# NORM CONVERGENCE OF FEJÉR MEANS OF TWO-DIMENSIONAL WALSH-FOURIER SERIES 

USHANGI GOGINAVA<br>Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University Chavchavadze str. 1, Tbilisi 0128, Georgia<br>E-mail: zazagoginava@gmail.com


#### Abstract

The main aim of this paper is to prove that there exists a martingale $f \in H_{1 / 2}$ such that the Fejér means of the two-dimensional Walsh-Fourier series of $f$ is not uniformly bounded in the space weak- $L_{1 / 2}$.


1. Introduction. The first result with respect to the a.e. convergence of the WalshFejér means $\sigma_{n} f$ is due to Fine [1]. Later, Schipp [5] showed that the maximal operator $\sigma^{*} f:=\sup _{n}\left|\sigma_{n} f\right|$ is of weak type $(1,1)$, from which the a.e. convergence follows by a standard argument. Schipp's result implies by interpolation also the boundedness of $\sigma^{*}: L_{p} \rightarrow L_{p}(1<p \leq \infty)$. This fails to hold for $p=1$ but Fujii [2] proved that $\sigma^{*}$ is bounded from the dyadic Hardy space $H_{1}$ to the space $L_{1}$. Fujii's theorem was extended by Weisz [8. Namely, he proved that the maximal operator of the Fejér means of the one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space $H_{p}(G)$ to the space $L_{p}(G)$ for $p>1 / 2$. Simon [6] gave a counterexample, which shows that this boundedness does not hold for $0<p<1 / 2$. In the endpoint case $p=1 / 2$ Weisz [11] proved that $\sigma^{*}$ is bounded from the Hardy space $H_{1 / 2}(G)$ to the space weak- $L_{1 / 2}(G)$. In [3] the author proved that the maximal operator $\sigma^{*}$ is not bounded from the Hardy space $H_{1 / 2}(G)$ to the space $L_{1 / 2}(G)$. By interpolation it follows that $\sigma^{*}$ is not bounded from the Hardy space $H_{p}$ to the space weak- $L_{p}$ for any $0<p<1 / 2$.

For the two-dimensional Walsh-Fourier series Weisz [9, 10] proved that the following is true.

Theorem W1. Let $p>1 / 2$. Then the maximal operator $\sigma^{*}$ is bounded from the Hardy space $H_{p}$ to the space $L_{p}$.

[^0]The author [4] proved that in Theorem W1, for the maximal operator $\sigma^{*}$, the assumption $p>1 / 2$ is essential. Moreover, we prove that the following is true.

Theorem G. The maximal operator $\sigma^{*}$ is not bounded from the Hardy space $H_{1 / 2}$ to the space weak- $L_{1 / 2}$.

Weisz [9, 10] considered the norm convergence of Fejér means of the two-dimensional Walsh-Fourier series. In particular, the following is true.

Theorem W2. Let $p>1 / 2$. Then

$$
\left\|\sigma_{n, m} f\right\|_{H_{p}} \leq c_{p}\|f\|_{H_{p}} \quad\left(f \in H_{p}\right) .
$$

In [9] Weisz conjectured that for the uniformly boundedness of the operator $\sigma_{n, m}$ from the Hardy space $H_{p}(G \times G)$ to the space $H_{p}(G \times G)$ the assumption $p>1 / 2$ is essential. We give an answer to the question, moreover, we prove that the operator $\sigma_{n, n}$ is not uniformly bounded from the Hardy space $H_{1 / 2}(G \times G)$ to the space weak- $L_{1 / 2}(G \times G)$. In particular, the following is true.

Theorem 1.1. There exists a martingale $f \in H_{1 / 2}(G \times G)$ such that

$$
\sup _{n}\left\|\sigma_{n, n} f\right\|_{\text {weak }-L_{1 / 2}}=+\infty .
$$

