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Abstract. Lax operator algebras constitute a new class of infinite dimensional Lie algebras of

geometric origin. More precisely, they are algebras of matrices whose entries are meromorphic

functions on a compact Riemann surface. They generalize classical current algebras and current

algebras of Krichever-Novikov type. Lax operators for gl(n), with the spectral parameter on

a Riemann surface, were introduced by Krichever. In joint works of Krichever and Sheinman

their algebraic structure was revealed and extended to more general groups. These algebras are

almost-graded. In this article their definition is recalled and classification and uniqueness results

for almost-graded central extensions for this new class of algebras are presented. The explicit

forms of the defining cocycles are given. If the finite-dimensional Lie algebra on which the Lax

operator algebra is based is simple then, up to equivalence and rescaling of the central element,

there is a unique non-trivial almost-graded central extension. Some results are joint work with

Oleg Sheinman.

1. Introduction. Classical current algebras (also called loop algebras) and their central
extensions, the affine Lie algebras, are of fundamental importance in quite a number
of fields in mathematics and its applications. These algebras are examples of infinite
dimensional Lie algebras which are still tractable. They constitute the subclass of Kac-
Moody algebras of untwisted affine type [1].

In the usual approach they are presented in a purely algebraic manner. But there is a
very useful geometric description behind. In fact, the classical current algebras correspond
to Lie algebra valued meromorphic functions on the Riemann sphere (i.e. on the unique
compact Riemann surface of genus zero) which are allowed to have poles only at two
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fixed points. If this rewriting is done, a very useful generalization (e.g. needed in string
theory, but not only there) is to consider the objects over a compact Riemann surface of
arbitrary genus with possibly more than two points where poles are allowed. Such objects
(vector fields, functions, etc.) and central extensions for higher genus with two possible
poles were introduced by Krichever and Novikov [4] and generalized by myself to the
multi-point situation [8]. These objects are of importance in a global operator approach
to Conformal Field Theory [11], [12], [13]

More generally, the current algebra resp. their central extensions, the affine alge-
bras, correspond to infinite dimensional symmetries of systems. Moreover, they define
objects over the moduli space of Riemann surfaces with marked points (Wess-Zumino-
Novikov-Witten (WZNW) models, Knizhnik-Zamolodchikov (KZ) connections, etc., see
e.g. [12]).

Their use, e.g. in quantization, regularizations, Fock space representation, force us
to consider central extensions of these algebras. Note that the well-known Heisenberg
algebra is a central extension of a commutative Lie algebra. For the classical current
algebras the Kac-Moody algebras of affine type are obtained via central extensions.

More recently, a related class of current algebra appeared, the Lax operator algebras.
Again these are algebras of current type associated to finite-dimensional Lie algebras and
to compact Riemann surfaces of arbitrary genus, resp. to smooth projective curves over
the complex numbers. They find applications in the theory of integrable systems and are
connected to the moduli space of bundles over compact Riemann surfaces.

In 2002 Krichever [2], [3] studied gl(n) Lax operators on higher genus Riemann sur-
faces. In 2007 Krichever and Sheinman [5] uncovered their algebraic structure not only
for gl(n) but also for more general classes of finite-dimensional algebras, e.g. for sl(n),
so(n) and sp(2n).

Krichever-Novikov current type algebras consist of Lie algebra valued meromorphic
functions on a fixed compact Riemann surface (of genus g) with possible poles at a finite
set of points. The orders of the poles are not restricted. For the Lax operator algebra
associated to gl(n) the elements are allowed to have additional poles of maximal order
one at a finite set of n · g additional points γs, the weak singularities. To each point γs
a vector αs ∈ Cn is assigned which enters the formulation of the required form of the
expansion of the element at the point γs, see Section 3. The appearance of this additional
poles is due to the fact, that the Lax operators operate on functions representing sections
of a non-trivial rank n vector bundle. The additional data needed to describe the algebra
are the Tyurin parameters [18] appearing in the context of the moduli space of vector
bundles over Riemann surfaces. In this context the Krichever-Novikov current algebra for
gl(n) corresponds to the trivial rank n vector bundle.

The classical counterparts of these algebras are graded algebras. Such a grading is
important e.g. in the context of representations, for example to define highest weight
representations. In higher genus the Krichever-Novikov type algebras are not graded, but
only almost-graded (see Definition 2.1). Fortunately the almost-gradedness is enough for
the constructions in representation theory. It turns out that Lax operator algebras are
also almost-graded.
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Starting from an almost-graded Lie algebra those central extensions are of particular
interest for which the almost-grading can be extended to the central extension. Classifica-
tion results for almost-graded extensions for the Krichever-Novikov current algebras are
given in [10]. For the Krichever-Novikov current algebras associated to finite-dimensional
simple Lie algebras there is up to equivalence of the extension and rescaling of the central
element only one nontrivial almost-graded central extension.

