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Abstract. We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and

a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show

that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted

to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils

(restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs

of all these Poisson pencils and describe the corresponding quantum algebras. A few detailed

examples are exhibited.

1. Introduction. In the paper we deal with certain Poisson pencils defined in the alge-
bras K[gl(m)∗] ∼= Sym (gl(m)) and their super-analogs. Hereafter, K is the ground field,
namely C or R. The Poisson center1 of each bracket from such a pencil coincides with
that of the linear Poisson-Lie bracket { , }gl(m) (or that of { , }gl(m|n) in a super-case)
coming in the pencil. It is in this sense that we speak about pencils with the gl-type
center. Consequently, any bracket from such a pencil can be restricted to an arbitrary
generic GL(m)-orbit O ⊂ gl(m)∗ (or its super-analog).

The simplest example of pencils possessing this property is the following one (below
it will be treated as a restriction of a pencil defined in the algebra Sym (gl(2))). Let

{ , }sl(2) : Sym (sl(2))⊗2 → Sym (sl(2))
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be the linear Poisson-Lie bracket corresponding to the sl(2) Lie structure and defined in
the standard basis {x, h, y} of the algebra Sym (sl(2)) as follows:

{x, y}sl(2) = h, {h, x}sl(2) = 2x, {h, y}sl(2) = −2y. (1)

The Poisson center of the bracket (1) consists of functions p(xy + yx+ h2

2 ) where p is a
polynomial in one variable.

Also, consider the following quadratic Poisson bracket

{x, y}′ = h2, {h, x}′ = 2xh, {h, y}′ = −2yh. (2)

It is easy to see that these two brackets are compatible and any bracket from the corre-
sponding pencil

{ , }a,b = a { , }sl(2) + b { , }′ (3)

possesses the same center as the bracket { , }sl(2) does. Consequently, this Poisson pencil
can be restricted to any variety defined by the equation xy + yx+ h2

2 = C 6= 0.
In virtue of the famous Kontsevich result [K] any Poisson structure on a smooth va-

riety M can be quantized by deformation quantization means. Namely, there exists a
new associative product in the commutative algebra K[M][[~]] (where ~ is a quantization
parameter), satisfying the so-called correspondence principle. Consequently, each individ-
ual bracket from the pencil (3) or its restriction can be quantized in this sense. However,
in general it is not clear what are relations between quantum algebras arising from the
pencil (3) and those arising from its restrictions. Namely, whether the latter quantum
algebras can be realized as some quotients of the former ones. In order to answer this
question we have to describe the quantum analog of the center of the pencil (3).

Fortunately, the Poisson pencil (3) can be explicitly quantized. As a result, we get
a family of quantum algebras depending on two parameters (which can be specialized
to numbers since our quantization is not formal). Moreover, the center of any such an
algebra can be easily described. Namely, each center is also generated by a quadratic
element but it is not symmetric any more with respect to permutation of the factors in
its summands and it cannot be written in a symmetric form. Consequently, the pairing
defined on the space L = spanK(x, h, y) via the matrix inverse to that formed by the
coefficients of this quadratic element is not symmetric either. This is a hint that the
resulting quantum algebra is related to a braiding, i.e. to a solution of the quantum
Yang-Baxter equation (see Section 3). Though in Section 2 we quantize the pencil (3) by
a direct and somewhat elementary method, it can be also done by a general method based
on the so-called R-matrix technique. This technique enables us to introduce a quantum
(braided) trace (or R-trace) which plays a crucial role in describing the center of the
algebras (super-algebras included) arising from pencils similar to (3).

The R-trace is an ingredient of the braided geometry considered in [GS1]. Other in-
gredients are braided Lie algebras, braided vector fields (which are not considered in this
paper), and braided affine varieties. Braided varieties, we are dealing with, are deforma-
tions of generic GL(m)-orbits in gl(m)∗ (or their super-analogs). They are in a sense
regular varieties since for such a variety there exists a projective module playing the role
of the cotangent vector bundle in the framework of the Serre approach (see [GS2]). Thus,
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by quantizing gl(m) generalization of the Poisson pencil (3) we get a braided (i.e. related
to a braiding) deformation of the enveloping algebra U(gl(m)). Whereas the quantum
counterpart of such a pencil restricted to a generic orbit in gl(m)∗ can be realized as a
quotient of this ”braided enveloping algebra”. Finally, this quotient is treated as a braided
generic orbit.

Note that Poisson pencils analogous to (3) exist on super-algebras Sym (gl(m|n)) too.
Their quantization gives rise to braided algebras with similar properties. The main goal
of this paper is to describe these Poisson structures, their restrictions to generic super-
orbits in gl(m|n)∗ and their quantum counterparts. A crucial role in our construction is
played by a quantum (braided) version of the Cayley-Hamilton (CH) identity valid for
the generating matrix L of the Reflection Equation Algebra (REA) found in [GPS1]. This
identity enables us to define eigenvalues of the matrix L. In terms of these eigenvalues
we introduce a criterion of regularity of super-orbits and their braided counterparts.

The paper is organized as follows. In the next section we quantize the Poisson pen-
cil (3) without using any technique related to braidings. Nevertheless, we arrive at an
algebra which is in a sense a braided algebra. In Section 3 we consider a family of such
braided algebras deforming super-commutative algebras Sym (gl(m|n)) and exhibit the
corresponding super-Poisson structures. In Section 4 we consider restrictions of such
Poisson structures to generic super-orbits in gl(m|n)∗. Their quantum counterparts are
braided generic orbits. In Section 5 we consider two low-dimensional examples (the first
of them is just our basic example but treated in the framework of braided geometry). In
the last section we list a few open problems related to a more general class of Poisson
pencils with gl-type center.