2. Dyadic Hardy spaces. Let $\mathbf{P}$ denote the set of positive integers, $\mathbf{N}:=\mathbf{P} \cup\{0\}$. Denote by $Z_{2}$ the discrete cyclic group of order 2, that is $Z_{2}=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on $Z_{2}$ is given such that the measure of a singleton is $1 / 2$. Let $G$ be the complete direct product of the countable infinite copies of the compact groups $Z_{2}$. The elements of $G$ are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in\{0,1\}(k \in \mathbf{N})$. The group operation on $G$ is the coordinate-wise addition, the measure (denoted by $\mu$ ) and the topology are the product measure and topology. The compact Abelian group $G$ is called the Walsh group. A base for the neighborhoods of $G$ can be given in the following way:

$$
\begin{array}{r}
I_{0}(x):=G, I_{n}(x):=I_{n}\left(x_{0}, \ldots, x_{n-1}\right):=\left\{y \in G: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\} \\
(x \in G, n \in \mathbf{N}) .
\end{array}
$$

These sets are called the dyadic intervals. Let $0=(0: i \in \mathbf{N}) \in G$ denote the null element of $G, I_{n}:=I_{n}(0)(n \in \mathbf{N})$. Set $e_{n}:=(0, \ldots, 0,1,0, \ldots) \in G$ the $n$-th coordinate of which is 1 and the rest are zeros $(n \in \mathbf{N})$.

For $k \in \mathbf{N}$ and $x \in G$ denote by

$$
r_{k}(x):=(-1)^{x_{k}}
$$

the $k$-th Rademacher function.
The dyadic rectangles are of the form

$$
I_{n, m}(x, y):=I_{n}(x) \times I_{m}(y) .
$$

The $\sigma$-algebra generated by the dyadic rectangles $\left\{I_{n, m}(x, y):(x, y) \in G \times G\right\}$ is denoted by $F_{n, m}$.

The norm (or quasinorm) of the space $L_{p}(G \times G)$ is defined by

$$
\|f\|_{p}:=\left(\int_{G \times G}|f(x, y)|^{p} d \mu(x, y)\right)^{1 / p} \quad(0<p<+\infty) .
$$

The space weak- $L_{p}(G \times G)$ consists of all measurable functions $f$ for which

$$
\|f\|_{\text {weak }-L_{p}(G \times G)}:=\sup _{\lambda>0} \lambda \mu(|f|>\lambda)^{1 / p}<+\infty
$$

Let us denote by $f=\left(f^{(n, m)}, n, m \in N\right)$ a two parameter martingale with respect to $\left(F_{n, m}, n, m \in \mathbf{N}\right)$ (for details see, e.g. [7, 10]). The maximal function of a martingale $f$ is defined by

$$
f^{*}=\sup _{n, m \in N}\left|f^{(n, m)}\right|
$$

If $f \in L_{1}(G \times G)$, the maximal function can also be given by

$$
f^{*}(x, y)=\sup _{n, m \in \mathbf{N}} \frac{1}{\mu\left(I_{n, m}(x, y)\right)}\left|\int_{I_{n, m}(x, y)} f(u, v) d \mu(u, v)\right|, \quad(x, y) \in G \times G
$$

For $0<p<\infty$ the Hardy martingale space $H_{p}(G \times G)$ consists of all martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}<\infty
$$

3. Walsh system and Fejér means. Let $n \in \mathbf{N}$, then $n=\sum_{i=0}^{\infty} n_{i} 2^{i}, n_{i} \in\{0,1\}(i \in \mathbf{N})$, i.e. $n$ is expressed in the number system of base 2 . Let $|n|:=\max \left\{j \in \mathbf{N}: n_{j} \neq 0\right\}$, that is, $2^{|n|} \leq n<2^{|n|+1}$.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_{k} x_{k}} \quad(x \in G, n \in \mathbf{P})
$$

The Walsh-Dirichlet kernel is defined by

$$
D_{n}(x)=\sum_{k=0}^{n-1} w_{k}(x)
$$

Recall that

$$
D_{2^{n}}(x)= \begin{cases}2^{n}, & \text { if } x \in I_{n}  \tag{1}\\ 0, & \text { if } x \in G \backslash I_{n}\end{cases}
$$

