MARCINKIEWICZ CENTENARY VOLUME BANACH CENTER PUBLICATIONS, VOLUME 95 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2011

ON THE RATE OF SUMMABILITY BY MATRIX MEANS IN THE GENERALIZED HÖLDER METRIC

BOGDAN SZAL

University of Zielona Góra, Faculty of Mathematics, Computer Science and Econometrics ul. Prof. Szafrana 4a, 65-516 Zielona Góra, Poland E-mail: B.Szal@wmie.uz.zgora.pl

Abstract. We will generalize and improve the results of T. Singh [Publ. Math. Debrecen 40 (1992), 261–271] obtaining the L. Leindler type estimates from [Acta Math. Hungar. 104 (2004), 105–113].

1. Introduction. Let f be a continuous and 2π -periodic function and let

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
(1.1)

be its Fourier series. Denote by $S_n(x) = S_n(f;x)$ the *n*-th partial sum of (1.1) and by $\omega(f,\delta)$ the modulus of continuity of $f \in C_{2\pi}$.

The usual supremum norm will be denoted by $\|\cdot\|_C$.

Let ω be a nondecreasing continuous function on the interval $[0, 2\pi]$ having the properties

$$\omega(0) = 0, \quad \omega(\delta_1 + \delta_2) \le \omega(\delta_1) + \omega(\delta_2)$$

Such a function will be called a *modulus of continuity*.

Denote by H^{ω} the class of functions

$$H^{\omega} := \{ f \in C_{2\pi} : |f(x) - f(y)| \le C\omega(|x - y|) \},\$$

where C is a positive constant. For $f \in H^{\omega}$, we define the norm $\|\cdot\|_{\omega}$ by the formula

$$||f||_{\omega} := ||f||_{C} + \sup_{x,y} |\Delta^{\omega} f(x,y)|$$

where

$$\Delta^{\omega} f(x,y) = \frac{|f(x) - f(y)|}{\omega(|x - y|)}, \quad x \neq y,$$

Key words and phrases: trigonometric approximation, matrix means, special sequences. The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc95-0-22

²⁰¹⁰ Mathematics Subject Classification: 42A24, 41A25.

and $\Delta^0 f(x,y) = 0$. If $\omega(t) = C_1 |t|^{\alpha}$ ($0 < \alpha \leq 1$), where C_1 is a positive constant, then

$$H^{\alpha} = \left\{ f \in C_{2\pi} : |f(x) - f(y)| \le C_1 |x - y|^{\alpha}, \ 0 < \alpha \le 1 \right\}$$

is a Banach space and the metric induced by the norm $\|\cdot\|_{\alpha}$ on H^{α} is said to be a Hölder metric.

Let $A := (a_{nk})$ (k, n = 0, 1, ...) be a lower triangular infinite matrix of real numbers satisfying the condition

$$a_{nk} \ge 0 \ (k, n = 0, 1, ...), \quad a_{nk} = 0, \ k > n, \text{ and } \sum_{k=0}^{n} a_{nk} = 1.$$
 (1.2)

Let the A-transformation of $(S_n(f;x))$ be given by

$$T_n(f) := T_n(f;x) := \sum_{k=0}^n a_{nk} S_k(f;x) \quad (n = 0, 1, \dots).$$
(1.3)

Now, we define two classes of sequences (see [3]).

A sequence $c := (c_n)$ of nonnegative numbers tending to zero is called the *Rest* Bounded Variation Sequence, or briefly $c \in RBVS$, if it has the property

$$\sum_{n=m}^{\infty} |c_n - c_{n+1}| \le K(c)c_m \tag{1.4}$$

for all natural numbers m, where K(c) is a constant depending only on c.

A sequence $c := (c_n)$ of nonnegative numbers will be called the *Head Bounded Vari*ation Sequence, or briefly $c \in HBVS$, if it has the property

$$\sum_{n=0}^{m-1} |c_n - c_{n+1}| \le K(c)c_m \tag{1.5}$$

for all natural numbers m, or only for all $m \leq N$ if the sequence c has only finite number of nonzero terms and the last nonzero term is c_N .