2. Basic example. Let us consider the algebra K[sl(2)∗] ∼= Sym (sl(2)) endowed with
the Poisson pencil (3). Observe that the Poisson bracket (2) coming in this pencil is
quadratic and differs by the factor h from the linear bracket (1). Furthermore, it can be
easily seen that the function Cas = xy + yx+ h2

2 is central for any Poisson bracket from
this pencil:

{Cas, f}a,b = 0 ∀f ∈ Sym (sl(2)).

We treat the enveloping algebra U(sl(2)~) of the Lie algebra2 sl(2)~ as a quantum
counterpart of the Poisson algebra Sym (sl(2)) with the Poisson-Lie bracket { , }sl(2). Our
immediate aim is to quantize any bracket from the pencil (3) (in fact, we simultaneously
quantize the whole Poisson pencil).

First, we quantize the bracket { , }′ alone. Consider an associative algebra generated
by three elements x, h, y subject to the relations

hx− xh = ν (a hx+ b xh), hy − yh = −ν (c hy + d yh), xy − yx = ν h2, (4)

where a, b, c and d are parameters subject to the constraint a + b = c + d = 2. The
quantization parameter ν (as well as all parameters below) can be specialized to a number
from the ground field K.

2The notation g~ means that we introduce the factor ~ ∈ K in the Lie bracket of the Lie
algebra g.



148 D. GUREVICH AND P. SAPONOV

The main feature of a quantization of the algebras in question is that it should give
rise to quantum objects with a good deformation property in the following sense. Let
a quadratic algebra A(ν) depends on a parameter ν and at the ”classical limit” ν → 0
it turns into the symmetric algebra of a space V : A(0) = Sym (V ). We say that A(ν)
possesses a good deformation property if dimA(ν)k = dim Sym k(V ) for any k ≥ 0 and a
generic ν. Here the superscript k stands for the k-th degree homogeneous component. If
moreover, A(ν, ~) is a quadratic-linear algebra such that A(ν, 0) = A(ν), we say that it
has a good deformation property if GrA(ν, ~) = A(ν) where Gr stands for the associated
graded algebra. In the same sense we speak about the good deformation property of
algebras close to super-algebras Sym (gl(m|n)).

In what follows we additionally assume a = d, b = c in relations (4). Otherwise,
as can be shown (see footnote 3), the corresponding quotient algebra is not a quantum
object, i.e. it does not possess the good deformation property. Under this condition we
can rewrite relations (4) in the form

q2 hx− xh = 0, q2yh− hy = 0, xy − yx− ν h2 = 0, where q2 =
1− aν
1 + bν

. (5)

In order to show that the algebra defined by relations (5) is indeed a quantization
of the Poisson algebra Sym(sl(2)) with the Poisson bracket { , }′, we fix the family of
elements {ek,l,m = xkylhm, k, l,m = 0, 1, 2, ...} in it. Then we have to show that this
family is a basis of the algebra in question (an analog of the Poincaré-Birkhoff-Witt
theorem). To this end we have to check that the products xek,l,m, yek,l,m, and hek,l,m
can be expressed as a linear combination of the elements {ek,l,m}. Besides, we should
verify that the relations

(q2hx− xh) ek,l,m = 0, (q2yh− hy) ek,l,m = 0, (xy − yx− ν h2) ek,l,m = 0 (6)

do not lead to any dependencies among the elements ek,l,m for all k, l,m. Details are left
to the reader.

Note that another way of verifying the good deformation property of these algebras
is based on some special projectors [GPS2] (see also the next Section).

Thus, we have got a family of quantum algebras depending on a value of a. However,
for ν 6= 0 all these quantizations are equivalent (over C). It can be shown by rescaling
the generator h. So, we set a = b = 1. Then the relations between generators become

q2hx− xh = 0, q2yh− hy = 0, (q2 + 1)(xy − yx) + (q2 − 1)h2 = 0 (7)

(i.e. q2 = 1−ν
1+ν or equivalently, ν = 1−q2

1+q2 ).
Denote by A(q) the algebra generated by the space A = spanK(x, h, y) where the gen-

erators are subject to the relations (7). The algebra A(q) is in a sense the “q-symmetric”
algebra of the space A. Below, we explain the exact meaning of this claim. Now, we pass
to a quantization of the whole Poisson pencil (3).

To this end we look for numerical factors A,B,C such that the algebra defined by
the relations

q2hx− xh = Ax, q2yh− hy = B y, (q2 + 1)(xy − yx) + (q2 − 1)h2 = C h (8)

would have the good deformation property.
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In order to find such factors we use the Jacobi identity in the form of [PP]. Let
I ⊂ A⊗2 be a subspace spanned by the left hand side of (8). Then the space I⊗A∩A⊗I
is one-dimensional3 and it is spanned by the element

y(q2hx− xh) + q−2x(q2yh− hy) + h(xy − yx− ν h2) =

q−2(q2hx− xh)y + (q2yh− hy)x+ (xy − yx− ν h2)h.

Using relations (8) we reduce this equality to the form

Ayx+ q−2Bxy +
Ch2

1 + q2
−
(
q−2Axy +Byx+

Ch2

1 + q2

)
= 0.

According to the Jacobi condition from [PP] the left hand side of this relation must belong
to I. Gathering similar terms and applying the relations (8), we come to the equality

(A−B)
(

(1− q−2)xy +
q2 − 1
q2 + 1

h2 − C

q2 + 1
h

)
= 0.

