros4] (1983), an injective operator T ∈ L(L1, X) is called a sign-embedding if

‖Tx‖ ≥ δ‖x‖ (∗∗)

for some δ > 0 and every sign x ∈ L1. It is said that L1 sign-embeds in a Banach space

X provided there exists a sign-embedding T ∈ L(L1, X).
It is not hard to show that the injectivity assumption for T is essential in this de�-

nition. Moreover, in [MyPo] (2006) the authors constructed an example of a projection

in L1 which satis�es (∗∗) and with kernel isomorphic to L1. One more question natu-

rally arising from the de�nition is the following: if condition (∗∗) holds for mean zero

signs only, is it su�cient for the operator to be a sign-embedding? In [MyPo] it is shown

that the answer is negative (compare to Lemma 1.3). On the other hand, if an operator

T ∈ L(L1, X) (not necessary injective) possesses (∗∗) for each mean zero sign then there

exists A ∈ B+ for which the restriction T |L1(A) is a sign-embedding, i.e. in this case L1

sign-embeds in X [MyPo].

What is the connection between sign-embeddings and narrow operators? Obviously,

the notions of sign-embeddings and narrow operators are mutually exclusive, but Tx =
x1[0,1/2] is an example of an operator in L(L1) which is neither a sign-embedding nor

narrow. On the other hand, the following statement holds.

Proposition 4.5. For a Banach space X the following assertions are equivalent :

(i) L1 does not sign-embed in X,

(ii) every operator T ∈ L(L1, X) is narrow.

Indeed, (ii) trivially implies (i); the converse constitutes Lemma 3 of Rosenthal's pa-

per [Ros4] (1983). It is clear that if L1 embeds in X then L1 sign-embeds in L1. Rosenthal

asked ([Ros3] (1981), [Ros4]) whether the converse is true. Talagrand [Tal] (1990), in solv-

ing another problem, constructed a counterexample. Actually, he constructed a subspace

Y of L1 such that both Y and L1/Y have no isomorphic copy of L1. We claim that the

quotient map T : L1 → X is not narrow. Indeed, if it were narrow, by Proposition 2.5, one

would construct a sequence (hn)∞n=2 in L1 with [hn] isomorphic to L1 with ‖Thn‖ < 2−n.
This implies that Y has a subspace isomorphic to L1.

Now we list several results saying that, under some conditions on X, every operator

T ∈ L(L1, X) is narrow. Let X,Y, Z be Banach spaces. Recall that an operator T ∈
L(X,Y ) �xes a copy of Z if there exists a subspace X0 of X isomorphic to Z such that

the restriction T |X0 is an into-isomorphism. Otherwise it is said that T �xes no copy

of Z, or is Z-singular.

Theorem 4.6 ([BoRo]). Every `1-singular operator T ∈ L(L1, X) is narrow. Hence, if

X contains no subspace isomorphic to `1 then every operator T ∈ L(L1, X) is narrow.

Ghoussoub and Rosenthal in [GhRo] (1983) de�ned a class G as the minimal class of

separable Banach spaces closed under Gδ-embeddings and containing L1. In particular,

G contains all separable duals.
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Theorem 4.7 ([GhRo]). If X ∈ G then every L1-singular operator T ∈ L(L1, X) is

narrow.

Problem 4.8. Let 1 < p < ∞, p 6= 2. Is every strictly singular operator T ∈ L(Lp, X)
narrow for every Banach space X?

The case p = 1 is excluded, because in view of Theorem 4.6, the answer is a�rmative.

Problem 4.9. Let 1 ≤ p <∞, p 6= 2. Is every `2-singular operator T ∈ L(Lp, X) narrow
for every Banach space X?

A partial answer to these problems for regular operators was given by Flores and Ruiz

in [FlRu]. In particular, they proved that, if F is a Banach lattice containing no isomorph

of c0, then every `2-singular operator T ∈ L(L1, X) is narrow.

5. Ideal properties of narrow operators. Is the sum of two narrow operators nar-

row? It is a shocking and the most interesting phenomenon on narrow operators that if a

symmetric Banach space on [0, 1] has an unconditional basis then the answer is negative,

while for E = L1 it is a�rmative. Not less interesting is that the �rst fact is quite simple,

and the second is quite involved.

Proposition 5.1. Let E be a symmetric Banach space with an unconditional basis. Then

the identity Id on E is a sum of two narrow projections.

Proof. Decompose the integers into two in�nite parts N = N1 tN2 and set

Ej =
[
hi : 2m−1 ≤ i ≤ 2m − 1, m ∈ Nj

]
, j = 1, 2,

where (hn) is the Haar system which is unconditional in E by [LiTz, p. 156]. Then

E = E1 ⊕E2. Now it is a technical exercise to show that both corresponding projections

are narrow.

Observe that if T ∈ L(E,X) is narrow then for any Banach space Y and any S ∈
L(X,Y ) the composition S ◦ T is narrow. Hence, we obtain the following consequence.

Corollary 5.2. Let E be a symmetric Banach space with an unconditional basis. Then

every operator T ∈ L(E) is a sum of two narrow projections.

Theorem 5.3. The sum of two narrow operators in L1 is narrow.

This theorem appeared in [PlPo] (1990), but the proof contained a gap. Later it was

proved in di�erent ways by di�erent authors [Shv2] (2001), [KaPo3] (2003). In [MMyP1]

(2006) much more was proved, namely that the set of all narrow operators in L1 is a

band in L(L1) (see Section 7 for more details).

In general, one can easily show that the sum of a narrow and a Dunford-Pettis operator

is narrow.

In contrast to composition from the left, the set of all narrow operators does not have

a right-hand-side ideal property.

Proposition 5.4. Let E be a symmetric Banach space. There are operators T, S ∈ L(E)
with T narrow such that T ◦ S is not narrow.
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Proof. Let T be a narrow projection of E with the range X = T (E) isomorphic to E

(see Theorem 3.2) and S : E → X be an isomorphism. Then T ◦ S = S is not narrow.

We remark that in this case the operator S−1 ◦T : E → E is narrow and onto. Hence,

the conjugate operator (S−1 ◦ T )∗ ∈ L(E∗) is an into isomorphism and is not narrow.

Thus, we obtain the following assertion.

Proposition 5.5. Let both E and E∗ be symmetric Banach spaces. Then there is a

narrow operator T ∈ L(E) with non-narrow conjugate operator T ∗ ∈ L(E∗).

Problem 5.6. Is the sum of two narrow operators in L(L1, X) narrow, for every Banach
space X?

6. Some applications of narrow operators. Here we describe some applications of

narrow operators to di�erent branches of Geometric Functional Analysis.

6.1. The only narrow operator on Lp(µ) is zero when 0 < p < 1. Let 0 < p < 1
and X be an F -space. Recall that the F -norm on Lp(µ) is given by

‖x‖ =
∫

Ω

|x|p dµ.