Therefore we assume that the sequence $(K(\alpha_n))_{n=0}^{\infty}$ is bounded, that is, that there exists a constant K such that

$$0 \le K(\alpha_n) \le K$$

holds for all n, where $K(\alpha_n)$ denotes the sequence of constants appearing in the inequalities (1.4) or (1.5) for the sequence $\alpha_n := (a_{nk})_{k=0}^{\infty}$. Now, we can give the conditions to be used later on. We assume that for all n and $0 \le m \le n$

$$\sum_{k=m}^{\infty} |a_{nk} - a_{nk+1}| \le K a_{nm} \tag{1.6}$$

or

$$\sum_{k=0}^{m-1} |a_{nk} - a_{nk+1}| \le K a_{nm} \tag{1.7}$$

if $\alpha_n := (a_{nk})_{k=0}^{\infty}$ belongs to *RBVS* or *HBVS*, respectively.

360

Let ω and ω^* be two given moduli of continuity satisfying the following condition (for $0 \le p < q \le 1$):

$$\frac{(\omega(t))^{p/q}}{\omega^*(t)} = O(1) \quad (t \to 0_+).$$
(1.8)

In [5] R. Mohapatra and P. Chandra obtained some results on degree of approximation by the means (1.3) in the Hölder metric. Recently, T. Singh in [6] established the following two theorems generalizing some results of P. Chandra [1] with a mediate function H such that

$$\int_{u}^{\pi} \frac{\omega(f;t)}{t^{2}} dt = O(H(u)) \ (u \to 0_{+}), \quad H(t) \ge 0$$
(1.9)

and

$$\int_0^t H(u) \, du = O(tH(t)) \quad (t \to 0_+). \tag{1.10}$$

THEOREM 1.1 ([6]). Assume that $A = (a_{nk})$ satisfies condition (1.2) and $a_{nk} \leq a_{nk+1}$ for $k = 0, 1, \ldots, n-1$; $n = 0, 1, \ldots$. Then for $f \in H^{\omega}$, $0 \leq p < q \leq 1$

$$\|T_n(f) - f\|_{\omega^*} = O\left[\left\{\omega(|x - y|)\right\}^{p/q} \left\{\omega^*(|x - y|)\right\}^{-1} \times \left\{\left(H\left(\frac{\pi}{n}\right)\right)^{1 - p/q} a_{nn}(n^{p/q} + a_{nn}^{-p/q})\right\}\right] + O\left(a_{nn}H\left(\frac{\pi}{n}\right)\right), \quad (1.11)$$

if $\omega(t)$ satisfies (1.9) and (1.10), and

$$\|T_n(f) - f\|_{\omega^*} = O\left[\left\{\omega(|x - y|)\right\}^{p/q} \left\{\omega^*(|x - y|)\right\}^{-1} \times \left\{\left(\omega\left(\frac{\pi}{n}\right)\right)^{1 - p/q} + a_{nn}n^{p/q} \left(H\left(\frac{\pi}{n}\right)\right)^{1 - p/q}\right\}\right] + O\left\{\omega\left(\frac{\pi}{n}\right) + a_{nn}H\left(\frac{\pi}{n}\right)\right\}, \quad (1.12)$$

if $\omega(t)$ satisfies (1.9).

THEOREM 1.2 ([6]). Assume that $A = (a_{nk})$ satisfies condition (1.2) and $a_{nk} \ge a_{nk+1}$ for $k = 0, 1, \ldots, n-1; n = 0, 1, \ldots$ and $\omega(f; t)$ satisfies (1.9) and (1.10). Then for $f \in H^{\omega}$, $0 \le p < q \le 1$

$$\|T_n(f) - f\|_{\omega^*} = O\Big[\{\omega(|x - y|)\}^{p/q} \{\omega^*(|x - y|)\}^{-1} \\ \times \{(H(a_{n0}))^{1 - p/q} a_{n0}(n^{p/q} + a_{n0}^{-p/q})\}\Big] + O(a_{n0}H(a_{n0})).$$
(1.13)

Another generalization of the results of Chandra [2] was obtained by L. Leindler in [3]. Namely, he proved the following theorems.