In case q2 6= 1 the only possible choice is A = B. For the factor C there is no restriction.
We assume C 6= 0, then by rescaling x (or y) we can get4

C = A = B = 2q~,

where ~ is a new quantization parameter and the q-numbers are defined in the usual way

kq =
qk − q−k

q − q−1
, k ∈ Z.

We denote by A(~, q) the algebra defined by the relations (8) with A = B = C = 2q~.
So, if ~ = 0 this algebra turns into A(q). Choosing the same basis {ek,l,m} in the algebra
A(~, q), ~ 6= 0, we can show that the property similar to (6) (with linear terms added) is
still valid and we conclude that the algebra A(~, q) has the good deformation property
and it is a two parameter deformation of Sym (sl(2)).

In order to get a quantization of one bracket from the pencil { , }a,b it suffices to
bound the parameters of quantization q = exp(αµ), ~ = βµ, and to find the Poisson
bracket corresponding to the parameter µ.

Now, motivated by the fact that all brackets { , }a,b have the center generated by the
element Cas = xy+yx+h2/2 we want to find the center of the quantum algebra A(~, q).
It is not difficult to check that the element

Casq = q−1xy + qyx+
h2

2q
is central in the algebra A(~, q) and therefore, so are all elements p(Casq) where p is a
polynomial in one variable.

The matter is that the element Casq is not symmetric and it cannot be written in
a symmetric form. The pairing A⊗2 → K defined by the matrix inverse to the matrix

3 If in formula (4) a 6= d the space I⊗A∩A⊗I is trivial. This entails that dim(I⊗A+A⊗I)
differs from the classical one and therefore the algebra defined by (4) does not have the good
deformation property.

4The factor 2q will be motivated in Section 3, see (28).
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composed from the coefficients of the element Casq becomes5

〈x, y〉 = q−1, 〈y, x〉 = q, 〈h, h〉 = 2q. (9)

The pairing is not symmetric either. This is a hint that this quantum algebra can be
related to a braiding different from the usual permutation operator. In Section 5 we
exhibit this relation after having considered the general case in Sections 3. In Section
4 we also consider general analogs of the quantum (braided) hyperboloids defined by the
equation Casq = const 6= 0.

3. REA and corresponding Poisson pencils on super-spaces. In the previous sec-
tion we considered an example of a Poisson pencil such that its brackets possess just the
same center as the bracket { , }sl(2) has. Also, we quantized this pencil without using any
braiding. In this section we consider a general case which includes the previous example.
Our consideration also covers Poisson pencils on super-spaces gl(m|n)∗. Their quantiza-
tion gives rise to algebras related to certain braidings as well. However, our presentation
goes in the opposite direction: we begin with the quantum objects called (modified) Re-
flection Equation Algebras. Afterwards, we consider their Poisson counterparts. Each of
these counterparts is a pencil comprising the linear bracket { , }gl(m|n) and having the
center of gl type. This property enables us to restrict the Poisson pencils in question to
generic orbits in gl(m|n)∗.

Let us consider a super-space V = V0 ⊕ V1 with dimV0 = m and dimV1 = n. We call
the ordered pair (m|n) the super-dimension of the super-space V . Let R ∈ End (V ⊗2) be
a Hecke symmetry6 defined as follows:

R =
∑

1≤i≤m+n

(−1)i q1−2ieii ⊗ e
j
j +

∑
i6=j

(−1)i jeji ⊗ e
i
j + (q − q−1)

∑
j>i

eii ⊗ e
j
j , (10)

where eji stands for the (m + n) × (m + n) matrix with 1 at the intersection of the i-th
row and j-th column and 0 otherwise and i is the parity of i, i.e.

i = 0 if 1 ≤ i ≤ m and i = 1 if m+ 1 ≤ i ≤ m+ n.

Note that for q → 1 this braiding turns into a super-flip denoted in the sequel by σm,n.
Consider a unital associative algebra L(~, q) generated by indeterminates lji , 1 ≤

i, j ≤ m+ n subject to the following multiplication rules:

RL1RL1 − L1RL1R = ~(RL1 − L1R), L1 = L⊗ I, L = ‖lji ‖. (11)

5Note that this way of defining the pairing is motivated by identification of the spaces V and
V ∗ in the monoidal quasitensor rigid category generated by the space V as described in [GLS].

6Recall that by a Hecke symmetry we mean a braiding R ∈ End (V ⊗2), i.e. a solution of the
quantum Yang-Baxter equation

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R),

subject to the second degree equation

(qI −R)(q−1I + R) = 0.

We assume q ∈ K to be generic. In particular, this means that q 6= 0 and qn 6= 1 for n = 2, 3, 4, ...
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We call L the generating matrix of the algebra L(~, q). Here ~ ∈ K and q ∈ K coming in the
braiding R are two deformation parameters. The one parameter algebra L(q) := L(0, q)
is called Reflection Equation Algebra (REA) while the algebra L(~, q) will be referred to
as the modified REA.

Going back to the Hecke symmetry (10) note that it is skew-invertible. By definition,
this means that there exists an operator Ψ ∈ End (V ⊗2) such that

Tr2R12Ψ23 = σ13.

Here Tr2 stands for the (usual) trace applied to the operator product R12Ψ23 ∈ End (V ⊗3)
in the second space and σ13 is the usual flip transposing the first and third spaces in the
tensor product V ⊗3 := V1 ⊗ V2 ⊗ V3.

Consider two operators B : V → V and C : V → V defined as follows:

B = Tr1Ψ, C = Tr2Ψ.