Theorem 6.1. If T ∈ L
(
Lp(µ), X

)
is narrow then T = 0.

Proof. It is enough to prove that T1A = 0 for each A ∈ Σ+. Given any A, choose by

Lemma 1.5 a sequence (hn) in E such that lim
n
‖Thn‖ = 0, hn = 1A′n − (2n − 1) 1A′′n ,

A′n tA′′n = A and µ(A′′) = 2−nµ(A). Then

lim
n→∞

‖1A − hn‖ = lim
n→∞

‖2n1A′′n‖ = lim
n→∞

2n(p−1)µ(A) = 0.

Thus, we obtain that 1A = lim
n→∞

hn and ‖T1A‖ = lim
n→∞

‖Thn‖ = 0.

The following immediate consequence of Theorems 6.1 and 2.6 implies that the space

Lp{−1, 1}ωα with α > 0 has no separable quotient space (to the best of our knowledge,

it is still unknown, whether there exists an in�nite-dimensional Banach space with no

separable in�nite-dimensional quotient space).

Corollary 6.2. Let X be an F -space with dimX < ℵα. Then

L
(
Lp{−1, 1}ωα , X

)
= {0}.

The following consequence of Theorem 6.1 and Proposition 2.1 was known before for

compact operators due to Kalton [Kal1] (1976), [Kal2] (1977), Pallaschke [Pal] (1973)

and Turpin [Tur] (1973).

Corollary 6.3. If T ∈ L(Lp(µ), X) is AM -compact then T = 0.

6.2. Isomorphic and near isometric classi�cation of Lp(µ)-spaces. An isomor-

phic classi�cation of Lp(µ)-spaces on �nite atomless measure spaces for 1 ≤ p < ∞ is

given by Lindenstrauss [Lac, p. 130], and for p = ∞ by Rosenthal [Ros1] (1970). For

isomorphic and near isometric classi�cations, it is clearly enough to consider probability

measure spaces only, i.e. with µ(Ω) = 1. For a measure space (Ω,Σ, µ) by Σ̂ we denote

the Boolean σ-algebra of equivalence classes of sets from Σ, equal up to measure null
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sets with the natural operations ∨ and ∧. Recall that two probability spaces (Ωi,Σi, µi),
i = 1, 2, are called isomorphic if there exists a measure preserving Boolean isomorphism

of Σ̂1 onto Σ̂2. For example, every two separable (i.e. having separable L1(µi)) atomless

probability spaces are isomorphic (Caratheodory's theorem). A complete characterization

of arbitrary atomless probability spaces is given by Maharam's theorem [Mah] (1942),

[Lac, p. 128], [PlPo].

Theorem 6.4 ([Pop1], [PlPo]). Let (Ωi,Σi, µi), i = 1, 2, be atomless probability spaces

and 0 < p < 1. Then the following assertions are equivalent :

(i) Lp(µ1) and Lp(µ2) are isomorphic ;

(ii) Lp(µ1) and Lp(µ2) are isometrically isomorphic ;

(iii) (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) are isomorphic, up to some positive multipliers.

Of course, implications (iii)⇒(ii)⇒(i) are obvious.

An analogous result is the following near isometric classi�cation of Lp(µ)-spaces for
1 ≤ p <∞, p 6= 2.

Theorem 6.5 ([PlPo]). For each p ∈ [1, 2) ∪ (2,+∞) there exists a constant kp > 1,
k1 = 2 such that for any atomless probability spaces (Ωi,Σi, µi), i = 1, 2, if the Banach-

Mazur distance satis�es d(Lp(µ1), Lp(µ2)) < kp then the spaces Lp(µ1) and Lp(µ2) are

isometrically isomorphic.

For separable measure spaces admitting atoms, the same result was earlier obtained by

Benyamini [Ben] (1975), and for p = 1 and any atomless probability spaces by Cambern

[Cam] (1980).

The main point for the isomorphic classi�cation when 0 < p < 1 was the absence

of non-zero narrow operators, and the main point for the 1 ≤ p < ∞, p 6= 2, case is

the following theorem asserting that any non-identity projection of Lp(µ) having �small�

kernel must have �large� norm.

Theorem 6.6 ([Pop2]). For each p ∈ [1, 2) ∪ (2,+∞) there exists a constant kp > 1,
k1 = 2, such that if P 6= Id is a projection of Lp(µ) with narrow complement projection

Id−P then ‖P‖ ≥ kp.
Franchetti [Fra] (1992) showed that the best value of kp is the norm of the following

codimension-one projection P0 of Lp

P0x = x−
(∫

[0,1]

x dλ
)
· 1 where 1(t) ≡ 1.

Theorem 6.6 was generalized from the spaces Lp to Lorentz spaces Lw,p on [0,1] with

p > 2 in [PoRa] (2002).

6.3. The Daugavet property. Lozanovskii [Loz] (1966) proved that the space L1 has

the so-called Daugavet property for compact operators 4 which �rst was discovered by

Daugavet [Dau] (1963) for C[a, b], i.e. that

‖Id +K‖ = 1 + ‖K‖ (6.1)

4now it is known that, equivalently, one can replace compact with weakly compact, or even
with rank-one operators [KSSW] (2000)
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for each compact operator K ∈ L(L1). A more general result on L1 is that (6.1) is

satis�ed for all narrow operators. But this is not the most general result; for a complete

characterization of operators K ∈ L(L1) satisfying (6.1) see [Shv1] (2001).

Using narrow operators, the author in [Pop4] (2008) strengthened the Daugavet prop-

erty by replacing the identity with any �small� into isomorphism of L1.

Theorem 6.7 ([Pop4]). Let T ∈ L(L1) be a narrow operator and J ∈ L(L1) be an into

isomorphism with d = ‖J‖‖J−1‖ < 2. Then

‖J + T‖ ≥ ‖T‖+ ‖J‖
(2
d
− 1
)
. (6.2)

Moreover, the inequality in (6.2) is sharp.

There is another inequality that holds for operators in Lp with 1 < p <∞, p 6= 2.

Theorem 6.8 ([PlPo]). Let 1 < p < ∞, p 6= 2. For each ε > 0 there exists δp(ε) > 0
such that if T ∈ L(Lp) is narrow then

‖Id +T‖ ≥ 1 + δp(‖T‖). (6.3)

This result was earlier obtained by Benyamini and P. K. Lin in [BeLi] (1985) for

compact operators. We remark also that Boyko and V. Kadets proved that δp(t) → t

as p → 1 [BoKa] (2004), and so, the Daugavet equation in L1 is a limiting case of the

Benyamini-Lin Lp theorem, as the title of [BoKa] says.

6.4. Ranges of vector measures. By the well known Lyapunov theorem, the range

ν(Σ) of a vector measure ν : Σ→ X (here X is a Banach space) is convex if dimX <∞.