The Fejér kernel of order $n$ of the Walsh-Fourier series is defined by

$$
K_{n}(x):=\frac{1}{n} \sum_{k=0}^{n-1} D_{k}(x)
$$

The rectangular partial sums of the double Walsh-Fourier series are defined as follows:

$$
S_{M, N} f(x, y):=\sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \widehat{f}(i, j) w_{i}(x) w_{j}(y)
$$

where the number

$$
\widehat{f}(i, j)=\int_{G \times G} f(x, y) w_{i}(x) w_{j}(y) d \mu(x, y)
$$

is said to be the $(i, j)$-th Walsh-Fourier coefficient of the function $f$.
If $f \in L_{1}(G \times G)$ then it is easy to show that the sequence $\left(S_{2^{n}, 2^{m}}(f): n, m \in \mathbf{N}\right)$ is a martingale. If $f$ is a martingale, that is $f=\left(f^{(n, m)}: n, m \in \mathbf{N}\right)$ then the Walsh-Fourier coefficients must be defined in a little bit different way:

$$
\begin{equation*}
\widehat{f}(i, j)=\lim _{\min (k, l) \rightarrow \infty} \int_{G \times G} f^{(k, l)}(x, y) w_{i}(x) w_{j}(y) d \mu(x, y) \tag{2}
\end{equation*}
$$

The Walsh-Fourier coefficients of $f \in L_{1}(G \times G)$ are the same as the ones of the martingale $\left(S_{2^{n}, 2^{m}}(f): n, m \in \mathbf{N}\right)$ obtained from $f$.

For $n, m \in \mathbf{P}$ and a martingale $f$ the Fejér mean of order $(n, m)$ of the double Walsh-Fourier series of the martingale $f$ is given by

$$
\sigma_{n, m} f(x, y)=\frac{1}{n m} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} S_{i, j} f(x, y)
$$

For the martingale $f$ the maximal operator is defined by

$$
\sigma^{*} f(x, y)=\sup _{n, m}\left|\sigma_{n, m} f(x, y)\right|
$$

A function $a \in L_{2}$ is called a rectangle $p$-atom if there exists a dyadic rectangle $R$ such that

$$
\left\{\begin{array}{l}
\operatorname{supp}(a) \subset R \\
\|a\|_{2} \leq|R|^{1 / 2-1 / p} \\
\int_{G} a(x, y) d \mu(x)=\int_{G} a(x, y) d \mu(y)=0 \quad \text { for all } x, y \in G
\end{array}\right.
$$

The basic result of atomic decomposition is
Theorem W3. A martingale $f=\left(f^{(n, m)}: n, m \in \mathbf{N}\right)$ is in $H_{p}(0<p \leq 1)$ if there exists a sequence $\left(a_{k}, k \in \mathbf{N}\right)$ of rectangle p-atoms and a sequence $\left(\mu_{k}, k \in \mathbf{N}\right)$ of real numbers such that for every $n, m \in \mathbf{N}$,

$$
\sum_{k=0}^{\infty} \mu_{k} S_{2^{n}, 2^{m}} a_{k}=f^{(n, m)}, \quad \sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty
$$

Moreover,

$$
\|f\|_{H_{p}} \leq \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p}
$$

In this paper the constant $C$ are absolute constants and may denote different constants in different contexts.
4. Auxiliary result. In order to prove the theorem we need the following lemma.

Lemma 4.1 ( 4$]$ ). Let $2<A \in \mathbf{P}$ and $q_{A}:=2^{2 A}+2^{2 A-2}+\ldots+2^{2}+2^{0}$. Then

$$
q_{A-1}\left|K_{q_{A-1}}(x)\right| \geq 2^{2 m+2 s-3}
$$

for $x \in I_{2 A}^{m, s}:=I_{2 A}\left(0, \ldots, 0, \underset{2 m}{1}, 0, \ldots, 0, \underset{2 s}{1}, x_{2 s+1}, \ldots, x_{2 A-1}\right), m=0,1, \ldots, A-3$, $s=m+2, m+3, \ldots, A-1$.
5. Proof of the main result. Proof of Theorem 1.1. Since $2^{m} / m \uparrow \infty$ it is easy to show that there exists an increasing sequence of positive integers $\left\{m_{k}: k \in \mathbf{P}\right\}$ such that

$$
\begin{align*}
\sum_{k=1}^{\infty} \frac{1}{m_{k}^{1 / 2}} & <\infty  \tag{3}\\
\sum_{l=0}^{k-1} \frac{2^{8 m_{l}}}{m_{l}} & <\frac{2^{8 m_{k}}}{m_{k}}  \tag{4}\\
\frac{2^{8 m_{k-1}}}{m_{k-1}} & <\frac{2^{m_{k}}}{k m_{k}} \tag{5}
\end{align*}
$$

