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Abstract. We consider a problem of intervals raised by I. Ya. Novikov in [Israel Math. Conf.

Proc. 5 (1992), 290], which refines the well-known theorem of J. Marcinkiewicz concerning struc-

ture of closed sets [A. Zygmund, Trigonometric Series, Vol. I, Ch. IV, Theorem 2.1]. A positive

solution to the problem for some specific cases is obtained. As a result, we strengthen the theorem

of Marcinkiewicz for generalized Cantor sets.

1. Introduction. Let us start with some basic notation. For any set M ⊂ R by µM

we will denote the usual (Lebesgue) measure of M . Further, by supM (inf M) we will
mean the least upper bound (the biggest lower bound) of M , respectively. We will write
maxM , minM instead of supM , inf M when supM ∈M , inf M ∈M .

Let F be a closed bounded nowhere dense set on R with a positive measure and let
δ(y) denote a distance from y to F . The integral of Marcinkiewicz is defined as follows:

Iλ(x) =
∫ maxF

minF

δ(y)λ

|x− y|1+λ
dy. (1)

As is well-known, for each λ > 0 the integral (1) converges for almost all points of F [1],
[3, Ch. IV, Theorem 2.1]. The result can be reformulated as follows (see [3, p. 131]): let
{(ai; ai + δi)}∞i=1 be a set of intervals from [minF ; maxF ] contiguous to F and let si(x)
denote the distance from x ∈ F to the interval (ai; ai + δi). Then the convergence of (1)
is equivalent to the convergence of the series∑

i

( δi
si(x)

)λ+1

. (2)

Thus, one can claim that the sequence { δi
si(x)
} belongs to lp for any p > 1 and almost
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all x ∈ F . I. Ya. Novikov conjectured that a stronger result takes place [2]. Recall that a
non-increasing rearrangement of a real sequence {ui}∞i=1 is defined by

u∗i := inf
{
τ ≥ 0 : card{j > 0 : |uj | > τ} ≤ i

}
, i = 1, 2, . . .

The rearrangement is well defined for any bounded sequence.

Conjecture 1.1 (Novikov). For almost all x ∈ F the sequence { δi
si(x)
} is contained in

l1,∞, that is,

sup
n
n
( δn
sn(x)

)∗
<∞, (3)

where ( δn
sn(x) )∗ is the n-th element of the non-increasing rearrangement of { δi

si(x)
}.

Novikov suggested a stronger variant of the above conjecture known as the problem
of intervals. Let n > 0 and ai, δi ∈ R, i = 1, 2, . . . , n, satisfy the conditions

δi > 0, i = 1, 2, . . . , n; a1 ≤ a2 ≤ . . . ≤ an.

The sequence of intervals {[ai; ai + δi]}ni=1 is then called a configuration (of intervals).
Note that the elements of the configuration (intervals [ai; ai + δi]) may intersect. The
set of configurations for all possible values of n, ai, δi will be denoted by A. For a fixed
configuration v = {[ai; ai + δi]}ni=1 we can construct a set

Ω(v) :=
{
t ∈ R : ∃k = k(t) > 0 card{i : t ∈ [ai; ai + kδi]} ≥ k

}
, (4)

where cardM denotes the number of elements in the set M . In other words, a point t ∈ R
belongs to Ω(v) if and only if there exist 1 ≤ k(t) ≤ n and indexes 1 ≤ i1 < i2 < . . . <

ik(t) ≤ n such that t belongs to the intersection
⋂k(t)
j=1[aij ; aij +k(t)δij ]. Evidently, the set

Ω(v) is closed as a union of a finite number of closed sets. Let also

K(v) :=
µΩ(v)∑n
i=1 δi

.

Next, for any set of configurations B ⊂ A define

K(B) := sup
{
c : c = K(v) for some configuration v ∈ B

}
.

Conjecture 1.2 (Novikov). K(A) <∞.

The problem of intervals is probably a difficult one, and we are far from getting a
complete solution to it. Still, we are able to prove K(B) <∞ for certain subsets B ⊂ A.
As a result, we will prove the Conjecture 1.1 for generalized Cantor sets.

