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Abstract. The main aim of this paper is to prove that there exists a martingale f ∈ H1/2 such

that the Fejér means of the two-dimensional Walsh–Fourier series of f is not uniformly bounded

in the space weak-L1/2.

1. Introduction. The first result with respect to the a.e. convergence of the Walsh–
Fejér means σnf is due to Fine [1]. Later, Schipp [5] showed that the maximal operator
σ∗f := supn |σnf | is of weak type (1, 1), from which the a.e. convergence follows by
a standard argument. Schipp’s result implies by interpolation also the boundedness of
σ∗ : Lp → Lp (1 < p ≤ ∞). This fails to hold for p = 1 but Fujii [2] proved that σ∗ is
bounded from the dyadic Hardy space H1 to the space L1. Fujii’s theorem was extended
by Weisz [8]. Namely, he proved that the maximal operator of the Fejér means of the
one-dimensional Walsh–Fourier series is bounded from the martingale Hardy space Hp(G)
to the space Lp(G) for p > 1/2. Simon [6] gave a counterexample, which shows that this
boundedness does not hold for 0 < p < 1/2. In the endpoint case p = 1/2 Weisz [11]
proved that σ∗ is bounded from the Hardy space H1/2(G) to the space weak-L1/2(G).
In [3] the author proved that the maximal operator σ∗ is not bounded from the Hardy
space H1/2(G) to the space L1/2(G). By interpolation it follows that σ∗ is not bounded
from the Hardy space Hp to the space weak-Lp for any 0 < p < 1/2.

For the two-dimensional Walsh–Fourier series Weisz [9, 10] proved that the following
is true.

Theorem W1. Let p > 1/2. Then the maximal operator σ∗ is bounded from the Hardy
space Hp to the space Lp.
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The author [4] proved that in Theorem W1, for the maximal operator σ∗, the assump-
tion p > 1/2 is essential. Moreover, we prove that the following is true.

Theorem G. The maximal operator σ∗ is not bounded from the Hardy space H1/2 to
the space weak-L1/2.

Weisz [9, 10] considered the norm convergence of Fejér means of the two-dimensional
Walsh–Fourier series. In particular, the following is true.

Theorem W2. Let p > 1/2. Then

‖σn,mf‖Hp
≤ cp‖f‖Hp

(f ∈ Hp).

In [9] Weisz conjectured that for the uniformly boundedness of the operator σn,m from
the Hardy space Hp(G×G) to the space Hp(G×G) the assumption p > 1/2 is essential.
We give an answer to the question, moreover, we prove that the operator σn,n is not
uniformly bounded from the Hardy space H1/2(G×G) to the space weak-L1/2(G×G).
In particular, the following is true.

Theorem 1.1. There exists a martingale f ∈ H1/2(G×G) such that

sup
n
‖σn,nf‖weak-L1/2 = +∞.

2. Dyadic Hardy spaces. Let P denote the set of positive integers, N := P ∪ {0}.
Denote by Z2 the discrete cyclic group of order 2, that is Z2 = {0, 1}, where the group
operation is the modulo 2 addition and every subset is open. The Haar measure on Z2 is
given such that the measure of a singleton is 1/2. Let G be the complete direct product
of the countable infinite copies of the compact groups Z2. The elements of G are of the
form x = (x0, x1, . . . , xk, . . .) with xk ∈ {0, 1} (k ∈ N). The group operation on G is the
coordinate-wise addition, the measure (denoted by µ) and the topology are the product
measure and topology. The compact Abelian group G is called the Walsh group. A base
for the neighborhoods of G can be given in the following way:

I0(x) := G, In(x) := In(x0, . . . , xn−1) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . .)}
(x ∈ G, n ∈ N).

These sets are called the dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote the null element
of G, In := In(0) (n ∈ N). Set en := (0, . . . , 0, 1, 0, . . .) ∈ G the n-th coordinate of which
is 1 and the rest are zeros (n ∈ N).

For k ∈ N and x ∈ G denote by

rk(x) := (−1)xk

the k-th Rademacher function.
The dyadic rectangles are of the form

In,m(x, y) := In(x)× Im(y).

The σ-algebra generated by the dyadic rectangles {In,m(x, y) : (x, y) ∈ G × G} is
denoted by Fn,m.
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The norm (or quasinorm) of the space Lp(G×G) is defined by

‖f‖p :=
(∫

G×G
|f(x, y)|p dµ(x, y)

)1/p

(0 < p < +∞).

The space weak-Lp(G×G) consists of all measurable functions f for which

‖f‖weak-Lp(G×G) := sup
λ>0

λµ(|f | > λ)1/p < +∞.