THEOREM 1.3 ([3]). Let (1.2), (1.7) and (1.9) hold. Then for $f \in C_{2\pi}$

$$|T_n(f) - f||_C = O\left(\omega\left(\frac{\pi}{n}\right)\right) + O\left(a_{nn}H\left(\frac{\pi}{n}\right)\right).$$
(1.14)

If, in addition, $\omega(f;t)$ satisfies condition (1.10) then

$$T_n(f) - f \|_C = O(a_{nn} H(a_{nn})).$$
(1.15)

THEOREM 1.4 ([3]). Let (1.2), (1.6), (1.9) and (1.10) hold. Then for $f \in C_{2\pi}$ $\|T_n(f) - f\|_C = O(a_{n0}H(a_{n0})).$ (1.16) In the present paper we will generalize and improve the results of T. Singh [6] obtaining the L. Leindler type estimates from [3] in the generalized Hölder metric instead of the supremum norm.

Throughout the paper we shall use the following notation:

$$\phi_x(t) = f(x+t) + f(x-t) - 2f(x),$$

$$A_{nk} = \sum_{r=n-k+1}^n a_{nr} \quad (k = 1, 2, \dots, n+1),$$

$$A_n(u) = \sum_{k=0}^n a_{nk} \frac{\sin(k+\frac{1}{2})u}{\sin(u/2)}.$$

By K_1, K_2, \ldots we shall designate either an absolute constant or a constant depending on the indicated parameters, not necessarily the same at each occurrence.

2. Main results. Our main results are the following.

THEOREM 2.1. Let (1.2), (1.7) and (1.8) hold. Suppose $\omega(f;t)$ satisfies (1.9), then for $f \in H^{\omega}$

$$||T_n(f) - f||_{\omega^*} = O\left(\left\{\sum_{k=1}^{n+1} \frac{A_{nk}}{k}\right\}^{p/q} \left\{a_{nn}H\left(\frac{\pi}{n}\right)\right\}^{1-p/q}\right).$$
 (2.1)

If, in addition, $\omega(f;t)$ satisfies condition (1.10), then

$$||T_n(f) - f||_{\omega^*} = O\left(\left\{\sum_{k=1}^{n+1} \frac{A_{nk}}{k}\right\}^{p/q} \left\{a_{nn}H(a_{nn})\right\}^{1-p/q}\right).$$
(2.2)

THEOREM 2.2. Let (1.2), (1.8), (1.6) and (1.9) hold. Then, for $f \in H^{\omega}$

$$||T_n(f) - f||_{\omega^*} = O\left(\left\{a_{n0}H\left(\frac{\pi}{n}\right)\right\}^{1-p/q}\right).$$
(2.3)

If, in addition, $\omega(f;t)$ satisfies (1.10), then

$$||T_n(f) - f||_{\omega^*} = O(\{a_{n0}H(a_{n0})\}^{1-p/q}).$$
(2.4)

REMARK 2.1. We can observe, that under the condition (1.8), Theorems 1.1 and 1.2 are the corollaries of Theorems 2.1 and 2.2, respectively. The assumption $a_{nk} \leq a_{nk+1}$ (k = 0, 1, ..., n - 1; n = 0, 1, ...) of Theorem 1.1 implies the inequality

$$\sum_{k=1}^{n+1} \frac{A_{nk}}{k} \le (n+1)a_{nn},$$

whence by the Theorem 2.1, we obtain the relation of the (1.11) type. The estimate (1.13) from Theorem 1.2 is also a consequence of the estimate of Theorem 2.2 and sometimes is better since $(n^{p/q}a_{n0})$ can be unbounded.

REMARK 2.2. If in the assumptions of Theorems 2.1 or 2.2 we take $\omega(|t|) = O(|t|^q)$, $\omega^*(|t|) = O(|t|^p)$ with p = 0, then from (2.1), (2.2) and (2.3), we have the estimates (1.14), (1.15) and (1.16), respectively.

3. Lemmas. To prove our theorems we need the following lemmas.

LEMMA 3.1 ([2]). If (1.9) and (1.10) hold then

$$\int_{0}^{r} \frac{\omega(f;t)}{t} dt = O(rH(r)) \quad (r \to 0_{+}).$$
(3.1)

LEMMA 3.2 ([4]). If (1.7) holds, then for $\frac{1}{n} \leq u \leq \pi$

$$|A_n(u)| \le \frac{\pi^2 (K+1)^2 + \pi}{u} A_{n,\overline{u}^{-1}}, \tag{3.2}$$

where $\overline{u}^{-1} := \max\{1, [u^{-1}]\}.$

LEMMA 3.3 ([4]). If (1.6) holds, then for $f \in C_{2\pi}$

$$||T_n(f) - f||_C \le 8(K+1)(2K+1)\sum_{k=0}^n a_{nk}E_k(f),$$
(3.3)

where $E_n(f)$ denotes the best approximation of function f by trigonometric polynomials of order at most n.