Note the operators B and C are bound by the relation

BC = q2(n−m)I (12)

provided the Hecke symmetry R is a deformation of the super-flip σm,n (and even in
a more general setting discussed in [GPS2]). Consequently, the operators B and C are
invertible.

These operators play a crucial role in defining an intrinsic trace TrR related to the
braiding R. Namely, we put by definition

TrRLk := Tr(LkC).

We call the operation TrR the R-trace. The crucial property of the elements TrRLk is
that they are central in the algebra L(~, q). They are called braided Casimir elements.
We are especially interested in the braided quadratic Casimir element TrRL2.

As for the operator B, we use it for constructing a representation of the algebra
L(~, q). Namely, in the basis {xi} of the space V coordinated with the matrix form (10)
of the above Hecke symmetry we set

π(lji )(xk) = Bjkxi.

Then the map
π : L(1, q)→ End (V )

defines a representation of the algebra L(1, q) (see [GPS2]). Moreover, we get an embed-
ding L → End (V ) where L = spanK(lji ) and consequently the family {lji } constitutes a
basis of the space End (V ).

We also need a numerical R-trace operator

trR : End (V )→ K, (13)

which is a braided analog of the usual numerical trace. In the basis {lji } it has the form
trR(lji ) = δji . Note that the above embedding L → End (V ) also enables us to present the
usual product

◦ : End (V )⊗2 → End (V )
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in the basis {lji }. Namely, we have lji ◦ lmk = Bjk l
m
i . Consequently, we can define a pairing

on the space L by setting

〈 , 〉 : L⊗2 → K, 〈lji , l
m
k 〉 = trR(lji ◦ l

m
k ) = Bjk δ

m
i . (14)

Note that this pairing is non-degenerate on the space L. Also, as follows from the rela-
tion (12), the matrix of this paring is inverse (up to a factor) to the matrix of coefficients
in the braided quadratic Casimir TrRL2.

In the case of the Hecke symmetry (10) the operator C represented in the same basis
{xi} of the space V has the form (see [I])

Cji = (−1)iq2n+(−1)i(2i−2m−1)δji .

The operator B can be found from the relation (12).
We treat the algebra L(~, q) corresponding to the Hecke symmetry (10) as a braided

analog of the enveloping algebra U(gl(m|n)~). Now, we want to define an analog of the
algebra U(sl(m|n)~), provided that m 6= n.

Let ` = TrRL = Tr(LC) be the linear braided Casimir element. Applying the numer-
ical R-trace trR to this element we have (see [GPS2])

trR` = TrC = qm−n(m− n)q.

This quantity vanishes iff m = n (recall that q is generic).
Assuming m 6= n, we put SL(~, q) = L(~, q)/〈`〉. The algebra SL(~, q) is generated by

the space SL of traceless elements (with respect to numerical R-trace trR) of the space
L. Being restricted to the space SL, the pairing (14) is still non-degenerate. The algebra
SL(~, q) is considered as a braided analog of the enveloping algebra U(sl(m|n)~).

Now, consider the Poisson structures corresponding to the algebras L(q) and L(~, q),
assuming the Hecke symmetry entering their definition to be of the form (10). First,
we consider the algebra L(q). This algebra has the good deformation property, i.e.
dimL(q)k = dim Sym k(gl(m|n)) for any k and generic q (see [GPS2]). Thus, we can
treat the product in the algebra L(q) as a new noncommutative product in the initial
(super-commutative) algebra Sym (gl(m|n)) so that this product depends smoothly on q.

The explicit construction can be shortly described as follows. In [GPS2] we discussed
the projectors P k : L⊗k → L⊗k (called R-symmetrizers). Explicitly they are known only
for k = 2, 3. Define the map αk : Sym k(gl(m|n)) → L(q)k as follows. Let us embed
Sym k(gl(m|n)) into L⊗k in a natural way (we identify L and gl(m|n) as linear spaces).
Then αk is by definition the restriction of P k to Sym k(gl(m|n)). Using the family of
maps {αk} we can push the product in the algebra L(q) to that in Sym (gl(m|n)) by

f ?q g = α−1
k+l(αk(f)αl(g)), if f ∈ Sym k(gl(m|n)), g ∈ Sym l(gl(m|n)).

Now develop this product in ν = log(q)

f ?q g = fg + νc1(f, g) + ν2c2(f, g) + ..., ci(f, g) ∈ Sym (gl(m|n)).

Following the classical pattern (with one additional condition indicated below) we can
show that the expression {f, g} = c1(f, g) − c1(σm,n(f ⊗ g)) is a super-Poisson bracket.



QUANTIZATION OF PENCILS WITH A gl-TYPE POISSON CENTER 153

This means that the following axioms are fulfilled for all f, g, h ∈ Sym (gl(m|n)):

{ , } = −{ , }σm,n(f ⊗ g),

{ , }({ , } ⊗ I)(I + σm,n12 σm,n23 + σm,n23 σm,n12 )(f ⊗ g ⊗ h) = 0,

σm,n({f, g} ⊗ h) = (I ⊗ { , })σm,n12 σm,n23 (f ⊗ g ⊗ h).

Note that for even or odd elements f and g the third relation leads to the consequence
{f, g} = f̄ + ḡ where f̄ is the parity of f ∈ Sym (gl(m|n)).

The additional condition mentioned above is as follows. The terms c1 and c2 should
be coordinated with the parity in the same manner:

σm,n(ci(f, g)⊗ h) = (I ⊗ ci)σm,n12 σm,n23 (f ⊗ g ⊗ h), ∀ f, g, h ∈ Sym (gl(m|n)), i = 1, 2.