Let us denote by f = (f (n,m), n,m ∈ N) a two parameter martingale with respect to
(Fn,m, n,m ∈ N) (for details see, e.g. [7, 10]). The maximal function of a martingale f is
defined by

f∗ = sup
n,m∈N

∣∣f (n,m)
∣∣.

If f ∈ L1(G×G), the maximal function can also be given by

f∗(x, y) = sup
n,m∈N

1
µ(In,m(x, y))

∣∣∣∫
In,m(x,y)

f(u, v) dµ(u, v)
∣∣∣, (x, y) ∈ G×G.

For 0 < p < ∞ the Hardy martingale space Hp(G × G) consists of all martingales for
which

‖f‖Hp := ‖f∗‖p <∞.

3. Walsh system and Fejér means. Let n ∈ N, then n =
∞∑
i=0

ni2i, ni ∈ {0, 1} (i ∈ N),

i.e. n is expressed in the number system of base 2. Let |n| := max{j ∈ N : nj 6= 0}, that
is, 2|n| ≤ n < 2|n|+1.

The Walsh–Paley system is defined as the sequence of Walsh–Paley functions:

wn(x) :=
∞∏
k=0

(rk(x))nk = r|n|(x)(−1)
∑|n|−1

k=0 nkxk (x ∈ G, n ∈ P).

The Walsh–Dirichlet kernel is defined by

Dn(x) =
n−1∑
k=0

wk(x).

Recall that

D2n(x) =

{
2n, if x ∈ In,
0, if x ∈ G \ In.

(1)

The Fejér kernel of order n of the Walsh–Fourier series is defined by

Kn(x) :=
1
n

n−1∑
k=0

Dk(x).

The rectangular partial sums of the double Walsh–Fourier series are defined as follows:

SM,Nf(x, y) :=
M−1∑
i=0

N−1∑
j=0

f̂(i, j)wi(x)wj(y),

where the number
f̂(i, j) =

∫
G×G

f(x, y)wi(x)wj(y) dµ(x, y)
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is said to be the (i, j)-th Walsh–Fourier coefficient of the function f .
If f ∈ L1(G×G) then it is easy to show that the sequence (S2n,2m(f) : n,m ∈ N) is a

martingale. If f is a martingale, that is f = (f (n,m) : n,m ∈ N) then the Walsh–Fourier
coefficients must be defined in a little bit different way:

f̂(i, j) = lim
min(k,l)→∞

∫
G×G

f (k,l)(x, y)wi(x)wj(y) dµ(x, y). (2)

The Walsh–Fourier coefficients of f ∈ L1(G × G) are the same as the ones of the
martingale (S2n,2m(f) : n,m ∈ N) obtained from f .

For n,m ∈ P and a martingale f the Fejér mean of order (n,m) of the double
Walsh–Fourier series of the martingale f is given by

σn,mf(x, y) =
1
nm

n−1∑
i=0

m−1∑
j=0

Si,jf(x, y).

For the martingale f the maximal operator is defined by

σ∗f(x, y) = sup
n,m
|σn,mf(x, y)|.

A function a ∈ L2 is called a rectangle p-atom if there exists a dyadic rectangle R
such that 

supp(a) ⊂ R,
‖a‖2 ≤ |R|1/2−1/p∫
G
a(x, y) dµ(x) =

∫
G
a(x, y) dµ(y) = 0 for all x, y ∈ G.

The basic result of atomic decomposition is

Theorem W3. A martingale f = (f (n,m) : n,m ∈ N) is in Hp (0 < p ≤ 1) if there
exists a sequence (ak, k ∈ N) of rectangle p-atoms and a sequence (µk, k ∈ N) of real
numbers such that for every n,m ∈ N ,

∞∑
k=0

µkS2n,2mak = f (n,m),

∞∑
k=0

|µk|p <∞.

Moreover,

‖f‖Hp
≤ inf

( ∞∑
k=0

|µk|p
)1/p

.

In this paper the constant C are absolute constants and may denote different constants
in different contexts.

4. Auxiliary result. In order to prove the theorem we need the following lemma.

Lemma 4.1 ([4]). Let 2 < A ∈ P and qA := 22A + 22A−2 + . . .+ 22 + 20. Then

qA−1|KqA−1(x)| ≥ 22m+2s−3

for x ∈ Im,s2A := I2A(0, . . . , 0, 1
2m
, 0, . . . , 0, 1

2s
, x2s+1, . . . , x2A−1), m = 0, 1, . . . , A− 3,

s = m+ 2,m+ 3, . . . , A− 1.
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5. Proof of the main result. Proof of Theorem 1.1. Since 2m/m ↑ ∞ it is easy to
show that there exists an increasing sequence of positive integers {mk : k ∈ P} such that

∞∑
k=1

1

m
1/2
k

<∞, (3)

k−1∑
l=0

28ml

ml
<

28mk

mk
, (4)

28mk−1

mk−1
<

2mk

kmk
. (5)

Let

f (A,B)(x, y) :=
∑

{l:2ml<min(A,B)}

λlal(x, y),

where λl := 1
ml

and

al(x, y) := 24ml
(
D22ml+1(x)−D22ml (x)

)(
D22ml+1(y)−D22ml (y)

)
.