2. Auxiliary results. We start with some elementary facts about sets Ω. The first
lemma does not require a proof.

Lemma 2.1. Let v = {[ai; ai+δi]}ni=1 ∈ A, d ∈ R and w = {[ai+d; ai+d+δi]}ni=1. Then

Ω(v) = {t : t+ d ∈ Ω(w)}.

Lemma 2.2. For any configuration v = {[ai; ai + δi]}ni=1 ∈ A we have [an; max Ω(v)] ⊂
Ω(v).

Proof. Since max Ω(v) ∈ Ω(v), there exist 1 ≤ k ≤ n and indexes 1 ≤ i1 < i2 < . . . <

ik ≤ n such that max Ω(v) ≤ aij + kδij for j = 1, 2, . . . , k. It implies that for any
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t ∈ [an; max Ω(v)] we have aij ≤ an ≤ t ≤ aij + kδij , j = 1, 2, . . . , k, so that t belongs
to Ω(v).

Lemma 2.3. Let v = {[ai; ai + δi]}ni=1 ∈ A, m ∈ [1;n − 1] and w = {[ai; ai + δi]}mi=1.
Then

Ω(w) = Ω(v) ∩ [a1; max Ω(w)].

Proof. First, it is clear that Ω(w) ⊂ [a1; max Ω(w)] and Ω(w) ⊂ Ω(v). Now, let t ∈
Ω(v) ∩ [a1; max Ω(w)]. If, additionally, t ≥ am then, by Lemma 2.2, t ∈ Ω(w). It is also
evident that Ω(v) ∩ [a1; am) ⊂ Ω(w). Combining the embeddings, we get the result.

Lemma 2.4. Let v = {[ai; ai + δi]}ni=1 be a configuration from A. Then

max Ω(v)− an ≤
n∑
i=1

δi.

Proof. Since max Ω(v) ∈ Ω(v), there exist 1 ≤ k ≤ n and 1 ≤ i1 < i2 < . . . < ik ≤ n,
such that max Ω(v)− aij ≤ kδij for all 1 ≤ j ≤ k. It follows that

max Ω(v)− an ≤ min
j

(max Ω(v)− aij ) ≤ kmin
j
δij ≤

n∑
i=1

δi.

Let A′ := {v ∈ A : the set Ω(v) is connected}.

Lemma 2.5. Let v = {[ai; ai + δi]}ni=1 be a configuration from A. Then there exists a
configuration w = {[bi; bi + δi]}ni=1 ∈ A′ such that K(w) ≥ K(v).

Proof. Suppose v /∈ A′. Taking into account Lemma 2.2, there exists m ∈ [1;n− 1] such
that [a1; am] ⊂ Ω(v) but [a1; am+1] * Ω(v). Let x := {[ai; ai + δi]}mi=1. From Lemma 2.3
it follows that the set Ω(x) is connected. Indeed, since [am; max Ω(x)] ⊂ Ω(x) ⊂ Ω(v), we
have

Ω(x) = Ω(v) ∩ [a1; max Ω(x)] = [a1; am] ∪
(
Ω(v) ∩ [am; max Ω(x)]

)
= [a1; max Ω(x)].

Let a′1, a
′
2, . . . , a

′
n be real numbers such that ai = a′i for all i = 1, 2, . . . ,m; a′i−a′j = ai−aj

for all i, j ∈ {m+1, . . . , n}; a′m+1 = max Ω({[ai; ai+δi]}mi=1) and consider a configuration
v′ = {[a′i; a′i+δi]}ni=1. By Lemma 2.3 and the above reasoning, [a′1; a′m+1] = Ω(x) ⊂ Ω(v′).
Further, let t ∈ Ω(v) \ Ω(x) (note that it implies t ≥ am+1). By definition, there exist
1 ≤ k(t) ≤ n and indexes 1 ≤ i1 < i2 < . . . < ik(t) ≤ n such that max(aij ; max Ω(x)) ≤
t ≤ aij + k(t)δij for j = 1, 2, . . . , k(t). Now, fix j and study two cases. If ij ∈ [m + 1;n]
then, clearly,

max(a′ij ; max Ω(x)) = aij + a′m+1 − am+1 < t+ a′m+1 − am+1 ≤ a′ij + k(t)δij .