LEMMA 3.4 ([4]). If (1.6) holds, then

$$\int_0^\pi |A_n(t)| \, dt \le 4K(K+1). \tag{3.4}$$

LEMMA 3.5. If (1.2), (1.6) hold and $\omega(f;t)$ satisfies (1.9) then

$$\sum_{k=0}^{n} a_{nk} \omega \left(f; \frac{\pi}{k+1} \right) = O\left(a_{n0} H\left(\frac{\pi}{n}\right) \right).$$
(3.5)

If, in addition, $\omega(f;t)$ satisfies (1.10) then

$$\sum_{k=0}^{n} a_{nk} \omega \left(f; \frac{\pi}{k+1} \right) = O(a_{n0} H(a_{n0})).$$
(3.6)

Proof. First we prove (3.5). If (1.6) holds, then

$$|a_{nn} - a_{nm}| \le |a_{nm} - a_{nn}| \le \sum_{k=m}^{n-1} |a_{nk} - a_{nk+1}| \le \sum_{k=m}^{\infty} |a_{nk} - a_{nk+1}| \le Ka_{nm}$$

for any $n \ge m \ge 0$, whence

$$a_{nn} \le (K+1)a_{nm}.\tag{3.7}$$

From this, using (1.9), we get

$$\sum_{k=0}^{n} a_{nk} \omega \left(f; \frac{\pi}{k+1} \right) \le (K+1) a_{n0} \sum_{k=0}^{n} \omega \left(f; \frac{\pi}{k+1} \right)$$
$$\le K_1 a_{n0} \int_1^{n+1} \omega \left(f; \frac{\pi}{t} \right) dt = K_1 a_{n0} \int_{\pi/(n+1)}^{\pi} \frac{\omega(f; u)}{u^2} du = O\left(a_{n0} H\left(\frac{\pi}{n}\right) \right).$$

Now, we prove (3.6). Since

$$(K+1)(n+1)a_{n0} \ge \sum_{k=0}^{n} a_{nk} = 1,$$

we can see that

$$\sum_{k=0}^{n} a_{nk}\omega\left(f;\frac{\pi}{k+1}\right) \le \sum_{k=0}^{k^*} a_{nk}\omega\left(f;\frac{\pi}{k+1}\right) + \sum_{k=k^*}^{n} a_{nk}\omega\left(f;\frac{\pi}{k+1}\right),$$

where $k^* = \frac{1}{(K+1)a_{n0}} - 1$. Using again (3.7), (1.2) and the monotonicity of the modulus of continuity, we obtain

$$\sum_{k=0}^{n} a_{nk} \omega \left(f; \frac{\pi}{k+1} \right) \le (K+1) a_{n0} \sum_{k=0}^{k^*} \omega \left(f; \frac{\pi}{k+1} \right) + \omega (f; \pi(K+1) a_{n0}) \sum_{k=k^*}^{n} a_{nk}$$
$$\le K_1 a_{n0} \int_1^{k^*+1} \omega \left(f; \frac{\pi}{t} \right) dt + \omega (f; \pi(K+1) a_{n0})$$
$$\le K_1 a_{n0} \int_{a_{n0}}^{\pi} \frac{\omega (f; u)}{u^2} du + 2\pi (K+1) \omega (f; a_{n0}).$$
(3.8)

According to

$$\omega(f;a_{n0}) \le 4\omega\left(f;\frac{a_{n0}}{2}\right) \le 8\int_{a_{n0}/2}^{a_{n0}} \frac{\omega(f;t)}{t} \, dt \le 8\int_{0}^{a_{n0}} \frac{\omega(f;t)}{t} \, dt,$$

in view of (3.8), (1.9) and (1.10), relation (3.6) holds.