Assuming the Hecke symmetry to be of the form (10), we conjecture that the product
?q in the algebra Sym (gl(m|n)) is such that the corresponding terms c1 and c2 possess this
property. (In order to check this conjecture we need an explicit form of theR-symmetrizers
P k mentioned above.)

Taking this conjecture for granted, it is not difficult to compute the corresponding
Poisson bracket. Fist, we rewrite the relations (11) (with ~ = 0) as follows:

RL1R21L2 − L2RL1R21 = 0,

where R = σm,nR, R21 = Rσm,n and L2 = σm,nL1σ
m,n. Then by developing the operator

R = I + νr+ · · · and comparing the terms linear in ν, we find the corresponding Poisson
bracket on the generators of the algebra Sym (gl(m|n))

{ , }′(L1 ⊗ L2) = −rL1L2 − L1r21L2 + L2L1r21 + L2rL1. (15)

Here r21 = σm,nrσm,n and r ∈ End (V ⊗2) is given by the formula

rklij =
∑

1≤i≤m+n

(−1)i (1− 2i)eii ⊗ e
j
j + 2

∑
j>i

eij ⊗ e
j
i . (16)

Similarly to the classical case this Poisson bracket is compatible with the linear bracket
{ , }gl(m|n). These two brackets span the pencil which is the semi-classical counterpart of
the algebra L(~, q).

Besides, all elements Trσm,nLk belong to the Poisson center of any bracket from the
Poisson pencil spanned by the brackets { , }gl(m|n) and { , }′. In other words, this pencil
has the center of gl type. So, any such a bracket restricts to all ”super-orbits” defined by
polynomial equations Trσm,nLk = ak. These Poisson structures and their braided analogs
are considered in the next Section.

Note that the third axiom from the list above for the bracket (15) with r given by
(16) can be checked by direct calculations.

4. Poisson pencils on super-orbits and their quantization. As was shown in
[GPS1], if R is any skew-invertible Hecke symmetry, then the generating matrix L of
the algebra L(q) satisfies a Cayley-Hamilton (CH) type identity. If R is a deformation of
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the super-flip σm,n this identity takes the form
m+n∑
i=1

bi(L)Li = 0 (17)

where bi(L) are non-trivial central elements of the algebra L(q). Moreover, if n 6= 0 the
leading coefficient bm+n(L) is not a number.

Upon multiplying the identity (17) by bm+n(L), we can represent it in the following
factorized form: (

bm+n(L)
m∏
i=1

(L− µi)
) (
bm+n(L)

n∏
j=1

(L− νj)
)

= 0.

Here the eigenvalues µi and νj are elements of the algebraic extension of Z(L(q))loc where
Z(L(q))loc stands for the localization of the center Z(L(q)) by the set {bkm+n(L), k ≥ 1}.
The eigenvalues µi (resp., νj) are called even (resp., odd).

The reason for this terminology is the following formula expressing the quantities
Trσm,nLk via these eigenvalues for a super-matrix:

Trσm,nLk =
m∑
i=1

µki −
n∑
j=1

νkj , k ≥ 0.

Below we give a braided analog of this formula (see (20), (21)).
In what follows we consider the quotient algebras

K[Oµ,ν ] = Sym (gl(m|n))/Jσm,n(µ, ν) (18)

where the ideal Jσm,n(µ, ν) is generated by m+ n elements

Trσm,nLk −
( m∑
i=1

µki −
n∑
j=1

νkj

)
, 1 ≤ k ≤ m+ n.

The algebras K[Oµ,ν ] are super-analogs of (the coordinate algebras of) affine algebraic
varieties.

Let { , }Oµ,νa,b be the restriction of the bracket { , }a,b to this super-variety. Now, we
want to discuss two questions.

For what values of µ = (µ1, µ2, ..., µm) and ν = (ν1, ν2, ..., νn) the quotient K[Oµ,ν ]
can be considered as a regular super-variety and how to quantize the pencil { , }Oµ,νa,b ?
Hopefully, a quantum analog of K[Oµ,ν ] is a braided variety which can be presented in a
similar way

L(q)/〈TrRL− a1, TrRL2 − a2, ...,TrRLm+n − am+n〉, ai ∈ K. (19)

However, first we should answer an analogous question in the quantum case: for which
values of numbers ai the quotient (19) of the quantum algebra L(q) can be considered as
a regular braided variety? We have to answer this question since it is natural to suppose
that a quantum counterpart of a regular (super-)variety is a regular braided one.

It is known that in a classical case (n = 0, q = 1) the variety K[Oµ] is regular iff it is
a generic orbit, i.e. the orbit of a matrix with pairwise distinct eigenvalues µi. If an affine
algebraic variety M is defined by a system of polynomial equations pi = 0, 1 ≤ i ≤ k

then it is regular iff the rank of a matrix formed by gradients of pi is maximal at each
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point of the variety. If it is the case, then according to the known Serre result (see [S])
the space of sections of the cotangent bundle on M is a finitely generated projective
K[M]-module. We call this module cotangent.

In [GS2] we succeeded in constructing analogs of the cotangent module over super-
and braided varieties ((18) and (19) respectively) for generic values of the quantities
TrRLk. However, construction of such a module fails for some exceptional values of these
quantities. We want to describe the set of exceptional values in terms of eigenvalues of
the matrix L. To this end we employ the following formula expressing TrRLk in terms of
µi and νj .

Proposition 4.1 ([GPS3]).