First, we prove that the martingale f := (f (A,B) : A,B ∈ N) belongs to the Hardy
space H1/2(G×G). Indeed, since ‖al‖2 ≤ c26ml and

S2A,2Bak(x, y) =

{
0, if min(A,B) ≤ 2mk,

ak(x, y), if min(A,B) > 2mk,

we can write

f (A,B)(x, y) :=
∑

{l:2ml<min(A,B)}

λlal(x, y) =
∞∑
k=0

λkS2A,2Bak(x, y).

From (3) and Theorem W3 we conclude that f ∈ H1/2(G×G).

Now, we investigate the Fourier coefficients. Since∫
G×G

f (A,B)(x, y)wi(x)wj(y) dµ(x, y)

=


0, (i, j) /∈

⋃∞
k=0{22mk , . . . , 22mk+1 − 1} × {22mk , . . . , 22mk+1 − 1},

0, (i, j) ∈ {22mk , . . . , 22mk+1 − 1}×{22mk , . . . , 22mk+1 − 1},min(A,B) ≤ 2mk,
24mk

mk
, (i, j) ∈ {22mk , . . . , 22mk+1 − 1}×{22mk , . . . , 22mk+1 − 1},min(A,B) > 2mk,

we can write (see (2))

f̂(i, j) =

{
24mk

mk
, (i, j) ∈ {22mk , . . . , 22mk+1 − 1}×{22mk , . . . , 22mk+1 − 1}, k ∈ P,

0, (i, j) /∈
⋃∞
k=1{22mk , . . . , 22mk+1 − 1} × {22mk , . . . , 22mk+1 − 1}.

(6)
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Let qmk
:= 22mk + 22mk−2 + . . .+ 22 + 20. Then we can write

σqmk
,qmk

f(x, y) =
1
q2
mk

qmk
−1∑

i=0

qmk
−1∑

j=0

Si,jf(x, y)

=
1
q2
mk

22mk−1∑
i=0

22mk−1∑
j=0

Si,jf(x, y) +
1
q2
mk

qmk
−1∑

i=22mk

22mk−1∑
j=0

Si,jf(x, y)

+
1
q2
mk

22mk−1∑
i=0

qmk
−1∑

j=22mk

Si,jf(x, y) +
1
q2
mk

qmk
−1∑

i=22mk

qmk
−1∑

j=22mk

Si,jf(x, y)

= I + II + III + IV.

(7)

Let (i, j) ∈ {22mk , . . . , qmk
− 1} × {22mk , . . . , qmk

− 1}. Then from (6) we have

Si,jf(x, y) =
i−1∑
v=0

j−1∑
µ=0

f̂(ν, µ)wν(x)wµ(y)

=
k−1∑
l=1

2ml+1−1∑
ν=2ml

2ml+1−1∑
µ=2ml

f̂(ν, µ)wν(x)wµ(y) +
i−1∑

ν=22mk

j−1∑
µ=22mk

f̂(ν, µ)wν(x)wµ(y)

=
k−1∑
l=1

24ml

ml

(
D22ml+1(x)−D22ml (x)

)(
D2

2ml
+1(y)−D2

2ml
(y)
)

+
24mk

mk

(
Di(x)−D2

2mk
(x)
)(
Dj(y)−D2

2mk
(y)
)
.

(8)

Substituting (8) in IV, we obtain

IV =
1
q2
mk

(qmk
− 22mk)2

k−1∑
l=1

24ml

ml

(
D22ml+1(x)−D22ml (x)

)(
D22ml+1(y)−D22ml (y)

)
+

1
q2
mk

24mk

mk

qmk
−1∑

i=2
2mk

qmk
−1∑

j=2
2mk

(
Di(x)−D22mk (x)

)(
Dj(y)−D22mk (y)

)
= IV1 + IV2.

(9)

Since

Dj+22mk (x) = D22mk (x) + w22mk (x)Dj(x), j = 0, 1, . . . , 22mk − 1,

we can write

IV2 =
1
q2
mk

24mk

mk
w22mk (x)w22mk (y)

qmk−1−1∑
i=0

Di(x)
qmk−1−1∑
j=0

Dj(y)

=
1
q2
mk

24mk

mk
w22mk (x)w22mk (y)q2

mk−1Kqmk−1(x)Kqmk−1(y).