4. Proofs of the theorems. In this section we shall prove Theorems 2.1 and 2.2. *Proof of Theorem 2.1.* First we prove (2.1). Setting

$$R_n(x) = T_n(f;x) - f(x) = \frac{1}{2\pi} \int_0^\pi \phi_x(t) A_n(t) dt$$

and

$$R_n(x,y) = R_n(x) - R_n(y) = \frac{1}{2\pi} \int_0^{\pi} (\phi_x(t) - \phi_y(t)) A_n(t) dt$$

we get

$$|R_n(x,y)| \le \frac{1}{2\pi} \int_0^\pi |\phi_x(t) - \phi_y(t)| |A_n(t)| dt.$$

It is clear that

$$|\phi_x(t) - \phi_y(t)| \le 4C\omega(|x-y|) \tag{4.1}$$

and

$$|\phi_x(t) - \phi_y(t)| \le 4\omega(f; |t|). \tag{4.2}$$

Then, using (4.1), we have

$$|R_n(x,y)| \le \frac{2C}{\pi} \,\omega(|x-y|) \left(\int_0^{\pi/n} + \int_{\pi/n}^{\pi} \right) |A_n(t)| \, dt = \frac{2C}{\pi} \,\omega(|x-y|) (I_1 + I_2). \tag{4.3}$$

It is obvious that

$$I_1 \le \int_0^{\pi/n} \frac{1}{\sin(t/2)} \sum_{k=0}^n a_{nk} \left| \sin\left(k + \frac{1}{2}\right) t \right| dt \le \pi \int_0^{\pi/n} \sum_{k=0}^n a_{nk} \left(k + \frac{1}{2}\right) dt \le \frac{3}{2} \pi^2.$$
(4.4)

364

Using (3.2), we obtain

$$I_{2} \leq K_{1} \int_{\pi/n}^{\pi} \frac{A_{n,t^{-1}}}{t} dt = K_{1} \int_{1/\pi}^{n/\pi} \frac{A_{n,t}}{t} dt = K_{1} \sum_{k=1}^{n-1} \int_{k/\pi}^{(k+1)/\pi} \frac{A_{n,t}}{t} dt$$
$$\leq K_{1} \sum_{k=1}^{n-1} \frac{A_{n,k+1}}{k} \leq 2K_{1} \sum_{k=2}^{n} \frac{A_{n,k}}{k} \leq 2K_{1} \sum_{k=1}^{n+1} \frac{A_{n,k}}{k} .$$
(4.5)

If (1.7) holds then

$$a_{n\mu} - a_{nm} \le |a_{n\mu} - a_{nm}| \le \sum_{k=\mu}^{m-1} |a_{nk} - a_{nk+1}| \le K a_{nm}$$

for any $m \ge \mu \ge 0$, whence

$$a_{n\mu} \le (K+1)a_{nm}.\tag{4.6}$$

From this and (1.2) we can observe that

$$\sum_{k=1}^{n+1} \frac{A_{n,k}}{k} = \sum_{k=1}^{n+1} \frac{1}{k} \sum_{r=n-k+1}^{n} a_{nr} \ge \frac{1}{K+1} \sum_{k=1}^{n+1} a_{n,n-k+1} = \frac{1}{K+1} \sum_{k=0}^{n} a_{nk} = \frac{1}{K+1}$$

and by (4.3)–(4.5) we obtain

$$|R_n(x,y)| \le K_2 \omega(|x-y|) \sum_{k=1}^{n+1} \frac{A_{n,k}}{k} .$$
(4.7)

On the other hand, by (4.2), we have

$$|R_n(x,y)| \le \frac{2}{\pi} \int_0^\pi \omega(f;t) |A_n(t)| dt$$

= $\frac{2}{\pi} \left(\int_0^{\pi/n} + \int_{\pi/n}^\pi \right) \omega(f;t) |A_n(t)| dt = \frac{2}{\pi} (I_1' + I_2').$ (4.8)

Using (4.6) and (1.9), we can estimate the quantities I_1^\prime and I_2^\prime as follows:

$$I_{1}' \leq \omega\left(f; \frac{\pi}{n}\right) \int_{0}^{\pi/n} \frac{1}{\sin(t/2)} \sum_{k=0}^{n} a_{nk} \left| \sin\left(k + \frac{1}{2}\right) t \right| dt$$

$$\leq \frac{3}{2} \pi^{2} \omega\left(f; \frac{\pi}{n}\right) \sum_{k=0}^{n} a_{nk} \leq 3\pi^{2} (K+1) a_{nn} \sum_{k=1}^{n} \omega\left(f; \frac{\pi}{k}\right)$$