TrRLk =
m∑
i=1

diµ
k
i +

n∑
j=1

d′jν
k
j ∀ k ≥ 0 , (20)

where the quantum dimensions di and d′j read

di = q−1
m∏
p=1
p 6=i

µi − q−2µp
µi − µp

n∏
j=1

µi − q2νj
µi − νj

, d′j = − q
m∏
i=1

νj − q−2µi
νj − µi

n∏
p=1
p 6=j

νj − q2νp
νj − νp

. (21)

Thus, expressing the coefficients ai in (19) in terms of the eigenvalues (µ, ν) ∈
K⊕(m+n) we present the algebra (19) as the quotient

Kq[Oµ,ν ] = L(q)/JR(µ, ν), (22)

where the ideal JR(µ, ν) is generated by the following elements:

TrRLk −
( m∑
i=1

diµ
k
i +

n∑
j=1

d′jν
k
j

)
, 1 ≤ k ≤ m+ n. (23)

with di and d′j given by (21).
As was shown in [GS2], the cotangent module exists on such a braided variety iff the

following conditions are fulfilled:

µi 6= q2µj , νi 6= q2νj , µi 6= q2νj , 1 ≤ i ≤ m, 1 ≤ j ≤ n. (24)

Let E be the set of eigenvalues (µ, ν) ∈ K⊕(m+n) such that at least one of these conditions
fails. We call the algebra Kq[Oµ,ν ] with (µ, ν) ∈ K⊕(m+n)\E a braided generic orbit.

At the limit q → 1 we get a similar condition for a generic super-orbit. In this case
an analog of the restrictions (24) reads

µi 6= µj , νi 6= νj , µi 6= νj , 1 ≤ i ≤ m, 1 ≤ j ≤ n. (25)

Thus, as a quantization of the Poisson bracket { , }′ restricted to a generic super-orbit
K[Oµ,ν ] we can consider the braided variety Kq[Oµ,ν ] with the same eigenvalues (µ, ν). It
is evident that if q−1 is small enough, then the conditions (25) entail the conditions (24).
Consequently, the corresponding braided variety Kq[Oµ,ν ] is regular or, in other words,
a braided generic orbit. However, another choice of the quantum object is also possible:
we have only to verify the conditions (24).

In conclusion of this Section we want to emphasize that non-commutative super-(or
braided) varieties can be considered in a similar manner. They are appropriate quotients
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of the modified REA L(~, q). Namely, they are defined by the same formula (22) but with
quantum dimensions given by

di = q

m∏
p=1
p 6=i

µi − q−2µp − q−1~
µi − µp

n∏
j=1

µi − q2νj + q~
µi − νj

,

d′j = − q
m∏
i=1

νj − q−2µi − q−1~
νj − µi

n∏
p=1
p6=j

νj − q2νp + q~
νj − νp

(26)

(see [GS2]).
Consequently, the conditions (24) must be modified as well. Thus, the quotient of the

algebra L(~, q) is by definition a regular braided non-commutative orbit iff

µi − q−2µj − q−1~ 6= 0, νj − q2νj + q~ 6= 0, µi − q2νj + q~ 6= 0. (27)

Similarly to regular braided varieties considered above, this definition is motivated by
the fact that on such a regular braided non-commutative orbit there exists the cotangent
module. For details the reader is referred to [GS2].

So, the quotient L(~, q)/ĴR(µ, ν), where the ideal ĴR(µ, ν) is defined by the formula
similar to that (23) but with di and d′j given by formulae (26), is just a quantum counter-
part of the pencil spanned by the brackets { , }gl(m|n) and (15) restricted to the super-orbit
Kq[Oµ,ν ].

Thus, modulo the conjecture on the product ?q formulated in Section 3 we can state
the following.

Proposition 4.2. Let K[Oµ,ν ] be (the coordinate algebra of) a generic super-orbit, i.e.
µ and ν are assumed to satisfy (25). Consider its braided counterpart L(~, q)/ĴR(µ, ν)
defined via R given by (10) and with the same µ and ν (then for ~ and q − 1 small
enough this counterpart is also regular since the restrictions (27) are still valid). Then
the semiclassical counterpart of the deformation

K[Oµ,ν ]→ L(~, q)/ĴR(µ, ν)

is the pencil generated by the brackets { , }gl(m|n) and { , }′ defined through (15), (16)
and restricted to the algebra K[Oµ,ν ].

The fact that each bracket from the pencil generated by { , }gl(m|n) and { , }′ has
the same center as the bracket { , }gl(m|n) enables us to define the restriction of this
pencil to any generic super-orbit in Sym (gl(m|n)). We emphasize once more that the
braided counterpart of this restricted pencil, realized as a quotient of the algebra L(~, q),
is introduced by means of the so-called R-matrix technique which is a part of braided
geometry.

5. Examples. Let us complete the consideration of the example of Section 2. Here we
treat it from the viewpoint developed in Sections 3 and 4.
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Consider the Hecke symmetry (10) for m = 2, n = 0

R =


q 0 0 0
0 λ 1 0
0 1 0 0
0 0 0 q

 , λ = q − q−1.

The defining relations of the corresponding algebra L(~, q) with the generating matrix
L =

(
a b
c d

)
are as follows:

qab− q−1ba = ~b, qca− q−1ac = ~c, ad− da = 0,

q(bc− cb) = (λa− ~)(d− a), q(cd− dc) = c(λa− ~), q(db− bd) = (λa− ~)b.

The operators B and C are given by the matrices

B =
(
q−1 0
0 q−3

)
, C =

(
q−3 0
0 q−1

)
.

Thus, we have

` = TrRL = q−3a+ q−1d, TrRL2 = q−3(a2 + bc) + q−1(cb+ d2).