For the Lax operator algebras in joint work with Oleg Sheinman we classified almost-
graded central extensions. Again it turns out that in the case that the associated simple
finite-dimensional Lie algebra is sl(n), so(n) or sp(2n) the almost-graded central extension
is essentially unique. We give its explicit form. By requiring a certain invariance under
the action of vector fields (L-invariance, see Definition 6.3) we even fix its representing
two-cocycle in its cohomology class. The results with complete quite involved technical
proofs appeared in [14]. It is the goal of this contribution to report on these results.

2. Krichever-Novikov type current algebras. Let us first consider the classical sit-
uation. We fix g a finite-dimensional complex Lie algebra. The classical current algebra
g (sometimes also called loop algebra) is obtained by tensoring g by the (associative and
commutative) algebra C[z, z−1] of Laurent polynomials, i.e. g = g ⊗ C[z, z−1] with the
Lie product

[x⊗ zn, y ⊗ zm] := [x, y]⊗ zn+m, x, y ∈ g, n,m ∈ Z.

By setting deg(x ⊗ zn) := n the Lie algebra g becomes a graded algebra. Clearly, g is
an infinite dimensional Lie algebra. These algebras appear e.g. as symmetry algebras of
systems with infinitely many independent symmetries [1]. In applications quite often one
is forced to consider central extensions of them. And we will do so also further down.

To understand in which sense the algebras of Krichever-Novikov type are a higher
genus version of both the classical current algebras and their central extensions we first
have to geometrize the classical situation. The associative algebra of Laurent polynomials
C[z, z−1] can be described as the algebra consisting of those meromorphic functions on
the Riemann sphere (resp. the complex projective line P1(C)) which are holomorphic
outside z = 0 and z = ∞ (z the quasi-global coordinate). The current algebra g can be
interpreted as the Lie algebra of g-valued meromorphic functions on the Riemann sphere
with possible poles only at z = 0 and z =∞.

The Riemann sphere is the unique compact Riemann surface of genus zero. From
this point of view the next step is to take Σ any compact Riemann surface of arbitrary
genus g and an arbitrary finite set A of points where poles of the meromorphic objects
will be allowed. In this way we obtain the higher genus (multi-point) current algebra as
the algebra of g-valued functions on X with only possible poles at A. But we will need
gradings, and later on also central extensions.

Some “grading” is essential for infinite-dimensional Lie algebras to construct highest-
weight representations, vacuum representations, etc. In fact, for higher genus and even
for genus zero if we allow more than two points for possible poles the algebras under
consideration will not be graded in the usual sense. Fortunately, a weaker concept, an
almost-grading will be enough.
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Definition 2.1. Let V be an arbitrary Lie algebra. It is called almost-graded if

1. V = ⊕m∈ZVm as vector space,
2. dimVm <∞, ∀m ∈ Z,
3. there exist L1, L2 ∈ Z such that

[Vk, Vm] ⊆
k+m+L2⊕

h=k+m−L1

Vh, ∀k,m ∈ Z.

An analogous definition works for associative algebras and for modules over almost-graded
algebras.

To introduce such a grading we split the set of points A where poles are allowed into
two non-empty disjoint subsets I and O, A = I ∪O. Let K be the number of points in I.
The points in I are called in-points, the points in O out-points.1

Let A be the associative algebra of those functions which are meromorphic on Σ and
holomorphic outside of A. In some earlier work [8] I constructed a certain adapted basis
of A

{An,p | n ∈ Z, p = 1, . . . ,K}.

The functions An,p are uniquely fixed by giving certain vanishing orders at the points in
I and O and some normalization conditions. We will not need the exact conditions in the
following. Here I only give the vanishing order at I,

ordPi
(An,p) = n+ 1− δpi , ∀Pi ∈ I.

Of course, a positive vanishing order means a zero, a negative a pole.
We set An := 〈An,p | p = 1, . . . ,K〉 for the K-dimensional subspace of A. We call the

elements of An homogeneous elements of degree n. Clearly, A = ⊕n∈ZAn and in [8] it is
shown that there exists a constant L such that

An ·Am ⊆
n+m+L⊕
h=n+m

Ah, ∀n,m ∈ Z.

Obviously, Definition 2.1 is fulfilled and we obtain an almost-graded structure for the
algebra A.

For genus zero and I = {0}, O = {∞} the prescription yields An = zn and A =
C[z, z−1]. In this case the algebra is graded. Note that in the two-point case we have
K = 1 and we will drop the second subscript p in An,p.

Remark 2.2. The notion of almost-gradedness was introduced by Krichever and Novikov
[4] (they called it quasi-gradedness) and they constructed such an almost-grading in the
higher genus and two point case. To find an almost-grading in the multi-point case is
more difficult and has been done in [7], [8]. The constant L depends in a known manner
on the genus g and the number of points in I and O.