Let

$$
f^{(A, B)}(x, y):=\sum_{\left\{l: 2 m_{l}<\min (A, B)\right\}} \lambda_{l} a_{l}(x, y)
$$

where $\lambda_{l}:=\frac{1}{m_{l}}$ and

$$
a_{l}(x, y):=2^{4 m_{l}}\left(D_{2^{2 m_{l}+1}}(x)-D_{2^{2 m_{l}}}(x)\right)\left(D_{2^{2 m_{l}+1}}(y)-D_{2^{2 m_{l}}}(y)\right)
$$

First, we prove that the martingale $f:=\left(f^{(A, B)}: A, B \in \mathbf{N}\right)$ belongs to the Hardy space $H_{1 / 2}(G \times G)$. Indeed, since $\left\|a_{l}\right\|_{2} \leq c 2^{6 m_{l}}$ and

$$
S_{2^{A}, 2^{B}} a_{k}(x, y)= \begin{cases}0, & \text { if } \min (A, B) \leq 2 m_{k} \\ a_{k}(x, y), & \text { if } \min (A, B)>2 m_{k}\end{cases}
$$

we can write

$$
f^{(A, B)}(x, y):=\sum_{\left\{l: 2 m_{l}<\min (A, B)\right\}} \lambda_{l} a_{l}(x, y)=\sum_{k=0}^{\infty} \lambda_{k} S_{2^{A}, 2^{B}} a_{k}(x, y)
$$

From (3) and Theorem W3 we conclude that $f \in H_{1 / 2}(G \times G)$.
Now, we investigate the Fourier coefficients. Since

$$
\begin{aligned}
& \int_{G \times G} f^{(A, B)}(x, y) w_{i}(x) w_{j}(y) d \mu(x, y) \\
& = \begin{cases}0, & (i, j) \notin \bigcup_{k=0}^{\infty}\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \\
0, & (i, j) \in\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\}, \min (A, B) \leq 2 m_{k} \\
\frac{2^{4 m_{k}}}{m_{k}}, & (i, j) \in\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\}, \min (A, B)>2 m_{k}\end{cases}
\end{aligned}
$$

we can write (see $\sqrt{22}$ )

$$
\widehat{f}(i, j)= \begin{cases}\frac{2^{4 m_{k}}}{m_{k}}, & (i, j) \in\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\}, k \in \mathbf{P},  \tag{6}\\ 0, & (i, j) \notin \bigcup_{k=1}^{\infty}\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, 2^{2 m_{k}+1}-1\right\}\end{cases}
$$

Let $q_{m_{k}}:=2^{2 m_{k}}+2^{2 m_{k}-2}+\ldots+2^{2}+2^{0}$. Then we can write

$$
\begin{align*}
\sigma_{q_{m_{k}}, q_{m_{k}}} f(x, y) & =\frac{1}{q_{m_{k}}^{2}} \sum_{i=0}^{q_{m_{k}}-1} \sum_{j=0}^{q_{m_{k}}-1} S_{i, j} f(x, y) \\
& =\frac{1}{q_{m_{k}}^{2}} \sum_{i=0}^{2^{2 m_{k}-1}} \sum_{j=0}^{2^{2 m_{k}-1}} S_{i, j} f(x, y)+\frac{1}{q_{m_{k}}^{2}} \sum_{i=2^{2 m_{k}}}^{q_{m_{k}}-1} \sum_{j=0}^{2^{2 m_{k}-1}} S_{i, j} f(x, y)  \tag{7}\\
& +\frac{1}{q_{m_{k}}^{2}} \sum_{i=0}^{2^{2 m_{k}-1}} \sum_{j=2^{2 m_{k}}}^{q_{m_{k}}-1} S_{i, j} f(x, y)+\frac{1}{q_{m_{k}}^{2}} \sum_{i=2^{2 m_{k}}}^{q_{m_{k}}-1} \sum_{j=2^{2 m_{k}}}^{q_{m_{k}-1}} S_{i, j} f(x, y) \\
& =I+I I+I I I+I V .
\end{align*}
$$