It is not hard to see that if dimX =∞ then there exists a countably additive X-valued

measure of bounded variation with non-convex range. But if we consider the closure ν(Σ)
then the question of whether it is convex becomes non-trivial.

Theorem 6.9 ([KaPo1]). For any Banach space X the following assertions are equivalent

(i) ν(Σ) is convex for each countably additive X-valued measure of bounded variation ;

(ii) every operator T ∈ L(L1, X) is narrow.

6.5. An analogue of the Pitt compactness theorem. By using the notion of in-

fratype for Banach spaces, the following result was obtained in [KaPo1] (1992).

Theorem 6.10 ([KaPo1]). If 1 ≤ p < 2 and p < r < ∞ then every operator T ∈
L(Lp, Lr) is narrow.

We remark that Theorem 6.10 is false for any other values of p and r. If p ≥ 2 then

the composition Jr ◦ Ip of the identity embedding Ip : Lp → L2 and the isomorphic

embedding Jr : L2 → Lr is evidently not narrow. And if 1 ≤ p < 2 and 1 ≤ r ≤ p then

the identity embedding of Lp into Lr is not narrow.

Using the usual Pitt theorem, saying that every operator from `p to `r is compact if

1 ≤ r < p <∞, one can obtain the following proposition.

Proposition 6.11. Let E be a symmetric Banach space such that the closed linear span

of the Rademacher system in E is isomorphic to `2, and let 1 ≤ r < 2. Then every

operator T ∈ L(E, `r) is narrow.
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Proof. Given any A ∈ B+, consider a Rademacher system (rn) in E(A). Since [rn] is
isomorphic to `2, by the Pitt theorem, the restriction T |[rn] is compact. Since rn

w−→ 0,
we have that ‖Trn‖ → 0.

Theorem 6.12 ([KaPo1]). If 1 ≤ p <∞ then every operator T ∈ L(Lp, c0) is narrow.

A similar result was recently obtained for narrow operators de�ned on the space L∞,

the norm of which is not absolutely continuous, and thus where the usual technique does

not work (see Subsection 7.1 for the de�nitions).

Theorem 6.13 ([KMMMP]). Every order-to-norm continuous operator T ∈ L(L∞, c0)
is narrow.

We remark that there is an order-to-norm continuous operator T ∈ L(L∞, c0) which

cannot be extended to Lp for some p <∞ [KMMMP] (2009), so, this theorem cannot be

obtained from Theorem 6.12. Likewise, there exists an order-to-norm continuous operator

T ∈ L(L∞, c0) which is not AM -compact, and so, Theorem 6.13 does not follow from

Theorem 7.19 below.

Theorem 6.14 ([KMMMP]). Let 1 ≤ p < 2. Then every order-to-norm continuous

operator T ∈ L(L∞, `p) is narrow.

Problem 6.15. Let 2 ≤ p < ∞. Is every order-to-norm continuous operator T ∈
L(L∞, `p) narrow?

6.6. Rich subspaces and subspaces of Lp isomorphic to Lp

Definition 6.16. Let E be a Köthe F -space on (Ω,Σ, µ). A subspace X ⊆ E is called

rich if the quotient map T : E → E/X is narrow.

In other words, X ⊆ E is rich if for each A ∈ Σ and ε > 0 there are an element x ∈ X
and a mean zero sign y on A such that ‖x− y‖ < ε.

Theorem 2.6 gives the following consequence.

Corollary 6.17. Let E be a Köthe F -space on (Ω,Σ, µ) with an absolutely continuous

norm. Then every subspace X ⊆ E with

codimX < min{dimE(A) : A ∈ Σ+}

is rich.

Here and in the sequel by codimX we denote the codimension of a subspace X ⊆ E

in E, i.e. codimX = dimE/X.

The following statement is a consequence of Theorem 6.1.

Corollary 6.18. Let 0 < p < 1 and (Ω,Σ, µ) be an atomless measure space. Then the

only rich subspace of Lp(µ) is Lp(µ) itself.

Using Proposition 2.5 one can prove that if E is a symmetric Banach space then any

rich subspace of E contains some isomorph of the corresponding space E0 on [0, 1] (for
the de�nition of the corresponding symmetric space, which is too complicated, we refer

the reader to [PlPo]; here we just say that, for example, the corresponding space to Lp(µ)
is Lp).
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Proposition 6.19. Let X be a rich subspace of a symmetric Banach space E on (Ω,Σ, µ).
Then there exists a subspace Y ⊆ X which is isomorphic to the corresponding space E0

on [0, 1] and complemented in E.

A symmetric space E is said to be s-concave with 1 ≤ s < ∞ if there is a constant

M > 0 such that for any n ∈ N and any vectors (xi)n1 in E one has( n∑
i=1

‖xi‖s
)1/s

≤M
∥∥∥( n∑

i=1

|xi|s
)1/s∥∥∥.

Proposition 6.19 together with Corollary 9.2 from [JMST, p. 240] implies the following

result.

Corollary 6.20. Let E be a symmetric Banach space on [0, 1]. Suppose that :

(i) E is s-concave for some s <∞;

(ii) E does not contain, for all integers n, almost isometric copies of `n1 spanned by

disjoint elements having the same distribution ;

(iii) the Haar system in E is not equivalent to a sequence of disjoint elements of E.

Then every complemented rich subspace of E is isomorphic to E.

We remark that the condition on the lower Boyd index in [JMST, Corollary 9.2] has

been replaced with an equivalent condition (ii), in accordance with [LiTz, p. 141].

Theorem 5.1 implies the following.

Corollary 6.21. Let E be a separable symmetric Banach space on [0, 1] with an abso-

lutely continuous norm and an unconditional basis. Then E is a sum of two rich subspaces

E = E1 ⊕ E2.

Theorem 3.2 has the following reformulation in terms of rich subspaces.

Corollary 6.22. Let E be a symmetric Banach space with an absolutely continuous

norm on (Ω,Σ, µ). Then there exists a complemented subspace E0 of E isometric to E

and two decompositions E = E0 ⊕ Y = E0 ⊕ Z where Y is rich and Z is not rich.

The property of a subspace to be rich is not preserved when passing to dual spaces.

More precisely, let X be a subspace of a Banach space E. By X⊥ we denote the annihilator

of X, i.e. the subspace of E∗ consisting of all functionals vanishing on X.

Observe that each decomposition E = X ⊕ Y of a Banach space into subspaces

produces the dual decomposition E∗ = Y ⊥ ⊕ X⊥. Consequently, it is natural to ask

whether a subspace Y of E is rich in E if and only if X⊥ is rich in E∗ (of course, if in

both spaces E and E∗ rich subspaces are well de�ned). The answer is no.