$$\leq K_{3} a_{nn} \int_{1}^{n} \omega\left(f; \frac{\pi}{t}\right) dt = K_{3} a_{nn} \int_{\pi/n}^{\pi} \frac{\omega(f; u)}{u^{2}} du = O\left(a_{nn} H\left(\frac{\pi}{n}\right)\right)$$
(4.9)

and, by (3.2),

$$I_{2}' \leq K_{4} \int_{\pi/n}^{\pi} \omega(f;t) \frac{A_{n,t^{-1}}}{t} dt \leq K_{5} a_{nn} \int_{\pi/n}^{\pi} \frac{\omega(f;t)}{t^{2}} dt = O\left(a_{nn} H\left(\frac{\pi}{n}\right)\right).$$
(4.10)

Combining (4.8)–(4.10) we obtain

$$|R_n(x,y)| = O\left(a_{nn}H\left(\frac{\pi}{n}\right)\right). \tag{4.11}$$

Therefore, using (4.7) and (4.11),

$$\sup_{x,y} \left\{ \Delta^{\omega^*} R_n(x,y) \right\} = \sup_{x,y} \left\{ \frac{|R_n(x,y)|^{p/q}}{\omega^* (|x-y|)} |R_n(x,y)|^{1-p/q} \right\} \\
\leq K_4 \left\{ \sum_{k=1}^{n+1} \frac{A_{nk}}{k} \right\}^{p/q} \left\{ a_{nn} H\left(\frac{\pi}{n}\right) \right\}^{1-p/q}. \quad (4.12)$$

Since

$$|R_n(x)| \le \frac{1}{2\pi} \int_0^\pi |\phi_x(t)| \, |A_n(t)| \, dt \le \frac{1}{\pi} \int_0^\pi \omega(f;t) |A_n(t)| \, dt,$$

the inequalities (4.4), (4.5), (4.8) and (4.9) lead us to

$$\begin{aligned} \|T_{n}(f) - f\|_{C} &\leq \frac{1}{\pi} \left\{ \int_{0}^{\pi} \omega(f;t) |A_{n}(t)| \, dt \right\}^{p/q} \left\{ \int_{0}^{\pi} \omega(f;t) |A_{n}(t)| \, dt \right\}^{1-p/q} \\ &\leq \frac{1}{\pi} (\omega(f;\pi))^{p/q} \left\{ \int_{0}^{\pi} |A_{n}(t)| \, dt \right\}^{p/q} \left\{ \int_{0}^{\pi} \omega(f;t) |A_{n}(t)| \, dt \right\}^{1-p/q} \\ &= \frac{1}{\pi} (\omega(f;\pi))^{p/q} \left\{ \left(\int_{0}^{\pi/n} + \int_{\pi/n}^{\pi} \right) |A_{n}(t)| \, dt \right\}^{p/q} \left\{ \left(\int_{0}^{\pi/n} + \int_{\pi/n}^{\pi} \right) \omega(f;t) |A_{n}(t)| \, dt \right\}^{1-p/q} \\ &\leq K_{5} \left\{ \sum_{k=1}^{n+1} \frac{A_{nk}}{k} \right\}^{p/q} \left\{ a_{nn} H\left(\frac{\pi}{n}\right) \right\}^{1-p/q}. \end{aligned}$$

$$(4.13)$$

Collecting our partial results (4.12) and (4.13), we obtain that (2.1) holds.

Now, we prove (2.2). By (4.2) we have

$$|R_n(x,y)| \le \frac{2}{\pi} \int_0^\pi \omega(f;t) |A_n(t)| dt$$

= $\frac{2}{\pi} \left(\int_0^{a_{nn}} + \int_{a_{nn}}^\pi \right) \omega(f;t) |A_n(t)| dt = \frac{2}{\pi} (J_1 + J_2).$ (4.14)

Using (1.9) and (1.10), we shall estimate the quantities J_1 and J_2 similarly like the quantities I'_1 and I'_2 , respectively. Namely, by Lemma 3.1,

$$J_1 \le \pi \int_0^{a_{nn}} \frac{\omega(f;t)}{t} dt = O(a_{nn}H(a_{nn}))$$

and, by (3.2),

$$J_2 \le K_6 \int_{a_{nn}}^{\pi} \omega(f;t) \, \frac{A_{n,t^{-1}}}{t} \, dt \le K_7 a_{nn} \int_{a_{nn}}^{\pi} \frac{\omega(f;t)}{t^2} \, dt = O(a_{nn}H(a_{nn})).$$