1In the interpretation of string theory, where the Riemann surface Σ corresponds to the
world-sheet of the string, I corresponds to the entry points of incoming free strings and O to
the emission points of outgoing free strings.
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Definition 2.3. Given a finite-dimensional Lie algebra g, the higher genus multi-point
current algebra g is the tensor product g = g⊗A with Lie product

[x⊗ f, y ⊗ g] := [x, y]⊗ (f · g)

and almost-grading
g =

⊕
n∈Z

gn, gn := g⊗An.

For g = 0 and I = {0}, O = {∞} this gives exactly the classical current algebras. See
[4, 16, 10].

Additionally, we will need L, the Lie algebra of meromorphic vector fields on Σ holo-
morphic outside of A. This algebra is again an almost-graded algebra. The grading is
given with the help of a certain adapted basis [8]

{en,p | n ∈ Z, p = 1, . . . ,K}.

The conditions for en,p are similar to the conditions for the An,p. Here we only note

ordPi(en,p) = n+ 2− δpi , ∀Pi ∈ I.

For genus zero and I = {0}, O = {∞} we get en,p = zn+1 d
dz , and obtain in such a

way as L the Witt algebra (sometimes also called the Virasoro algebra without central
extension).

3. Lax operator algebras. For higher genus there is another kind of current type
algebras given by the Lax operator algebras of higher genus. They are related to integrable
systems and to the moduli space of semi-stable framed vector bundles over Σ. Again let
Σ be a compact Riemann surface of genus g and A a finite subset of points divided
into two nonempty disjoint subset A = I ∪ O. For simplicity we consider here only the
two-point situation I = {P+} and O = {P−}, but the results are true in the more general
setting [15].

For n ∈ N we fix n · g additional points on Σ

W := {γs ∈ Σ \ {P+, P−} | s = 1, . . . , ng}.

To every point γs we assign a vector αs ∈ Cn. The system

T := {(γs, αs) ∈ Σ \ {P+, P−} × Cn | s = 1, . . . , ng}

is called a Tyurin data. This data is related to the moduli of semi-stable framed vector
bundles over Σ [18], see Section 4.

We fix local coordinates z± at P± and zs at γs, s = 1, . . . , ng. Let g be one of the
matrix algebras gl(n), sl(n), so(n), sp(2n), or s(n), where the latter denotes the algebra
of scalar matrices.

We consider meromorphic functions

L : Σ → g, (1)

which are holomorphic outside W ∪ {P+, P−}, have at most poles of order one (resp. of
order two for sp(2n)) at the points in W , and fulfil certain conditions (described below)
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at W depending on the Tyurin data T and the Lie algebra g. The singularities at W
(resp. in abuse of notation the points in W themselves) are called weak singularities.

In this section we only give the conditions for the case g = gl(n), sl(n), and s(n). The
conditions for so(n) and sp(2n) are given in Section 8. Let T be fixed. For s = 1, . . . , ng
we require that there exist βs ∈ Cn and κs ∈ C such that the function L has an expansion
at γs ∈W of the form

L(zs)| =
Ls,−1

zs
+ Ls,0 +

∑
k>0

Ls,kz
k
s (2)

with
Ls,−1 = αsβ

t
s, tr(Ls,−1) = βtsαs = 0, Ls,0 αs = κsαs. (3)

In particular, if αs, and βs 6= 0 the matrix Ls,−1 is a rank 1 matrix, and αs is an
eigenvector of Ls,0. In [5] it is shown that the requirements (3) are independent of the
chosen coordinates zs and that the set of all such functions constitutes an associative
algebra under the point-wise matrix multiplication. We denote it by g.2 As Krichever
and Sheinman [5] showed g will always be a Lie algebra under the matrix commutator.
The main point is to verify that the pole orders at the weak singularities do not increase
and that the expansion is of the required type. (Note that the coefficients in the expansion
(2) are matrices and the conditions (3) have to be used in the verification.)

Remark 3.1. If αs = 0 for all s there are no additional singularities and we recover the
usual Krichever-Novikov current algebras.

Remark 3.2. For the subalgebra sl(n) of gl(n) by (1) all matrices Ls,k in (2) have to be
traceless. The conditions (3) stay the same.

Remark 3.3. For the subalgebra s(n) all matrices have to be scalar matrices. As Ls,−1 is
traceless hence, either αs = 0 or βs = 0. In both cases there is no pole at γs. Furthermore
the eigenvalue condition for Ls,0 is also true. Hence s(n) coincides with the Krichever-
Novikov function algebra, i.e.

s(n) ∼= s(n)⊗A ∼= A,

as associative algebras.

In fact we have a splitting gl(n) = s(n)⊕ sl(n) given by

X 7→
(

tr(X)
n

In , X −
tr(X)
n

In

)
,

where In is the n×n unit matrix. This splitting induces a corresponding splitting for the
Lax operator algebra gl(n):

gl(n) = s(n)⊕ sl(n).