Proposition 6.23. Let E be a symmetric Banach space on (Ω,Σ, µ) with an abso-

lutely continuous norm such that the dual space E∗ is also a symmetric Banach space

on (Ω,Σ, µ) with an absolutely continuous norm. Then there exists a decomposition

E = X ⊕ Y such that both subspaces X,Y are not rich and the annihilator X⊥ is rich

in E∗.



312 M. POPOV

Formally, it cannot be deduced from Corollary 6.22. But if we recall the construction

of these decompositions (see Theorem 3.2), we can show that E has a decomposition

E = E0 ⊕ E1 with E0 and E1 not rich and E⊥0 rich in E∗.

One famous theorem of En�o asserts that, if the space Lp, 1 ≤ p <∞, is decomposed

into closed subspaces Lp = X ⊕ Y then, at least, one of X,Y is isomorphic to Lp (see

[EnSt] for the case p = 1 and [Mau] (1974) for the other values of p). Alspach asked

[Als], whether there exists a constant Mp > 1 such that if P is a projection of Lp onto

an in�nite-dimensional subspace X of Lp with ‖P‖ < Mp then X is isomorphic to Lp.

Applying the technique developed in Subsection 6.2 to rich subspaces, one can obtain a

related result.

Theorem 6.24 ([PlPo]). For each p ∈ [1, 2)∪(2,+∞) there is a constant kp > 1, k1 = 2,
such that if P 6= 0 is a projection of Lp onto X with ‖Id−P‖ < kp then X is isomorphic

to Lp.

6.7. Best estimation for the numerical index of Lp. We start this subsection

with some preliminaries. Let X be a Banach space. The numerical radius of an operator

T ∈ L(X) is a semi-norm de�ned as

v(T ) = sup
{
|x∗(Tx)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1

}
,

and the numerical index of X is the following constant

n(X) = inf
{
v(T ) : T ∈ L(X), ‖T‖ = 1

}
.

These notions were �rst studied in the paper [DGPW] of Duncan, McGregor, Pryce

and White (1970), with a remark that they are due to Lumer (1968) (see also monographs

of Bonsall and Duncan [BoDu1] (1971), [BoDu2] (1973) and survey of V. Kadets, Martín

and Payá [KMP] (2006)). Obviously, 0 ≤ n(X) ≤ 1 and n(X) > 0 means that v(T )
is a norm on L(X) equivalent to the operator norm. It is also not hard to see that

n(X∗) ≥ n(X). There are lots of spaces with the numerical index one (among classical

ones, for instance, L1(µ) and C(K)), and some attractive open problems on them [KMP].

It is interesting to remark that properties like that are di�erent for the real and complex

cases. So, for every complex Banach space one has that n(X) ≥ 1/e (and the inequality

is sharp), nevertheless, n(X) = 0 for some real Banach spaces, for example, n(`2) = 0.
Recently it was proved by Martín, Merí and Popov that n(Lp) > 0 in the real case for

every 1 < p 6= 2 [MMeP] (2010). More precisely, in [MMeP] the authors introduced the

notions of absolute numerical radius of an operator T ∈ L(Lp) and absolute numerical

index of Lp(µ) on a measure space (Ω,Σ, µ) as follows. For any T ∈ L(Lp(µ)) the absolute
numerical radius is the following number:

|v|(T ) = sup
{∫

Ω

|x∗Tx| : x ∈ SLp(µ), x
∗ ∈ SLq(µ),

∫
Ω

x∗x = 1
}
,

and the absolute numerical index of Lp(µ) is the following constant

|n|(Lp) = inf
{
|v|(T ) : T ∈ L(Lp(µ)), ‖T‖ = 1

}
.

The main results of [MMeP] assert that, given an operator T on the real space Lp(µ),
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we have

v(T ) ≥ Mp

6
|v|(T ) and |v|(T ) ≥

n
(
LCp (µ)

)
2

‖T‖,

where n
(
LCp (µ)

)
is the numerical index of the complex space Lp(µ) and

Mp = max
τ∈[0,1]

|τp−1 − τ |
1 + τp

= max
τ≥0

|τp−1 − τ |
1 + τp

> 0.

Since n
(
LCp (µ)

)
≥ 1/e (as for any complex space, see [BoDu1, Theorem 4.1]), the above

two inequalities together give, in particular, the following inequality:

n
(
Lp(µ)

)
≥ Mp

12e
. (6.4)

In a more recent unpublished paper, Martín, Merí and the author have found an exact

value for the absolute numerical index of Lp.

Theorem 6.25. For every 1 < p <∞ one has the equality

|n|(Lp) =
1

p1/pq1/q
.

The authors have established a stronger lower estimate for the numerical radius than

the general one gives. More precisely, de�ne

nnar(Lp) = inf
{
v(T ) : T ∈ L(E), ‖T‖ = 1, T is narrow

}
.

Then the following result holds.

Theorem 6.26. For every 1 < p <∞ one has

nnar(LRp ) ≥ max
τ>0

κpτ
p−1 − τ

1 + τp
and nnar(LCp ) ≥ κ2

p

where by LRp and LCp we denote the real and the complex spaces respectively.

It is a natural conjecture that the numbers n(Lp) and nnar(Lp) are equal. Nevertheless,
the problem of whether this is true seems to be quite involved.

Problem 6.27. Let 1 < p <∞, p 6= 2. Is n(Lp) = nnar(Lp)?

7. Narrow operators on vector lattices. A lattice approach to narrow operators

which was used in [MMyP2] (2009) allows us to give an answer to the question why in

�good� spaces the sum of narrow operators need not be narrow, while in L1 the sum is

narrow. The answer is: because in L1 there are �few� operators (all of them are regular,

i.e. the di�erence of two positive operators), and in �good� spaces there are a lot of

operators (including non-regular). Nevertheless, in all spaces the sum of two regular

narrow operators is narrow. This fact is quite deep and involved, and our aim is to

present it after some preliminaries on vector lattices. Note that all vector spaces are

considered over the reals in this section. All the results and new notions presented in this

section (unless other authors are cited) are due to O. Maslyuchenko, Mykhaylyuk and

the author [MMyP2].
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7.1. Preliminaries on vector lattices. We use standard notation and terminology as

in the Aliprantis-Burkinshaw book [AlBu]. A vector lattice is said to be order complete 5

if each order bounded from above non-empty set has the exact upper bound. We assume

that all vector lattices are Archimedean, which is the case for order complete vector

lattices [Sch, p. 64]. A subset F of a vector lattice E is said to be order closed, if for any

subset G ⊆ F the existence of y = supG ∈ E (or y = inf G ∈ E) implies that y ∈ F .
The set of all positive elements in E is denoted by E+. Two elements x, y ∈ E are called

disjoint (or orthogonal) if |x| ∧ |y| = 0 and this fact is written as x⊥ y. Two subsets

A,B ⊆ E are disjoint if x⊥ y for each x ∈ A and y ∈ B. For any subset A ⊆ E by Ad

we denote the set Ad = {x ∈ E : A and {x} are disjoint}. The equality x =
n⊔
k=1

xk in a

vector lattice means that x =
n∑
k=1

xk and xi⊥xj if i 6= j.