From this and (4.12) we get

$$\sup_{x,y} \left\{ \Delta^{\omega^*} R_n(x,y) \right\} = O\left(\left\{ \sum_{k=1}^{n+1} \frac{A_{nk}}{k} \right\}^{p/q} \{a_{nn} H(a_{nn})\}^{1-p/q} \right).$$
(4.15)

In the same manner as in (4.13) we can show that

$$||T_n(f) - f||_C \le K_5 \left\{ \sum_{k=1}^{n+1} \frac{A_{nk}}{k} \right\}^{p/q} \{a_{nn} H(a_{nn})\}^{1-p/q}.$$
(4.16)

Combining (4.15) and (4.16) we conclude that (2.2) holds. This completes the proof. \blacksquare

Proof of Theorem 2.2. Using the same notation as in the proof of Theorem 2.1, from (4.1) and (3.4) we get

$$|R_n(x,y)| \le \frac{2C}{\pi} \,\omega(|x-y|) \int_0^\pi |A_n(t)| \, dt \le \frac{8CK(K+1)}{\pi} \,\omega(|x-y|). \tag{4.17}$$

On the other hand

$$|R_n(x,y)| \le |T_n(f;x) - f(x)| + |T_n(f;y) - f(y)|.$$

The estimate (3.3) and the inequality

$$E_n(f) \le K_1 \omega \left(f; \frac{\pi}{n+1}\right)$$

give

$$|R_n(x,y)| \le 16(K+1)(2K+1)\sum_{k=0}^n a_{nk}E_k(f) \le K_2\sum_{k=0}^n a_{nk}\omega\Big(f,\frac{\pi}{k+1}\Big).$$
(4.18)

Therefore, by (4.17),

$$\sup_{x,y} \left\{ \Delta^{\omega^*} R_n(x,y) \right\} = \sup_{x,y} \left\{ \frac{|R_n(x,y)|^{p/q}}{\omega^*(|x-y|)} |R_n(x,y)|^{1-p/q} \right\} \\ \leq K_3 \left\{ \sum_{k=0}^n a_{nk} \omega \left(f, \frac{\pi}{k+1} \right) \right\}^{1-p/q}.$$
(4.19)

The same estimate can be shown for the deviation $T_n(f;x) - f(x)$. Namely, by (3.3) and (1.2), we get

$$\|T_n(f) - f\|_C \le 8(K+1)(2K+1)\sum_{k=0}^n a_{nk}E_k(f) \le K_4\sum_{k=0}^n a_{nk}\omega\left(f,\frac{\pi}{k+1}\right)$$
$$\le K_5\left\{\sum_{k=0}^n a_{nk}\omega\left(f,\frac{\pi}{k+1}\right)\right\}^{p/q}\left\{\sum_{k=0}^n a_{nk}\omega\left(f,\frac{\pi}{k+1}\right)\right\}^{1-p/q}$$
$$\le K_6\left\{\sum_{k=0}^n a_{nk}\omega\left(f,\frac{\pi}{k+1}\right)\right\}^{1-p/q}.$$
 (4.20)

Finally, collecting our partial results (4.19) and (4.20) and using Lemma 3.5 we obtain (2.3) and (2.4). \blacksquare

References

- P. Chandra, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. Hungar. 52 (1988), 199–205.
- P. Chandra, A note on the degree of approximation of continuous function, Acta Math. Hungar. 62 (1993), 21–23.
- [3] L. Leindler, On the degree of approximation of continuous functions, Acta Math. Hungar. 104 (2004), 105–113.

- [4] W. Lenski, B. Szal, On the approximation of functions by matrix means in the generalized Hölder metric, in: Function Spaces VIII, Banach Center Publ. 79, Polish Acad. Sci. Inst. Math., Warsaw, 2008, 119–129.
- [5] R. N. Mohapatra, P. Chandra, Degree of approximation of functions in the Hölder metric, Acta Math. Hungar. 41 (1983), 67–76.
- T. Singh, Degree of approximation to functions in a normed spaces, Publ. Math. Debrecen 40 (1992), 261–271.
- [7] X.-H. Sun, Degree of approximation of functions in the generalized Hölder metric, Indian J. Pure Appl. Math. 27 (1996), 407–417.