2With the intent not to overload the notation we use g for any of the current algebra versions
associated to g. It will be clear from the context whether it is a classical, a Krichever-Novikov,
or a Lax operator algebra.
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3.1. The almost-grading. In contrast to the Krichever-Novikov situation the almost-
grading of A cannot be directly used to introduce an almost-grading for the Lax operator
algebras (with αs 6= 0). But similar ideas for introducing the almost-grading in A and
L work here too. For every m ∈ Z a subspace gm inside g is defined as the subspace
where non-zero elements have matrix expansions of order m at P+, and a corresponding
order at P− forcing the elements to be essentially unique. In [5] it is shown that g is
almost-graded. More precisely, we have

g =
⊕
m∈Z

gm, dim gm = dim g, [gm, gk] ⊆
m+k+M⊕
h=m+k

gh,

with a constant M independent of m and k. In fact, for generic situations M = g, the
genus of Σ, will work. To give an idea, for generic m the element L ∈ g, L 6= 0 lies in gm
if there exists X+, X− ∈ g \ {0} with

L(z+)| = X+z
m
+ +O(zm+1

+ ), L(z−)| = X−z
−m−g
− +O(z−m−g+1

− ). (4)

As dim gm = dim g we obtain that given X ∈ g there exists a unique Xm ∈ gm ⊂ g such
that (see also [14, Prop. 2.4])

Xm(z+)| = X · zm+ +O(zm+1
+ ). (5)

4. The geometric meaning of Tyurin parameters. Despite the fact that in this
article I will not use the geometric relevance of Tyurin parameters in relation to the
moduli space of bundles, it might be interesting to recall this background information.
The reader not interested in this connection might directly jump to the next section.

Let Σ be a compact Riemann surface (or in the language of algebraic geometry a
projective smooth curve over C) of genus g. Fix a number n ∈ N. Given a rank n

holomorphic (resp. algebraic) vector bundle E its determinant detE is defined as detE =
∧nE. The degree degE of the bundle E is defined as deg(det(E)). Recall that for a line
bundle M over a Riemann surface the degree of M can be determined by taking a global
meromorphic section of M and counting the number of zeros minus the number of poles
of this section.

For vector bundles over compact Riemann surfaces we have the Hirzebruch-Riemann-
Roch formula

dim H0(Σ, E)− dim H1(Σ, E) = degE − rk(E)(g − 1). (6)

If one wants to construct a moduli space for vector bundles one has to restrict the set
of vector bundles to the subset of stable, or more general semi-stable bundles.

Definition 4.1. A bundle E over a projective smooth curve is called stable if for all
subbundles F 6= E one has

degF
rkF

<
degE
rkE

. (7)

The bundle E is called semi-stable if in (7) the strict inequality < is replaced by ≤.

In the following we consider bundles E which are of rank n and degree n · g. If we
evaluate (6) for such bundles we obtain the value n on the left hand side. For a generic
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semi-stable bundle E one has dim H1(Σ, E) = 0, hence we get

dim H0(Σ, E) = n.

If we choose a basis S := {s1, s2, . . . , sn} of the space of global holomorphic sections of
E, their exterior power is a global holomorphic section

s1 ∧ s2 ∧ · · · ∧ sn ∈ H0(Σ,detE).

The zeros of this section are exactly the points P ∈ Σ for which the set S fails to be
a basis of the fibre of E at the point P . This fibre is denoted by EP . As degE = ng

there exist (counted with multiplicities) exactly ng such points. For a generic choice of
the set of sections, all zeros will be simple. Hence, we will obtain ng such points. They
correspond exactly to the weak singularities W appearing in the definition of the Lax
operator algebras. Accordingly we denote the zero points by γs, s = 1, . . . , ng.

Furthermore, as the zero is of order one at such a γs the sections evaluated at γs span
an (n− 1)-dimensional subspace of Eγs . We have relations

n∑
i=1

αs,isi(γs) = 0, s = 1, . . . , ng.

In this way to every γs a vector αs ∈ Cn, αs 6= 0 can be assigned. This vector is unique
up to multiplication by a non-zero scalar, hence unique as element [αs] ∈ Pn−1(C). Again
these vectors are exactly the vectors used in the definition of the Lax operator algebras.
If one checks the conditions (3) one sees immediately that they are independent of a
rescaling. Hence only the projective class [αs] matters.

Obviously everything depends on the set S of basis elements. The choice of such a
basis is called a framing of the bundle E. In the way described above the space of Tyurin
parameters parameterizes an open dense subset of semi-stable framed vector bundles of
rank n and degree ng. Note also that given such a bundle E with fixed set S of basis
elements of H0(Σ, E) it can be trivialized over Σ \W .