A subset A of a vector lattice E is said to be solid if for any x ∈ A and y ∈ E the

condition |y| ≤ |x| implies that y ∈ A. A solid vector subspace is called an ideal. An order

closed ideal is said to be a band. A band I of a vector lattice E is called a projection band

if E = I ⊕ Id. For an arbitrary vector lattice E and any subset A ⊆ E by Band(A) we

denote the least6 band in E which contains A.

Lemma 7.1 ([Sch, p. 62]). Let E be an order complete vector lattice, A ⊆ E be any subset.

Then Ad is a band and E = Band(A)⊕Ad. In particular, each band is a projection band.

If E is a Banach lattice (i.e. a vector lattice and a Banach space such that |x| ≤ |y|
implies that ‖x‖ ≤ ‖y‖ for each x, y ∈ E) and I is a projection band in E then the

corresponding projections of E onto I and Id are of norm one; this immediately follows

from the de�nition of Banach lattice.

According to [AbAl, p. 86], an element u > 0 of a vector lattice E is called an atom,

whenever 0 ≤ x ≤ u, 0 ≤ y ≤ u and x ∧ y = 0 imply that either x = 0 or y = 0.
Since we deal with order complete lattices only, we equivalently reformulate this notion

as follows. A non-zero element x of an order complete vector lattice E is an atom if for

each y ∈ E the equality |x| = |y| is possible if and only if y = x or y = −x. A vector

lattice E is atomless if there is no atom x ∈ E. An element y of a vector lattice E is

called a component of an element x ∈ E, provided y⊥(x− y). The notation y v x means

that y is a component of x. Evidently, a non-zero element x ∈ E is an atom if and only if

the only components of x are 0 and x itself. Hence, a vector lattice E is atomless if each

non-zero element x ∈ E has a proper component y v x, that is, y is a component of x

such that 0 6= y 6= x. Clearly, a r.i. F -space on an atomless measure space is an atomless

vector lattice.

We consider order convergence in a vector lattice E. A decreasing net (xα) converges
to zero in E (notation xα ↓ 0) provided that inf

α
xα = 0. More generally, a net (xα) in E

order converges to an element x ∈ E (notation xα
o−→ x) if there exists a decreasing net

uα ↓ 0 in E with |xα − x| ≤ uα for all α.

5= Dedekind complete
6obviously, the intersection of bands is a band, so this object is well de�ned
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Let E,F be vector lattices. The set of all linear operators T : E → F is denoted by

L(E,F ). An operator T ∈ L(E,F ) is said to be positive if T (E+) ⊆ F+ (in this case we

write T ≥ 0), and regular if T = T1−T2 for some positive operators T1, T2 ∈ L(E,F ). We

de�ne the order T ≤ S by S−T ≥ 0, and Lr(E,F ) denotes the set of all regular operators
in L(E,F ). Then Lr(E,F ) becomes an ordered vector space, and a vector lattice when

F is order complete. If E,F are Banach lattices then Lr(E,F ) ⊆ L(E,F ). For E = F

the part (E,F ) of any above notation is replaced with (E). An operator T ∈ L(E,F ) is

said to be

� disjointness preserving if T sends disjoint elements from E to disjoint elements from F ;

� order continuous provided T maps order convergent nets to order convergent nets.

Let X be a Banach space. An operator T ∈ L(E,X) is said to be order-to-norm

continuous if T sends order converging nets in E to norm converging nets in X.

7.2. Two new de�nitions of narrow operator. There are two de�nitions of narrow

operator for vector lattices, depending on whether the range space is a Banach space or

a Banach lattice.

Definition 7.2. Let E be an atomless order complete vector lattice, and let X be a

Banach space. A linear operator 7 T : E → X is called narrow if for every x ∈ E+ and

every ε > 0 there exists some y ∈ E such that |y| = x and ‖Ty‖ < ε.

Note that there is no need to restrict to the atomless case in this de�nition, but

evidently, a narrow map must send �atoms� to zero. Of course, the new de�nition must

be equivalent to the old one, at least, for most natural cases.

Proposition 7.3. Let E be a Köthe Banach space with an absolutely continuous norm,

and let X be a Banach space. For an operator T ∈ L(E,X) De�nitions 1.2 and 7.2 of

narrow operator are equivalent.

Sketch of proof. If T is narrow in the sense of De�nition 1.2 and x ∈ E+ is any element

of the form x =
n∑
k=1

ak1Ak then the desired y ∈ E for De�nition 7.2 can be found using

De�nition 1.2. Then we pass to the general case using absolute continuity of the norm.

The converse implication is trivial in view of Lemma 1.3 which also uses the absolute

continuity of the norm.

The method of the proof allows us to state one �half� of Proposition 7.3 if E satis�es

a weaker assumption.

Proposition 7.4. Let E be a Köthe Banach space such that �nite valued functions from

E are dense in E. If an operator T ∈ L(E,X) is narrow in the sense of De�nition 1.2

then it is also narrow in the sense of De�nition 7.2.

For example, the space E = L∞, the norm of which is not absolutely continuous,

satis�es the assumption of Proposition 7.4, so every operator T ∈ L(L∞, X) which is

narrow in the sense of De�nition 1.2 is also narrow in the sense of De�nition 7.2 (cf.

Problem 1.4).

7this can be applied for non-linear maps also
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Problem 7.5. Are De�nitions 1.2 and 7.2 equivalent for E = L∞?

The answer is a�rmative for order-to-norm continuous operators [KMMMP] (2009).

Now we give a de�nition of narrow operator for the case when the range space is a

vector lattice. For most interesting cases it is equivalent to De�nition 7.2, but in general,

the de�nitions do not have the same meaning, as Proposition 7.8 below shows.

Definition 7.6. Let E,F be vector lattices with E atomless. A linear operator T : E →
F is called order narrow if for every x ∈ E+ there exists a net (xα) in E such that

|xα| = x for each α and Txα
o−→ 0.

Proposition 7.7. Let E be an atomless vector lattice and F be a Banach lattice. Then

each narrow linear operator T : E → F is order narrow.

Proof. If |xn| = x and ‖Txn‖ ≤ 2−n then one can show that Txn
o−→ 0. Indeed, for

zn =
∞∑
k=n

|Txk| we have that |Txn| ≤ zn ↓ 0.

However, the converse is not true.

Proposition 7.8. There exists an order narrow positive operator T ∈ L(L∞) that is not
narrow.

We remark that the operator given in [MMyP2] (2009) is not narrow in the sense of

both de�nitions 1.2 and 7.2.