(10)

Since
|D2n(x)| ≤ 2n, n ∈ N, x ∈ G,



NORM CONVERGENCE OF FEJÉR MEANS 323

by (4) and (5) we obtain

|IV1| ≤ C
k−1∑
l=1

28ml

ml
≤ C 2mk

kmk
. (11)

Combining (9)–(11) we have

IV ≥
Cq2

mk−1

mk

∣∣Kqmk−1(x)
∣∣ ∣∣Kqmk−1(y)

∣∣− C2mk

kmk
. (12)

Let
(i, j) ∈ ({22mk , . . . , qmk

− 1} × {0, 1, . . . , 22mk − 1})
∪ ({0, 1, . . . , 22mk − 1} × {22mk , . . . , qmk

− 1})
∪ ({0, 1, . . . , 22mk − 1} × {0, 1, . . . , 22mk − 1}).

Then from (6), (4) and (5) it is easy to show that

|Si,jf(x, y)| ≤
k−1∑
l=0

22ml+1−1∑
ν=22ml

22ml+1−1∑
µ=22ml

|f̂(ν, µ)| ≤
k−1∑
l=0

28ml

ml
≤ C2mk

kmk
.

Consequently,

|I| ≤ 1
q2
mk

22mk−1∑
i=0

22mk−1∑
j=0

|Si,jf(x, y)| ≤ C 24mk

q2
mk

2mk

kmk
≤ C2mk

kmk
(13)

|II| ≤ 22mk(qmk
− 22mk)

q2
mk

2mk

kmk
≤ C 2mk

kmk
(14)

|III| ≤ C2mk

kmk
. (15)

Combining (7), (9)–(15) we obtain

|σqmk
,qmk

f(x, y)| ≥
Cq2

mk−1

mk

∣∣Kqmk−1(x)
∣∣ ∣∣Kqmk−1(y)

∣∣− C2mk

kmk
. (16)

Let (x, y) ∈ I l1,l1+2
2mk

× I l2,l2+2
2mk

, (l1, l2) ∈ {0, 1, . . . ,mk − 3} × {0, 1, . . . ,mk − 3}. Then
from Lemma 4.1 we can write

qmk−1

∣∣Kqmk−1(x)
∣∣ ≥ C24l1 and qmk−1

∣∣Kqmk−1(y)
∣∣ ≥ C24l2 ,

consequently,

q2
mk−1

∣∣Kqmk−1(x)
∣∣ ∣∣Kqmk−1(y)

∣∣ ≥ C24l1+4l2 ,∣∣σqmk
,qmk

f(x, y)
∣∣ ≥ C

mk
24l1+4l2 − C2mk

kmk
. (17)

Let

A(mk) :=
{

(l1, l2) : 0 ≤ l2 ≤ mk − 3, 0 ≤ l1 ≤
mk

4
, l1 + l2 ≥

mk

4

}
and

αk :=
C2mk

mk
.

Since (see (17) and (l1, l2) ∈ A(mk))∣∣σqmk
,qmk

f(x, y)
∣∣ ≥ C

mk
2mk − C2mk

kmk
≥ C2mk

mk
= αk for sufficiently large k,
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we have
µ
{

(x, y) ∈ G×G :
∣∣σqmk

,qmk
f(x, y)

∣∣ ≥ αk}
≥

∑
(l1,l2)∈A(mk)

µ
{

(x, y) ∈ I l1,l1+2
2mk

× I l2,l2+2
2mk

:
∣∣σqmk

,qmk
f(x, y)

∣∣ ≥ αk}

≥ C
[mk/4]∑
l1=0

mk−3∑
l2=[mk/4]−l1

1∑
x2l1+5=0

· · ·
1∑

x2mk−1=0

1∑
x2l2+5=0

· · ·
1∑

x2mk−1=0

µ
(
I l1,l1+2
2mk

× I l2,l2+2
2mk

)

≥ C
[mk/4]∑
l1=0

mk−3∑
l2=[mk/4]−l1

1
22l1+2l2

≥ Cmk

2mk/2
.

Consequently,

αk

(
µ
{

(x, y) : |σqmk
,qmk

f(x, y)| ≥ Cαk
})2

≥ C 2mk

mk

m2
k

2mk
= Cmk →∞ as k →∞,

sup
k

∥∥σqmk
,qmk

f
∥∥

weak-L1/2

:= sup
k

sup
λ>0

λ
(
µ
{

(x, y) ∈ G×G : σqmk
,qmk

f(x, y) > λ
})2 = +∞.

Theorem 1.1 is proved.
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