Associated to these moduli spaces integrable hierarchies of Lax equations can be
constructed. See [2] and [17] for results in this direction.

5. Central extensions. By the applications in quantum theory (but not only there)
we are forced to consider central extensions of the introduced algebras. An example how
they appear is given by regularization of a not well-defined action. The regularization
makes the action well-defined but now it is only a projective action. To obtain a linear
action we have to pass to a suitable central extension of the Lie algebra.

In the following definition g could be any Lie algebra of current type or even more
general any almost-graded Lie algebra. Central extensions are given by Lie algebra 2-
cocycles with values in the trivial module C. Recall that such a 2-cocycle for g is a bilinear
form γ : g× g→ C which is (1) antisymmetric and (2) fulfils the cocycle condition

γ([L,L′], L′′) + γ([L′, L′′], L) + γ([L′′, L], L′) = 0, ∀L,L′, L′′ ∈ g.

A 2-cocycle γ is a coboundary if there exists a linear form φ on g with

γ(L,L′) = φ([L,L′]), ∀L,L′ ∈ g.

Two cocycles γ and γ′ are cohomologous if their difference is a coboundary.
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Given a 2-cocycle γ for g, the associated central extension ĝγ is given as vector space
direct sum ĝγ = g⊕ C with Lie product given by

[L̂, L̂′] = [̂L,L′] + γ(L,L′) · t, [L̂, t] = 0, L, L′ ∈ g.

Here we used L̂ := (L, 0) and t := (0, 1). Vice versa, every central extension

0→ C i2−→ ĝ
p1−→ g→ 0

defines a 2-cocycle γ : g → C after choosing a (linear) section s : g → ĝ of p1 by the
condition

[s(L), s(L′)]− s([L,L′]) = (0, γ(L,L′)).

Different sections s1 and s2 give cohomologous 2-cocycles γ1 and γ2. Two central exten-
sions ĝγ and ĝγ′ are equivalent if the defining cocycles γ and γ′ are cohomologous.

With a view to applications we are only interested in those central extensions which
allow the extension of the almost-grading of g to the central extension ĝγ by assigning to
the central element t a certain degree and using the degree for g for the subspace (g, 0)
in ĝ. This is possible if and only if our defining cocycle γ is local in the following sense:

Definition 5.1. A cocycle γ for the almost-graded Lie algebra g is local if there exist
constants M1,M2 such that

γ(gm, gk) 6= 0⇒M1 ≤ m+ k ≤M2, ∀m, k ∈ Z.

A central extension obtained by a local cocycle and with the extended grading is called
an almost-graded central extension of g.

The question is: how to construct cocycles? For the current algebras we first fix 〈., .〉
an invariant symmetric bilinear form on the finite-dimensional Lie algebra g. Recall that
invariance means that

〈[a, b], c〉 = 〈a, [b, c]〉 for all a, b, c ∈ g.

For a simple Lie algebra the Cartan-Killing form is the only such form up to rescaling.
Moreover it is non-degenerate. For sl(n) the Cartan-Killing form is given by α(A,B) =
tr(AB).

For the classical current algebras associated to a simple finite-dimensional Lie algebra
with Cartan-Killing form 〈., .〉 a non-trivial central extension ĝ = g⊕ Ct is defined by

[x⊗ zn, y ⊗ zm] = [x, y]⊗ zn+m − 〈x, y〉 · n · δ−mn · t.

To avoid cumbersome notation I dropped the ˆ here. It is called the (classical) affine
Lie algebra associated to g. Another name is untwisted affine Lie algebra of Kac-Moody
type [1]. By setting deg t := 0 (and using n = deg(x⊗ zn)) the affine algebra is a graded
algebra. The cocycle

γ(x⊗ zn, y ⊗ zm) = −〈x, y〉 · n · δ−mn
is obviously local. Indeed for g simple it is the only non-trivial extension up to equivalence
and rescaling.
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For the usual Krichever-Novikov algebras g⊗A a 2-cocycle can be given by

γC(x⊗ f, y ⊗ g) := 〈x, y〉 1
2πi

∫
C

fdg,

where C is a closed curve on Σ [10].
The cocycles depend crucially on the choice of the integration path C and we might

obtain different non-cohomologous cocycles, hence non-equivalent central extensions. But
recall that we are mainly interested in local cocycles. There is a special class of integration
cycles, the so called separating cycles Cs, which separate the points in I from the points
in O with multiplicity one. As all separating cycles are homologous the value of the
integration does not depend on the separating cycle we take. In particular, we could
take circles around the points in I, hence calculate the integral using residues there. In
[10, Theorem 4.6] a complete classification of local cohomology classes, i.e. classes which
admit at least one representing element which is local, is given for the case of reductive
Lie algebras g. In this way a classification of almost-graded central extensions of the
Krichever-Novikov current algebras is obtained. In particular, for g simple there is only
one non-trivial almost-graded extension up to equivalence and rescaling. Let me stress
the fact that without the condition of locality of the cocycle the statement would be
wrong.