Nevertheless, for operators with values in an order continuous Banach lattice the two

notions of narrow operator coincide. Recall that a Banach lattice E is said to be order

continuous if for each net (xα) in E the condition xα ↓ 0 implies ‖xα‖ → 0. Note that in
this case the condition xα

o−→ 0 also implies ‖xα‖ → 0.

Proposition 7.9. Let E be an atomless vector lattice and F be an order continuous

Banach lattice. Then a linear operator T : E → F is order narrow if and only if it is

narrow.

Proof. Let T be order narrow. Given x ∈ E+, choose a net (xα) in E such that |xα| = x for

each α and Txα
o−→ 0. By the de�nition of order continuous Banach lattice, ‖Txα‖ → 0,

and thus, T is narrow. In view of Proposition 7.7, the proof is completed.

7.3. The main problem

Problem 7.10. Let E,F be order complete vector lattices with E atomless. Is the set

(i) Nr(E,F ) of all narrow regular operators

(ii) ONr(E,F ) of all order narrow regular operators

a band in the vector lattice Lr(E,F ) of all regular operators from E to F?

In general, Problem 7.10(i) has a negative answer.

Theorem 7.11. The set Nr(L∞) is not a band in Lr(L∞).

To prove this theorem, the authors constructed a sequence Tn ∈ Nr(L∞), the supre-
mum of which does not belong to Nr(L∞). However, the following problem remains

unsolved.



NARROW OPERATORS (A SURVEY) 317

Problem 7.12. Is the sum of two regular narrow operators in L∞ narrow?

This problem is open for both de�nitions 1.2 and 7.2. But if one omits the word

�regular� in Problem 7.12 then the answer is known to be negative [Kra] (2009).

Proposition 7.13. The sum of two narrow operators 8 in L∞ need not be narrow.

Sketch of proof. Using Proposition 5.1, one can show that the identity embedding J :
L∞ → L2 is a sum of two narrow operators T, S : L∞ → L2. Let U : L2 → L∞ be

any isomorphic embedding. Then the operators U ◦ T and U ◦ S are narrow members of

L(L∞). It is not hard to show that their sum V = U ◦T +U ◦S = U ◦J2 is not narrow.

For vector lattices E,F by Ar(E,F ) we denote the set of all disjointness preserving

operators in Lr(E,F ) (the letter A is reserved because Rosenthal in [Ros5] called these

operators atoms, and we mainly follow ideas from [Ros5] (1984)). The set Ar(E,F ) is

not a linear subspace, but nevertheless, it is solid in Lr(E,F ) [MMyP2] (2009). And for

an M ⊆ Lr(E,F ) by B(M) we mean the minimal band in Lr(E,F ) which contains M .

The following two deep results give particular a�rmative answers to both parts of

Problem 7.10. The �rst of them is restricted to order continuous Banach lattices.

Theorem 7.14. Let E,F be order continuous Banach lattices with E atomless. Then

Nr(E,F ) and B
(
Ar(E,F )

)
are orthogonal bands in Lr(E,F ).

The second theorem concerns a more general case of vector lattices but is restricted

to order continuous operators only. Let Loc
r (E,F ), ONoc

r (E,F ) and Aoc
r (E,F ) denote

the intersections of the set of all order continuous operators from E to F with the sets

Lr(E,F ), ONr(E,F ) and Ar(E,F ) respectively.

Theorem 7.15. Let E,F be order complete vector lattices such that E is atomless and F

is an ideal of some order continuous Banach lattice. Then ONoc
r (E,F ) and B

(
Aoc
r (E,F )

)
are orthogonal bands in Loc

r (E,F ).

7.4. Is every AM -compact operator from a vector lattice to a Banach space

narrow? The following striking example gives a negative answer even in the sense of

De�nition 1.2 concerning Köthe spaces without the assumption of absolute continuity of

the norm (cf. Proposition 2.1).

Example 7.16. There exists a bounded linear functional 9 f : L∞ → R which is not

order-to-norm continuous and not narrow.

Proof. Denote by B̂ the Boolean algebra of the Borel subsets of [0, 1] which are equal, up

to measure null sets. Let U be any ultra�lter on B̂. Then the linear functional fU : E → R

de�ned by

fU (x) = lim
A∈U

1
µ(A)

∫
A

x dµ

is obviously bounded and AM -compact. However, it is not narrow. Indeed, for each

x ∈ L∞ of the form x = 1A − 1B where [0, 1] = A tB one has fU (x) = ±1 depending of

whether A ∈ U or B ∈ U .
8in sense of De�nition 1.2, that is stronger
9hence, AM -compact
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Now we prove that fU is not order-to-norm continuous. Indeed, consider a nested

sequence (An) of members of U with µ(An) → 0. Then 1An ↓ 0, however, f (1An) = 1
for each n ∈ N.

Another example of a non-narrow continuous linear operator on L∞ was discovered by

V. Kadets (private communication). Let f ∈ L∗∞ be any non-zero multiplicative functional

(i.e. f(x · y) = f(x) · f(y) for each x, y ∈ L∞). Then it is non-narrow. Indeed, for each

A ∈ Σ one has f(1A) = f(1A · 1A) = (f(1A))2, thus, either f(1A) = 1 or f(1A) = 0.
Since f 6= 0, there exists A ∈ Σ such that f(1A) = 1. If f were narrow, then it would exist

a sign x ∈ L∞ with x2 = 1A and |f(x)| < 1. Then 1 = f(1A) = f(x2) = (f(x))2 < 1, a
contradiction.

The following questions concerning functional on L∞ are open in any sense of nar-

rowness.

Problem 7.17. Does there exist a narrow but not strictly narrow continuous linear func-

tional on L∞?

Problem 7.18. Is a sum of two narrow continuous linear functionals on L∞ narrow?

The following positive result shows that, in most natural cases, the answer to the

question asked in the title of the subsection, is a�rmative.

Theorem 7.19. Let E be an atomless order complete vector lattice and X be a Banach

space. Then every AM -compact order-to-norm continuous linear operator T : E → X is

narrow.

Now the obvious technique of the Rademacher system (see Proposition 2.1) cannot

be applied. This led to a quite involved proof in [MMyP2] (2009). In particular, it follows

that every AM -compact order-to-norm continuous linear operator T : L∞ → X is narrow.

We remark that the last fact can be proved directly in a shorter way [KMMMP] (2009).

7.5. Sketch of the proofs of two main results. To prove the main results, the

authors introduced several new notions of narrow operator which themselves may be of

interest. We are going to present the idea of proofs of Theorems 7.14 and 7.15 which

consists of several steps. First, we need some more de�nitions. For an arbitrary set J , a

series
∑
j∈J

xj of elements xj ∈ E is said to be order convergent and the family (xj)j∈J

is said to be order summable if the net (ys)s∈J<ω , ys =
∑
j∈s

xj , order converges to some

y0 ∈ E where J<ω is the net of all �nite subsets s ⊆ J ordered by inclusion. In this case

y0 is called the order sum of the series
∑
j∈J

xj and we write y0 =
∑
j∈J

xj . A series
∑
j∈J

xj

is said to be absolutely order convergent and the family (xj)j∈J is said to be absolutely

order summable if the series
∑
j∈J
|xj | order converges.