These elements are central in the algebra L(~, q). For the numerical R-trace trR : L → K
on the space L = spanK(a, b, c, d, ) ∼= End (V ) we get

trR a = 1, trR b = 0, trR c = 0, trR d = 1.

Therefore, the elements b, c, h = a − d are traceless. Besides, the pairing (14) takes the
form

〈a, a〉 = q, 〈d, d〉 = q−1, 〈b, c〉 = q−1, 〈c, b〉 = q,

all other terms being zero. The first and second formulae above are equivalent to

〈h, h〉 = 2q, 〈`, `〉 = q−42q.

On rewriting the defining relations for L(~, q) in the basis `, b, c, h and setting ` = 0,
we recover the defining relations of the algebra SL(~, q) = L(~, q)/〈`〉:

q2hb− bh = 2q~b, q2ch− ch = 2q~c, (q2 + 1)(bc− cb) + (q2 − 1)h2 = 2q~h. (28)

They coincide (up to a notation) with relations (8) where A = B = C = 2q~. The
quadratic central element TrRL2 being reduced to the algebra SL(~, q) becomes Casq
as in Section 2 where it was found by other means. Being restricted to the space SL =
spanK(b, h, c), the pairing (14) takes the form (9) (up to a factor).

The CH identity for the matrix L reads:

L2 − (q−2a+ d)L+ (q−2ad− cb)I = 0.

Thus, according to our definition of eigenvalues we have

µ1 + µ2 = q−2a+ d, µ1µ2 = q−2ad− cb.

Expressing the quantities TrRL and TrRL2 via these eigenvalues we introduce a braided
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variety by the following system of polynomial equations:

TrRL = q−3a+ q−1d = q−1(µ1 + µ2),

TrRL2 = q−3(a2 + bc) + q−1(cb+ d2) = q−1(µ2
1 + µ2

2) + (q−1 − q−3)µ1µ2.

Such a variety is a braided generic orbit iff µ1 6= q±2µ2. By imposing the condition
TrRL = 0 we get a braided analog of a hyperboloid. This condition entails µ2 = −µ1.
So, the braided hyperboloid can be parameterized by one parameter, for instance by µ1.
Explicitly, it is given by the equation

TrRL2 = (q−3 + q−1)µ2
1.

For a generic q it is a regular braided variety (and consequently generic orbit) for any
µ1 6= 0.

Braided non-commutative orbits can be defined in a similar way as appropriate quo-
tients of the algebra L(~, q). For this purpose we have to replace the above system of
equations by the following one:

TrRL = q−3a+ q−1d = q−1(µ1 + µ2)− q−2~,

TrRL2 = q−3(a2 + bc) + q−1(cb+ d2)
= q−1(µ2

1 + µ2
2) + (q−1 − q−3)µ1µ2 − q−2~(µ1 + µ2).

This braided non-commutative variety is a non-commutative generic orbit iff

µ1 6= q−2µ2 − q−1~ and µ2 6= q−2µ1 − q−1~.

To obtain the corresponding bracket { , }′ on the space gl(2) it suffices to extend the
bracket constructed in Section 2 by the generator ` which is Poisson commuting with
other generators.

Now, consider another example related to the super-Lie algebra gl(1|1). This algebra
is generated by 4 elements a, b, c, d subject to the relations

[a, b] = b, [a, c] = −c, [a, d] = 0, [d, b] = b,

[d, c] = −c, [b, c]+ = d− a, [b, b]+ = [c, c]+ = 0.

Notation [ , ]+ stands for the anti-commutator. Emphasize that this basis differs from the
usual one by the sign at b and d, our choice is motivated by that in the algebra L(~, q).
The elements

Trσ1,1L = a− d and Trσ1,1L2 = a2 + bc− cb− d2 (29)

are central in the enveloping algebra U(gl(1|1)).
The corresponding Hecke symmetry is

R =


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 −q−1

 .

The operators B and C are

B =
(
q−1 0
0 −q−1

)
, C =

(
q 0
0 −q

)
.
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The defining relations in the corresponding algebra L(~, q) are as follows:

q2ab− ba = q~b, q2ca− ac = q~c, ad− da = 0, b2 = c2 = 0,

q−1bc+ qcb− (q − q−1)a(a− d) = ~(a− d),

bd− db− (q2 − 1)ab = q~b,

cd− dc+ (q2 − 1)ca = −q~c.

The related bracket { , }′ is

{a, b}′ = ab, {a, c}′ = −ac, {a, d}′ = 0,

{d, b}′ = ab, {b, b}′+ = {c, c}′+ = 0,

{d, c}′ = −ac, {b, c}′+ = cb− a(a− d).

Note that the elements b, c, h = a − d generate the super-Lie subalgebra sl(1|1). Its
multiplication table is

[h, b] = [h, c] = 0, [b, c]+ = −h. (30)

However, the bracket { , }′ has no restriction to the super-algebra Sym (sl(1|1)). Also,
note that the elements (29) are central for any bracket from the pencil spanned by the
brackets { , }gl(1|1) and { , }′.

In this case the CH identity for the matrix L takes the form

(a− d)L2 − (a2 − d2 + bc− cb)L+ ((a− d)(bc− ad)− a(bc− cb))I = 0.

This identity can be written in the factorized form (after additional multiplication by
` = TrRL = q(a− d))

(`L− qS(L))(`L+ q−1A(L)) = 0,

where the polynomials S(L) and A(L) read

S(L) =
1
2q

(q−1`2 + TrRL2), A(L) =
1
2q

(q `2 − TrRL2). (31)

Thus, the even µ and odd ν eigenvalues of L are defined by the fractions

µ = q
S(L)
`

, ν = −q−1A(L)
`

. (32)

Relations (31) and (32) allow us to express TrRL and TrRL2 in terms of eigenvalues.
Thus, according to our general approach a braided variety is defined in the algebra L(q)
by the system of equations

TrRL = q(a− d) = q−1µ− qν,

TrRL2 = q(a2 + bc− cb− d2) = (µ+ ν)(q−1µ− qν).