6. Central extensions for Lax operator algebras. For the Lax operator algebras we
obviously have the problem that differentiation of our objects will increase the pole order
at the weak singularities. We will not stay in the algebra. The deeper reason for this is
that the objects are not really functions but representing functions of sections of a bundle.
To correct this we need a connection ∇ and have to take the covariant derivative. It will
be defined with the help of a connection form ω. This form is a g-valued meromorphic
1-form, holomorphic outside P+, P− and W , and with prescribed behavior at the points
in W . For γs ∈ W with αs = 0 the requirement is that ω is also regular there. For the
points γs with αs 6= 0 we require that it has the expansion

ω(zs)| =

(
ωs,−1

zs
+ ωs,0 +

∑
k>1

ωs,kz
k
s

)
dzs.

For gl(n) we require that there exist β̃s ∈ Cn and κ̃s ∈ C such that

ωs,−1 = αsβ̃
t
s, ωs,0 αs = κ̃sαs, tr(ωs,−1) = β̃tsαs = 1.

Note that compared to (3) only the last condition was modified. These conditions were
introduced in [2], [5], see also [14]. We will even require that ω is holomorphic at the
point P+ (resp. at the points in I). As we allow poles at the point P− (resp. at the points
in O) such an ω will always exist.

The induced connection, resp. covariant derivative for the algebra will be given by

∇(ω) = d+ [ω, .], ∇(ω)
e = dz(e)

d

dz
+ [ω(e), . ].

Here e is a vector field from L.
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Remark 6.1. For the subalgebras sl(n) and s(n) we can take the same ω as for gl(n). The
covariant derivative will respect the subalgebras. In fact for the scalar algebra ∇(ω) = d.
For the other algebras see Section 8.

Proposition 6.2 ([14]). The covariant derivative ∇(ω)
e acts as a derivation on g and

makes g to an almost-graded Lie module over L.

In [14] the following 2-cocycles for g were given

γ1,ω,C(L,L′) :=
1

2πi

∫
C

tr(L · ∇(ω)L′), L, L′ ∈ g, (8)

and

γ2,ω,C(L,L′) :=
1

2πi

∫
C

tr(L) · tr(∇(ω)L′), L, L′ ∈ g. (9)

Here C is an arbitrary closed path in Σ. Indeed these are cocycles. The cocycle γ2,ω,C

does not depend on ω and will vanish for g 6= gl(n), s(n). Two cocycles γ1,ω,C and γ1,ω′,C

with different connection forms ω and ω′ will be cohomologous.

Definition 6.3. Let the action of L on g be given via ∇(ω). A cocycle γ is called
L-invariant if

γ(∇(ω)
e L,L′) + γ(L,∇(ω)

e L′) = 0, ∀e ∈ L. (10)

The 2-cocycles (8), (9) are L-invariant.

The cocycles depend crucially on the choice of the integration path C. As in the
Krichever-Novikov case we are interested only in local cocycles. Hence, we take again the
separating cycles Cs as C . The integral does not depend on the separating cycle we take
(see [14, Prop. 3.6]). Note as here we have additional poles “between I and O” there is
indeed something to prove. The integral over Cs can be determined by calculating the
residue at P+ (resp. at P−). Indeed, for C = Cs the cocycle (8) in a modified form can
already be found in [5].

If we take a separating cycle as integration path we drop the reference to Cs for the
cocycle, i.e. we use γ1,ω and γ2.

Proposition 6.4 ([14]). The cocycles γ1,ω, and γ2 are L-invariant local cocycles.

But what about the opposite, i.e. is every local and L-invariant cocycle a linear com-
bination of these two cocycles? One of the main results of [14] is that this is true. To
formulate the results we need to introduce the following convention. A cohomology class
will be called local, resp. L-invariant if it admits a representing cocycle which is local,
resp. L-invariant. This does not imply that all representing cocycles will be of this type.

Theorem 6.5 ([14, Thm. 3.8]).

(a) If g is simple (i.e. g = sl(n), so(n), sp(2n)) then the space of local cohomology
classes for g is one-dimensional. If we fix any connection form ω then the space will be
generated by the class of γ1,ω. Every L-invariant (with respect to the connection ω) local
cocycle is a scalar multiple of γ1,ω.

(b) For g = gl(n) the space of local cohomology classes which are L-invariant having
been restricted to the scalar subalgebra is two-dimensional. If we fix any connection form
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ω then the space will be generated by the classes of the cocycles γ1,ω and γ2. Every L-
invariant local cocycle is a linear combination of γ1,ω and γ2.