Let A be a solid subset of a vector lattice E. Denote by Abs(A) the set of all sums of

absolutely order convergent series
∑
j∈J

xj of elements xj ∈ A.

Definition 7.20. Let E,F be vector lattices with F order complete. An operator T ∈
Lr(E,F ) is said to be
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� pseudo-embedding if T ∈ Abs
(
Ar(E,F )

)
;

� pseudo-narrow if there is no non-zero disjointness preserving operator S ∈ L+
r (E,F )

with S ≤ |T |.

Our terminology �pseudo-embedding� and �pseudo-narrow operator� is explained by

two theorems of Rosenthal concerning operators in L1. One of them asserts that a non-

zero operator in L1 is a pseudo-embedding if and only if it is an almost isometrically

isomorphic embedding when restricted to a suitable L1(A) (see Theorem 7.23 below).

Another theorem implies, in particular, that an operator in L1 is narrow if and only if it

is pseudo-narrow.

The set of all pseudo-embeddings from E to F will be denoted by Lpe(E,F ). Thus,
Lpe(E,F ) = Abs

(
Ar(E,F )

)
by the de�nitions. The set of all pseudo-narrow operators

T ∈ Lr(E,F ) will be denoted by Lpn(E,F ).
Step 1. Generalization of the Kalton-Rosenthal representation theorem for operators

on L1 to vector lattices. The following theorem generalizes Rosenthal's representation

theorem for operators on L1 (Rosenthal considered his theorem as a version of Kalton's

representation theorem [Kal3] (1978), so he did not provide a proof) to vector lattices

[Ros5] (1984).

Theorem 7.21. Let E,F be vector lattices with F order complete. Then

(i) B
(
Ar(E,F )

)
= Lpe(E,F );

(ii) Ar(E,F )d = Lpn(E,F );
(iii) Lpe(E,F ) and Lpn(E,F ) are orthogonal bands.

Since Lpe(E,F ) = Abs
(
Ar(E,F )

)
is a band, it equals the set of all sums of (not

necessary absolutely) order convergent series
∑
j∈J

xj of elements xj ∈ Ar(E,F ).

So, to prove Theorem 7.14, we need to prove that an operator T ∈ Lr(E,F ) is narrow
if and only if it is pseudo-narrow (this is the most di�cult part of the proof). It is not easy

in both directions. Let us explain how it can be done for the simplest case E = F = L1.

For an operator T ∈ L(L1), by λT (t) we denote the En�o-Starbird maximal function

λT (t) = lim
n→∞

max
1≤i≤2n

∣∣T1Iin
∣∣(t), t ∈ [0, 1], where Iin =

[ i− 1
2n

,
i

2n
)
.

Theorem 7.22 (Kalton and Rosenthal, [Kal3], [Ros5]) . For an operator T ∈ L(L1) the

following conditions are equivalent

(i) T is narrow;

(ii) T is pseudo-narrow ;

(iii) λT (t) = 0 a.e. on [0, 1];
(iv) for each A ∈ B the restriction T

∣∣
L1(A)

is not an into isomorphism.

The equivalence (i)⇔(iv) is stated in Theorem 4.2 above. Condition (iii) plays an

essential role in Rosenthal's proof of the equivalence (i)⇔(ii). Conditions (iii) and (iv)

may also be used to give new de�nitions of narrow operator in di�erent contexts.

The equivalence (ii)⇔(iii)⇔(iv) can be deduced from Kalton's paper [Kal3] (1978).

The implication (iv)⇒(iii) is due to En�o and Starbird [EnSt] (1979). Finally, the equiv-
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alence of (i) with all other conditions was established by Rosenthal in [Ros5] (1984).

Observe that one of the main steps in Rosenthal's proof was the following property of

pseudo-embeddings which is evident for disjointness preserving operators and not evident

for sums of disjointness preserving operators.

Theorem 7.23 (Rosenthal, [Ros5]). Let T ∈ L(L1) be a non-zero pseudo-embedding.

Then for each ε > 0 there exists an A ∈ B+ such that the restriction S = T
∣∣
L1(A)

is an

into isomorphism with ‖S‖ ≥ ‖T‖ − ε and ‖S‖‖S−1‖ ≤ 1 + ε.

Step 2. Reducing to positive operators. Here we reduce the general case to the case of

positive narrow operators. For the sake of generality, we deal with order narrow operators.

On the other hand, the method of proof uses order continuity of operators.

Theorem 7.24. Let E,F be order complete vector lattices such that E is atomless and F

is an ideal of some order continuous Banach lattice. Then, every order continuous regular

operator T : E → F is order narrow if and only if |T | is.

Note that the domination property of narrow operators 10 in the sense of De�nition

1.2 was established earlier by Flores and Ruiz in [FlRu] (2003). In view of Proposition

7.9, one obtains the following consequence.

Corollary 7.25. Let E be an atomless order complete vector lattice and F be an order

continuous Banach lattice. Then, every order continuous regular operator T : E → F is

narrow if and only if |T | is.

Step 3. λ-narrow positive operators and conditions under which they coincide with

order narrow operators. We are going to give a new de�nition of narrow operator acting

from a vector lattice E to a vector lattice F . In general, the class of operators for which

the new de�nition is given, is incomparable with that of De�nition 7.2. But on their

intersection (i.e. when the range space is a Banach lattice) it is proved that in some cases

both de�nitions are equivalent.

For any x ∈ E+, by Πx we denote the system of all �nite sets π ⊆ E+ such that

x =
⊔
u∈π

u. For π′, π′′ ∈ Πx we write π′ ≤ π′′ provided for each u ∈ π′ there is a subset

π′′u ⊆ π′′ such that u =
⊔

v∈π′′u
v. Clearly, Πx is a directed set.

Let E,F be vector lattices with F order complete. For a linear operator T : E → F

we de�ne a function λT : E+ → F+ by setting

λT (x) = inf
π∈Πx

sup
u∈π
|Tu|. (7.1)

Since F is order complete, λT is well de�ned. Because of the similarity of the properties

of the function λT and the function introduced by En�o and Starbird in [EnSt] (1979)

and studied also by Kalton in [Kal3] (1978) and Rosenthal in [Ros5] (1984), we call it

the En�o-Starbird function of an operator T .

Definition 7.26. Let E,F be order complete vector lattices with E atomless. A linear

operator T : E → F is called λ-narrow if λT = 0.