Let $(i, j) \in\left\{2^{2 m_{k}}, \ldots, q_{m_{k}}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, q_{m_{k}}-1\right\}$. Then from (6) we have

$$
\begin{align*}
& S_{i, j} f(x, y)=\sum_{v=0}^{i-1} \sum_{\mu=0}^{j-1} \widehat{f}(\nu, \mu) w_{\nu}(x) w_{\mu}(y) \\
& =\sum_{l=1}^{k-1} \sum_{\nu=2^{m_{l}}}^{2^{m_{l}+1}-1} \sum_{\mu=2^{m_{l}}}^{2^{m_{l}+1}-1} \widehat{f}(\nu, \mu) w_{\nu}(x) w_{\mu}(y)+\sum_{\nu=2^{2 m_{k}}}^{i-1} \sum_{\mu=2^{2 m_{k}}}^{j-1} \widehat{f}(\nu, \mu) w_{\nu}(x) w_{\mu}(y)  \tag{8}\\
& =\sum_{l=1}^{k-1} \frac{2^{4 m_{l}}}{m_{l}}\left(D_{2^{2 m_{l}+1}}(x)-D_{2^{2 m_{l}}}(x)\right)\left(D_{2^{2 m_{l}}+1}(y)-D_{2^{2 m_{l}}}(y)\right) \\
& \quad+\frac{2^{4 m_{k}}}{m_{k}}\left(D_{i}(x)-D_{2^{2 m_{k}}}(x)\right)\left(D_{j}(y)-D_{2^{2 m_{k}}}(y)\right) .
\end{align*}
$$

Substituting (8) in IV, we obtain

$$
\begin{aligned}
I V & =\frac{1}{q_{m_{k}}^{2}}\left(q_{m_{k}}-2^{2 m_{k}}\right)^{2} \sum_{l=1}^{k-1} \frac{2^{4 m_{l}}}{m_{l}}\left(D_{2^{2 m_{l}+1}}(x)-D_{2^{2 m_{l}}}(x)\right)\left(D_{2^{2 m_{l}+1}}(y)-D_{2^{2 m_{l}}}(y)\right) \\
& +\frac{1}{q_{m_{k}}^{2}} \frac{2^{4 m_{k}}}{m_{k}} \sum_{i=2^{2_{m}}}^{q_{m_{k}}-1} \sum_{j=2^{2 m_{k}}}^{q_{m_{k}}-1}\left(D_{i}(x)-D_{2^{2 m_{k}}}(x)\right)\left(D_{j}(y)-D_{2^{2 m_{k}}}(y)\right) \\
& =I V_{1}+I V_{2} .
\end{aligned}
$$

Since

$$
D_{j+2^{2 m_{k}}}(x)=D_{2^{2 m_{k}}}(x)+w_{2^{2 m_{k}}}(x) D_{j}(x), \quad j=0,1, \ldots, 2^{2 m_{k}}-1
$$

we can write

$$
\begin{align*}
I V_{2} & =\frac{1}{q_{m_{k}}^{2}} \frac{2^{4 m_{k}}}{m_{k}} w_{2^{2 m_{k}}}(x) w_{2^{2 m_{k}}}(y) \sum_{i=0}^{q_{m_{k}-1}-1} D_{i}(x) \sum_{j=0}^{q_{m_{k}-1}-1} D_{j}(y)  \tag{10}\\
& =\frac{1}{q_{m_{k}}^{2}} \frac{2^{4 m_{k}}}{m_{k}} w_{2^{2 m_{k}}}(x) w_{2^{2 m_{k}}}(y) q_{m_{k}-1}^{2} K_{q_{m_{k}-1}}(x) K_{q_{m_{k}-1}}(y) .
\end{align*}
$$

Since

$$
\left|D_{2^{n}}(x)\right| \leq 2^{n}, \quad n \in N, \quad x \in G
$$

by (4) and (5) we obtain

$$
\begin{equation*}
\left|I V_{1}\right| \leq C \sum_{l=1}^{k-1} \frac{2^{8 m_{l}}}{m_{l}} \leq C \frac{2^{m_{k}}}{k m_{k}} \tag{11}
\end{equation*}
$$

Combining (9)-(11) we have

$$
\begin{equation*}
I V \geq \frac{C q_{m_{k}-1}^{2}}{m_{k}}\left|K_{q_{m_{k}-1}}(x)\right|\left|K_{q_{m_{k}-1}}(y)\right|-\frac{C 2^{m_{k}}}{k m_{k}} \tag{12}
\end{equation*}
$$