Corollary 6.6. Let g be a simple classical Lie algebra and g the associated Lax oper-
ator algebra. Let ω be a fixed connection form. Then in each local cohomology class [γ]
there exists a unique representative γ′ which is local and L-invariant (with respect to ω).
Moreover, γ′ = αγ1,ω, with α ∈ C.

Remark 6.7. By this corollary for g with g simple every local cohomology class will
be L-invariant. This is not true for gl(n), due to its abelian part s(n). For s(n) ∼= A
the coboundaries are zero and the cocycle condition reduces to the antisymmetry of the
bilinear form. Hence it is possible to write down a lot of different local cocycles which
are not equivalent. Only by the L-invariance the cocycle will be uniquely fixed up to
multiplication by a scalar. As explained in [9] L-invariance is a natural condition as it is
automatically true for those representations of A which are in fact representations of the
larger algebra of differential operators of degree ≤ 1.

Remark 6.8. The notion of L-invariance should be compared to the notion of S1-
invariant cocycles for the classical loop algebras [6].

7. Some ideas of the proof. The proofs are technically quite involved and can be
found in [14]. Nevertheless I want to give some of the principal ideas.

(a) We start with a local, L invariant cocycle and use the almost-graded L-module
structure to show that everything can be reduced to level zero. This should be understood
in the following sense. Let Lm and L′k be homogenous elements of degree m and k

respectively, then the level of the pair (Lm, L′k) is the sum of their degrees m + k. We
show that if the level l = m + k 6= 0 the cocycle values for pairs of elements of level
l can be linearly expressed by values of the cocycle evaluated for pairs at higher level
with universal coefficients only depending on the algebra g. By locality the cocycle values
are zero for high enough level. Hence, they will vanish for all levels l > 0. Moreover, by
recursion their values at level l < 0 are fixed by knowing the values at level zero. See
below for some more details on this step.

(b) Next we show that for the level zero the cocycle under consideration will be a
linear combination of the cocycles γ1,ω and γ2. Hence they will coincide everywhere. This
even gives an identification on the cocycle level, not only on the cohomology class level.

(c) The abelian part of the algebra is now covered, as we put L-invariance into
the requirement. For the simple part, we have to show that in every cohomology class
there is an L-invariant cocycle. To show this we consider the Chevalley generators and
the Chevalley-Serre relations of the finite-dimensional simple Lie algebra g and use the
almost-graded structure inside g and the boundedness from above of the cocycle. We make
appropriate cohomological changes and end up with the fact that everything depends
linearly on only one single cocycle value at level zero. In fact everything is uniquely fixed
with respect to the value of γ(Hα

1 , H
α
−1) where α is one (arbitrary) fixed simple root and

Hα the corresponding generator in the Cartan subalgebra. Hence the space is at most
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one-dimensional. But γ1,ω is a local and L-invariant cocycle which is not a boundary and
we get the result. As a side effect we obtain that in every local cohomology class (for g

simple) there is a unique L-invariant representing cocycle.

In the following I will indicate for the interested reader some more facts about part
(a) above. In particular I want to show the usage of the almost-grading.

Let {Xr | r = 1, . . . ,dim g} be a basis of the finite-dimensional Lie algebra. As
mentioned earlier we can find elements {Xr

n | r = 1, . . . ,dim g} in g which are of order
n at the point P+ and start with leading matrix coefficient Xr, see (5). We have the
decomposition g = ⊕n∈Zgn into subspaces of homogenous elements of degree n where the
subspace gn is generated by the basis {Xr

n | r = 1, . . . ,dim g}. The vector field en ∈ L of
degree n starts with order n+ 1 at the point P+. By Proposition 6.2 the algebra g is an
almost-graded module over L. Calculations in local coordinates yield

∇(ω)
ek
Xr
n = nXr

n+k + L, (11)

where L is an element of g of leading order ≥ n+k+1 at P+. Recall that we have chosen
our connection form to be holomorphic at the point P+.

For a cocycle γ evaluated for pairs of elements of level l we will use the symbol ≡ to
denote that the expressions are the same on both sides of an equation up to universal
expressions in the values of γ at higher level. This has to be understood in the following
strong sense: ∑

αnr,sγ(Xr
n, X

s
l−n) ≡ 0, αnr,s ∈ C

means a congruence modulo a linear combination of values of γ at pairs of basis elements
of level l′ > l. The coefficients of that linear combination, as well as the αnr,s, depend only
on the structure of the Lie algebra g and do not depend on γ.

By the L-invariance (10) we have

γ(∇(ω)
ep
Xr
m, X

s
n) + γ(Xr

m,∇(ω)
ep
Xs
n) = 0.

Using the almost-graded structure (11) we obtain the formula

mγ(Xr
p+m, X

s
n) + nγ(Xr

m, X
s
n+p) ≡ 0, (12)

valid for all n,m, p ∈ Z.
If we set p = 0 in (12) then we obtain

(m+ n)γ(Xr
m, X

s
n) ≡ 0. (13)

Hence, for the level (m + n) 6= 0 everything is determined by the values at higher level.
This implies in particular that if a cocycle is bounded from above it will be automatically
bounded by zero and if it vanishes at level zero it will vanish identically.