10i.e. if 0 ≤ S ≤ T and T is narrow then S is
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Obviously, if T is regular then λT (x) ≤ λ|T |(x) for each x ∈ E+, hence if |T | is
λ-narrow then so is T .

Theorem 7.27. Let E,F be order complete vector lattices such that E is atomless and F

is an ideal of some order continuous Banach lattice. Then a positive operator T : E → F

is λ-narrow if and only if it is order narrow.

Step 4. Positive pseudo-narrow operators are exactly positive λ-narrow operators. The

most di�cult step in all the proof is to show that every positive pseudo-narrow operator

T : E → F is λ-narrow. We assume that λT (x) > 0 for some x ∈ E+, and our purpose is

to construct a disjointness preserving operator S with 0 < S ≤ T .

Theorem 7.28. Let E,F be order complete vector lattices with E atomless. Then a

positive order continuous operator T : E → F is λ-narrow if and only if it is pseudo-

narrow.

We remark that one implication here is almost obvious, as the following statement

shows.

Proposition 7.29. Let E,F be order complete vector lattices with E atomless. If a

positive operator T : E → F is λ-narrow then it is pseudo-narrow.

Proof. Suppose that T is not pseudo-narrow. Let 0 < S ≤ T be a disjointness preserving

operator and x ∈ E+ be such that Sx > 0. Then for each representation x =
n⊔
k=1

xk we

have

Sx =
n⊔
k=1

Sxk = sup
1≤k≤n

Sxk ≤ sup
1≤k≤n

Txk,

and hence, one obtains that λT (x) ≥ Sx > 0 and T is not λ-narrow.

Thus, combining the results in all steps, we obtain Theorems 7.14 and 7.15.

7.6. Some open problems on narrow operators on vector lattices. In [MMyP2]

the authors gave an a�rmative answer to Problem 7.10 for order continuous Banach

lattices, and showed that for E = F = L∞ the problem has a negative answer. So,

Problem 7.10 remains unsolved for other cases.

Problem 7.30. Is the set of all order narrow regular operators T : L∞ → L∞ a band in

the vector lattice Lr(L∞) of all regular linear operators in L∞?

Note that by Theorem 7.15, the set of all order narrow regular order continuous

operators in L∞ is a band in the vector lattice Loc
r (L∞) of all regular order continuous

linear operators on L∞.

Problem 7.31. Can one remove the condition of order continuity on T in Theorem 7.15?

Problem 7.32. Let E be an order continuous Banach lattice and T ∈ Lr(E). Is T narrow

if and only if for each band F ⊆ E the restriction T |F is not an isomorphic embedding?

Rosenthal in [Ros5] (1984) proved that this is the case for E = L1 (see Theorem 7.22).

Note that for E = Lp, 2 < p ≤ ∞, there exists a non-regular operator T ∈ L(Lp) which

is not narrow while for each band F ⊆ E the restriction T |F is not an isomorphic
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embedding. Indeed, the composition T = S ◦ I of the inclusion operator I : Lp → L2 and

an isomorphic embedding S : L2 → Lp has the desired properties.

One of the most interesting problems in the isomorphic theory of Banach spaces that

remains still unsolved is whether every in�nite-dimensional complemented subspace of L1

is isomorphic to either L1, or `1? On the other hand, if 1 < p <∞, p 6= 2 then there are a

lot of isomorphic types of complemented subspaces of Lp. Let us say that a subspace E of

Lp is regularly complemented if there is a regular projection of Lp onto E. The following

problem extends the mentioned above problem to the setting of Lp-spaces.

Problem 7.33. Let 1 ≤ p < ∞, p 6= 2. Is every in�nite-dimensional regularly comple-

mented subspace of Lp isomorphic to either Lp, or `p?

8. Hereditarily narrow operators. Di�erent facts concerning the Daugavet property

for L1 give some further developments of the famous Peªczy«ski theorem on the im-

possibility of embedding the space L1 into a Banach space with an unconditional basis.

V. Kadets and R. Shvidkoy (1999) proved that for any Banach space X any into iso-

morphism J : L1 → X cannot be represented as a pointwise unconditionally convergent

series of compact operators [KaSh] (1999). Moreover, if a Banach space has the Dau-

gavet property relative to a linear subspace M⊆ L(X) then the identity of X cannot be

represented as a pointwise unconditionally convergent series of operators in M [KaPo3]

(2003). In [KaPo3] one can �nd the following statement.

Theorem 8.1. A pointwise unconditionally convergent series of narrow operators in

L(L1) is narrow.

The following re�nement of the notion of narrow operator introduced by V. Kadets,

Kalton andWerner [KKW] (2005) allows one to get much more in this direction (originally

it was applied for operators on Lp).

Definition 8.2. Let E be a Köthe Banach space on a �nite atomless measure space. An

operator T ∈ L(E,X) is called hereditarily narrow if for each atomless σ-algebra Σ1 ⊆ Σ
of subsets of any set A ∈ Σ+ the restriction of T to E(Σ1) is narrow.

Of course, each hereditarily narrow operator is narrow, however the converse is not

true: the conditional expectation operator with respect to an atomless sub- σ-algebra is a

counterexample. If every operator T ∈ L(E,X) is narrow then clearly, every operator T ∈
L(E,X) is hereditarily narrow. Proposition 2.1 (Proposition 2.2) yields that if the norm

of E is absolutely continuous then each AM -compact (each Dunford-Pettis) operator

T ∈ L(E,X) is hereditarily narrow. If there exists a disjoint weakly null normalized

sequence (xn) in E then the conditional expectation operator with respect to the purely

atomic sub-σ-algebra generated by (suppxn) is a hereditarily narrow operator which is

not Dunford-Pettis. In the space L1 (which contains no such a sequence) an analogous

example gives the so-called biased coin convolution operator constructed by Rosenthal

in [Ros2] (1975). Indeed, this operator S ∈ L(L1) is L1-singular (and by Theorem 4.2 is

hereditarily narrow) and satis�es Sx = x for any element x ∈ R of the subspace R of L1

spanned by the Rademacher system R = [rn] (and hence is not Dunford-Pettis).
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The notion of hereditarily narrow operator is a re�nement of the notion of narrow

operator in the sense of the following two results.

Proposition 8.3 ([KKW]). The sum of two hereditarily narrow operators in a Köthe

Banach space is hereditarily narrow.

Note that the proof of this proposition in [KKW], which concerns the Lp-spaces,

makes sense for any Köthe Banach space.

We remark that Theorem 8.1 trivially holds for hereditarily narrow operators. More-

over, the following strong version of it holds.

Theorem 8.4 ([KKW]). Let X be a Banach space. Then the sum of a pointwise uncon-

ditionally convergent series of hereditarily narrow operators in L(L1, X) is hereditarily

narrow.

Acknowledgments. The author thanks V. M. Kadets, A. M. Plichko and the referee
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