Let

$$
\begin{aligned}
(i, j) & \in\left(\left\{2^{2 m_{k}}, \ldots, q_{m_{k}}-1\right\} \times\left\{0,1, \ldots, 2^{2 m_{k}}-1\right\}\right) \\
& \cup\left(\left\{0,1, \ldots, 2^{2 m_{k}}-1\right\} \times\left\{2^{2 m_{k}}, \ldots, q_{m_{k}}-1\right\}\right) \\
& \cup\left(\left\{0,1, \ldots, 2^{2 m_{k}}-1\right\} \times\left\{0,1, \ldots, 2^{2 m_{k}}-1\right\}\right)
\end{aligned}
$$

Then from (6), (4) and (5) it is easy to show that

$$
\left|S_{i, j} f(x, y)\right| \leq \sum_{l=0}^{k-1} \sum_{\nu=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1} \sum_{\mu=2^{2 m_{l}}}^{2^{2 m_{l}+1}-1}|\widehat{f}(\nu, \mu)| \leq \sum_{l=0}^{k-1} \frac{2^{8 m_{l}}}{m_{l}} \leq \frac{C 2^{m_{k}}}{k m_{k}}
$$

Consequently,

$$
\begin{align*}
|I| & \leq \frac{1}{q_{m_{k}}^{2}} \sum_{i=0}^{2^{2 m_{k}}-1} \sum_{j=0}^{2^{2 m_{k}}-1}\left|S_{i, j} f(x, y)\right| \leq C \frac{2^{4 m_{k}}}{q_{m_{k}}^{2}} \frac{2^{m_{k}}}{k m_{k}} \leq \frac{C 2^{m_{k}}}{k m_{k}}  \tag{13}\\
|I I| & \leq \frac{2^{2 m_{k}}\left(q_{m_{k}}-2^{2 m_{k}}\right)}{q_{m_{k}}^{2}} \frac{2^{m_{k}}}{k m_{k}} \leq C \frac{2^{m_{k}}}{k m_{k}}  \tag{14}\\
|I I I| & \leq \frac{C 2^{m_{k}}}{k m_{k}} \tag{15}
\end{align*}
$$

Combining (7), (9)- 15 ) we obtain

$$
\begin{equation*}
\left|\sigma_{q_{m_{k}}, q_{m_{k}}} f(x, y)\right| \geq \frac{C q_{m_{k}-1}^{2}}{m_{k}}\left|K_{q_{m_{k}-1}}(x)\right|\left|K_{q_{m_{k}-1}}(y)\right|-\frac{C 2^{m_{k}}}{k m_{k}} \tag{16}
\end{equation*}
$$

Let $(x, y) \in I_{2 m_{k}}^{l_{1}, l_{1}+2} \times I_{2 m_{k}}^{l_{2}, l_{2}+2},\left(l_{1}, l_{2}\right) \in\left\{0,1, \ldots, m_{k}-3\right\} \times\left\{0,1, \ldots, m_{k}-3\right\}$. Then from Lemma 4.1 we can write

$$
q_{m_{k}-1}\left|K_{q_{m_{k}-1}}(x)\right| \geq C 2^{4 l_{1}} \quad \text { and } \quad q_{m_{k}-1}\left|K_{q_{m_{k}-1}}(y)\right| \geq C 2^{4 l_{2}}
$$

consequently,

$$
\begin{gather*}
q_{m_{k}-1}^{2}\left|K_{q_{m_{k}-1}}(x)\right|\left|K_{q_{m_{k}-1}}(y)\right| \geq C 2^{4 l_{1}+4 l_{2}} \\
\left|\sigma_{q_{m_{k}}, q_{m_{k}}} f(x, y)\right| \geq \frac{C}{m_{k}} 2^{4 l_{1}+4 l_{2}}-\frac{C 2^{m_{k}}}{k m_{k}} \tag{17}
\end{gather*}
$$