By evaluating (12) for suitable values for m, p, k and using the fact that all values in
levels greater than zero vanish we obtain

γ(Xr
m, X

s
0) = 0, ∀m ≥ 0.

γ(Xr
n, X

s
−n) = n · γ(Xr

1 , X
s
−1), ∀m ∈ Z.

γ(Xr
1 , X

s
−1) = γ(Xs

1 , X
r
−1).

Hence everything depends only on the values of γ(Xr
1 , X

s
−1), with r, s = 1, . . . ,dim g.
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Let X ∈ g. We denote by X̃n any element in g with leading term Xzn+ at P+. We
define

ψγ : g× g→ C ψγ(X,Y ) := γ(X̃1, Ỹ−1). (14)

As the cocycle vanishes for levels greater than zero, ψγ does not depend on the choice
of X̃1 and Ỹ−1. Obviously, it is a bilinear form on g. Moreover in [14] we show that it is
symmetric and invariant.

As the cocycle γ is fixed by the values γ(Xr
1 , X

s
−1), and they are fixed by the bilinear

map ψγ we obtain:

Theorem 7.1 ([14]). Let γ be an L-invariant cocycle for g which is bounded from above
by zero. Then γ is completely fixed by the associated symmetric and invariant bilinear
form ψγ on g defined via (14).

In the case of a simple Lie algebra we are done, as every such form is a multiple of the
Cartan-Killing form. And we obtain the uniqueness (up to multiplication with a scalar)
of a local and L-invariant cocycle. For gl(n) we use the splitting into s(n) ⊕ sl(n) and
have to refer to uniqueness results for the scalar algebra A obtained in [9].

8. Appendix: so(n) and sp(2n).

8.1. so(n). In the case of so(n) we require that all Ls,k in (2) are skew-symmetric. In
particular, they are trace-less. The set-up has to be slightly modified following [5]. First
only those Tyurin parameters αs are allowed which satisfy αtsαs = 0. Then, (3) is modified
in the following way:

Ls,−1 = αsβ
t
s − βsαts, tr(Ls,−1) = βtsαs = 0, Ls,0 αs = κsαs. (15)

The relations (15) do not depend on the coordinates zs. Under the point-wise matrix
commutator the set of such maps constitutes a Lie algebra, see [5].

As far as the connection form for so(n) is concerned we require that there exist β̃s ∈ Cn
and κ̃s ∈ C such that

ωs,−1 = αsβ̃
t
s − β̃sαts, ωs,0 αs = κ̃sαs, β̃tsαs = 1.

Such connection forms exist.

8.2. sp(2n). For sp(2n) we consider a symplectic form σ̂ for C2n given by a non-degene-
rate skew-symmetric matrix σ. Without loss of generality we might even assume that
this matrix is given in the standard form σ =

(
0 In

−In 0

)
. The Lie algebra sp(2n) is the Lie

algebra of matrices X such that Xtσ + σX = 0. This is equivalent to Xt = −σXσ−1,
which implies that tr(X) = 0. For the standard form above, X ∈ sp(2n) if and only if

X =
(
A B

C −At
)
, Bt = B, Ct = C.

At the weak singularities we have the expansion with matrices Lk,s ∈ sp(2n)

L(zs) =
Ls,−2

z2
s

+
Ls,−1

zs
+ Ls,0 + Ls,1zs +

∑
k>1

Ls,kz
k
s .
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The conditions (3) are modified as follows (see [5]): there exist βs ∈ C2n, νs, κs ∈ C such
that

Ls,−2 = νsαsα
t
sσ, Ls,−1 = (αsβts + βsα

t
s)σ, βs

tσαs = 0, Ls,0 αs = κsαs, (16)

and
αtsσLs,1αs = 0. (17)

Again in [5] it is shown that under the point-wise matrix commutator the set of such
maps constitutes a Lie algebra.

For the connection form for sp(2n) we require that there exist β̃s ∈ C2n, κ̃s ∈ C such
that

ωs,−1 = (αsβ̃ts + β̃sα
t
s)σ, ωs,0 αs = κ̃sαs, αtsσωs,1αs = 0, β̃tsσαs = 1.

Remark 8.1. The reader might ask why for sp(2n) there appear poles of order two
at the weak singularities. By direct calculations it turns out that such a modification
has to be done to retain that there will be no additional degree of freedom (compared
to other points) at each weak singularity individually (due to the relations (16) and
(17)), without affecting the closedness and almost-gradedness of the algebra under the
commutator. There is a geometric reason behind. Note that the minimal codimension of
a strict symplectic subspace of a symplectic vector space is two.
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