We emphasize that the braided variety defined by the equation

TrRL = q(a− d) = q−1µ− qν = 0

is not regular and according to our terminology is not a braided generic orbit.
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Turning to non-commutative braided varieties we have to replace the above equations
by

TrRL = q(a− d) = q−1µ− qν + ~,

TrRL2 = q(a2 + bc− cb− d2) = (µ+ ν)(q−1µ− qν) + ~(µ+ ν).

The non-commutative braided varieties defined in the algebra L(~, q) by these equations
are regular iff µ 6= q2ν − q~.

6. Open problems and concluding remarks. Here we formulate some open prob-
lems. Consider a generalization of the bracket { , }′ (see Section 2) realized in terms of the
compact form of sl(2,C). Namely, let {x, y, z} be the standard basis in the polynomial
algebra K[so(3)∗] ∼= Sym (so(3)). In this algebra we introduce a Poisson bracket defined
on the generators as follows:

{x, y}′ = z p(x, y, z), {y, z}′ = x p(x, y, z), {z, x}′ = y p(x, y, z), (33)

where p(x, y, z) is a fixed polynomial in x, y, z. We leave checking the fact that all axioms
of a Poisson bracket are fulfilled to the reader.

Also, observe that this Poisson bracket is compatible with { , }so(3). Observe that the
center of each bracket from the pencil spanned by { , }so(3) and bracket (33) consists of
the elements q(x2 + y2 + z2) where q is a polynomial in one variable.

The following questions are of great interest.

1. How to quantize these brackets explicitly?
2. What is the center of a quantum algebra obtained by a quantization, what is the

corresponding pairing, and whether is it possible to treat this pairing via a deformed
trace?

3. How to quantize these brackets restricted to a sphere and is it possible to describe
the corresponding quantum algebras in a way similar to that of getting the braided
varieties above?

4. How to classify all Poisson structures on gl(m)∗ (or gl(m|n)∗) possessing the same
center as the Poisson-Lie bracket { , }gl(m) (or { , }gl(m|n)) has and how to quantize
them as well as their restrictions to a generic orbit in gl(m)∗ (or gl(m|n)∗)?

Anyway, the corresponding quantum objects cannot be described in the framework of
the above braided geometry in its present limits which must be extended.

Remark 1. In conclusion we would like to stress that the above Poisson structures on
the space gl(m)∗ (apart from the Poisson-Lie one) are not unimodular. Roughly speaking,
a Poisson structure is called unimodular if there exists a volume form in a sense compatible
with the defining bi-vector field. A particular case of unimodular Poisson structures are
symplectic ones defined via closed 2-forms. For a symplectic Poisson structure the role of
such a volume form is played by the Liouville measure Ω. For this measure the following
relation is valid: ∫

{f, g}Ω = 0, ∀f, g.
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So, the map f →
∫
fΩ is a Poisson analog of the trace. A quantization of such a Poisson

structure gives rise to an algebra with a trace possessing the classical property Tr[., .] = 0
(see [GR]).

A standard example of a symplectic Poisson structure is the restriction of the bracket
{ , }so(3) to a sphere Cas = r2. Its quantum analog is a proper quotient of the algebra
U(so(3)) (we put ~ = 1). For some discrete values of r the quantum algebra can be
represented in a finite dimensional Hilbert space endowed with the usual trace. However,
the restriction to this sphere of the bracket (33) with p(x, y, z) = z is not symplectic. Its
Poisson leaves are two half-spheres z > 0, z < 0 and each point of the equator z = 0.
In general, the brackets from the corresponding Poisson pencil { , }a,b are not symplectic
either. Nevertheless, their quantum counterparts which are appropriate quotients of the
algebras L(1, q) can be represented in finite dimensional spaces (also for some special
values of eigenvalues µ, ν). The essential point here is that the usual trace should be
replaced by a deformed (braided) trace. A category of such representation is considered
in [GPS2]. Thus, though a Poisson analog of the trace does not exist on the whole sphere
the corresponding quantum algebra can be endowed with a trace but this trace is braided.

Remark 2. We would like to emphasize a difference between a usual variety and a
super-one. Consider again the algebra sl(1|1). The quotient

Sym (sl(1|1))/〈h2 + bc− r2〉, r ∈ K

is a regular super-variety iff r 6= 0. A construction of the cotangent module (which is
projective) in the case r 6= 0 is evident.

However, in virtue of the factorization

h2 + bc− r2 =
(
h−

(
r − bc

2r

))(
h+

(
r − bc

2r

))
the super-variety in question is a union of two super-varieties: each of them is defined by
one of the equations

h−
(
r − bc

2r

)
= 0, h+

(
r − bc

2r

)
= 0. (34)

Nevertheless, these two super-varieties have no common points. Indeed, the system
(34) is equivalent to that h = 0, bc = 2r2 where the second equation has no solution if
r 6= 0. By contrast, the system (34) in the classical case (i.e. if all generators are even)
describes a non-empty set of points. All these points of the variety defined by the equation(

h−
(
r − bc

2r

))(
h+

(
r − bc

2r

))
= 0 (35)

are singular. Thus, the variety (35) is regular or not depending on the parity of the
generators b and c. Hopefully, braided deformations of super-orbits above can be presented
in a form similar to (35).
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