Let

$$
A\left(m_{k}\right):=\left\{\left(l_{1}, l_{2}\right): 0 \leq l_{2} \leq m_{k}-3,0 \leq l_{1} \leq \frac{m_{k}}{4}, l_{1}+l_{2} \geq \frac{m_{k}}{4}\right\}
$$

and

$$
\alpha_{k}:=\frac{C 2^{m_{k}}}{m_{k}}
$$

Since (see 17) and $\left.\left(l_{1}, l_{2}\right) \in A\left(m_{k}\right)\right)$

$$
\left|\sigma_{q_{m_{k}}, q_{m_{k}}} f(x, y)\right| \geq \frac{C}{m_{k}} 2^{m_{k}}-\frac{C 2^{m_{k}}}{k m_{k}} \geq \frac{C 2^{m_{k}}}{m_{k}}=\alpha_{k} \quad \text { for sufficiently large } k
$$

we have

$$
\begin{aligned}
& \mu\left\{(x, y) \in G \times G:\left|\sigma_{q_{m_{k}}, q_{m_{k}}} f(x, y)\right| \geq \alpha_{k}\right\} \\
& \geq \sum_{\left(l_{1}, l_{2}\right) \in A\left(m_{k}\right)} \mu\left\{(x, y) \in I_{2 m_{k}}^{l_{1}, l_{1}+2} \times I_{2 m_{k}}^{l_{2}, l_{2}+2}:\left|\sigma_{q_{m_{k}}, q_{m_{k}}} f(x, y)\right| \geq \alpha_{k}\right\} \\
& \geq C \sum_{l_{1}=0}^{\left[m_{k} / 4\right]} \sum_{l_{2}=\left[m_{k} / 4\right]-l_{1}}^{m_{k}-3} \sum_{x_{2 l_{1}+5}=0}^{1} \ldots \sum_{x_{2 m_{k}-1}=0}^{1} \sum_{x_{2 l_{2}+5}=0}^{1} \ldots \sum_{x_{2 m_{k}-1}=0}^{1} \mu\left(I_{2 m_{k}}^{l_{1}, l_{1}+2} \times I_{2 m_{k}}^{l_{2}, l_{2}+2}\right) \\
& \geq C \sum_{l_{1}=0}^{\left[m_{k} / 4\right]} \sum_{l_{2}=\left[m_{k} / 4\right]-l_{1}}^{m_{k}-3} \frac{1}{2^{2 l_{1}+2 l_{2}}} \geq \frac{C m_{k}}{2^{m_{k} / 2}} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \alpha_{k}\left(\mu\left\{(x, y):\left|\sigma_{q_{m_{k}}, q_{m_{k}}} f(x, y)\right| \geq C \alpha_{k}\right\}\right)^{2} \geq C \frac{2^{m_{k}}}{m_{k}} \frac{m_{k}^{2}}{2^{m_{k}}}=C m_{k} \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty \\
& \sup _{k}\left\|\sigma_{q_{m_{k}}, q_{m_{k}}} f\right\|_{\text {weak- } L_{1 / 2}} \\
& :=\sup _{k} \sup _{\lambda>0} \lambda\left(\mu\left\{(x, y) \in G \times G: \sigma_{q_{m_{k}}, q_{m_{k}}} f(x, y)>\lambda\right\}\right)^{2}=+\infty .
\end{aligned}
$$

Theorem 1.1 is proved.

## References

[1] N. J. Fine, Cesàro summability of Walsh-Fourier series. Proc. Nat. Acad. Sci. USA 41 (1955), 558-591.
[2] N. Fujii, A maximal inequality for $H^{1}$ functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111-116.
[3] U. Goginava, The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx. 12 (2006), 295-302.
[4] U. Goginava, Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Hungar. 115 (2007), 333-340.
[5] F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 189-195.
[6] P. Simon, Cesàro summability with respect to two-parameter Walsh system, Monatsh. Math. 131 (2000), 321-334.
[7] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
[8] F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), 229-242.
[9] F. Weisz, The maximal $(C, \alpha, \beta)$ operator of two-parameter Walsh-Fourier series, J. Fourier Anal. Appl. 6 (2000), 389-401.
[10] F. Weisz, Summability of Multi-Dimensional Fourier Series and Hardy Spaces, Math. Appl. 541, Kluwer Acad. Publ., Dordrecht, 2002.
[11] F. Weisz, $\vartheta$-summability of Fourier series, Acta Math. Hungar. 103 (2004), 139-175.


[^0]:    2010 Mathematics Subject Classification: 42C10.
    Key words and phrases: Walsh function, Hardy space, maximal operator.
    The paper is in final form and no version of it will be published elsewhere.