If ij ∈ [1;m] then with necessity max(a′ij ; max Ω(x)) = a′m+1 ≤ t + a′m+1 − am+1 ≤
a′ij + k(t)δij . Thus, t+ a′m+1− am+1 ∈ Ω(v′)∩ [max Ω(x); +∞). It follows that µ(Ω(v′)∩
[max Ω(x); +∞)) ≥ µ(Ω(v) \ Ω(x)) whence K(v′) ≥ K(v). Moreover, if m = n − 1
then Ω(v′) is connected. Otherwise, we repeat the above arguments for configuration
v′ and construct a configuration v′′ = {[a′′i ; a′′i + δi]}ni=1 such that K(v′′) ≥ K(v′) and
[a′′1 ; a′′m+2] ⊂ Ω(v′′). If m = n − 2 then the set Ω(v′′) is connected and the lemma is
proved. Otherwise, we apply the arguments once more, etc.
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Next, fix n > 0 and consider a function

f : {1, 2, . . . , n− 1} → 2{1,2,...,n−1}

where 2{1,2,...,n−1} denotes the set of all possible subsets of {1, 2, . . . , n− 1}. We will call
f the function of intervals (of order n) if for all 1 ≤ i ≤ n− 1 the set f(i) is not empty
and max{j : j ∈ f(i)} = i. Now, let v = {[ai; ai + δi]}ni=1 ∈ A and f be some function of
intervals. We will say that the configuration v is f -admissible if

ai+1 ≤ max Ω
(
{[aj ; aj + δj ]}j∈f(i)

)
(5)

for i = 1, 2, . . . , n − 1. Whenever for all 1 ≤ i ≤ n − 1 we have equality in (5), the
configuration v is called f -optimal.

Remark. Clearly, any f -admissible configuration belongs to A′.

Remark. It is not difficult to see that if we define a function of intervals g of order n
by g(i) = {1, 2, . . . , i}, i = 1, 2, . . . , n− 1, then any configuration v = {[ai; ai + δi]}ni=1 ∈
A′ is g-admissible. Indeed, since the set Ω(v) is connected, [ai; ai+1) ⊂ Ω(v), implying
[ai; ai+1) ⊂ Ω({[aj ; aj +δj ]}ij=1), i = 1, 2, . . . , n−1. So, ai+1 ≤ max Ω

(
{[aj ; aj +δj ]}ij=1

)
,

i = 1, 2, . . . , n− 1.

Lemma 2.6. Let f be some function of intervals of order n and w = {[bi; bi + δi]}ni=1,
v = {[ai; ai + δi]}ni=1 be an f -optimal and an f -admissible configuration, respectively.
Then K(w) ≥ K(v).

Proof. By Lemma 2.1, it is sufficient to check the case b1 = a1. We need to prove that
max Ω(w) ≥ max Ω(v). Let m ∈ [1;n] be the maximum number such that bi ≥ ai,
i = 1, 2, . . . ,m. Suppose that m ≤ n − 1 (note that am+1 ≥ bm because otherwise
bm+1 > am+1, and the assumption is wrong). By definition of f -admissibility, there exist
1 ≤ k ≤ card f(m) and i1 < i2 < . . . < ik, il ∈ f(m), l = 1, 2, . . . , k, such that am+1

belongs to the intersection of intervals [ail ; ail + kδil ], l = 1, 2, . . . , k. Since am+1 ≥ bm
and bil ≥ ail , l = 1, 2, . . . , k, the point am+1 belongs to

⋂k
l=1[bil ; bil +kδil ]. It follows that

am+1 ≤ max Ω({[bj ; bj + δj ]}j∈f(m)) = bm+1 and the assumption is wrong. Thus, for all
i ∈ [1;n] we have bi ≥ ai. Finally, applying similar arguments to max Ω(v), we get that
max Ω(w) ≥ max Ω(v).

Further, we will need one more definition. Let v = {[ai; ai+δi]}ni=1 be an f -admissible
configuration for some function of intervals f of order n and C > 0 be some constant.
Then by C, f-rarefication of v we will mean any configuration w = {[bi; bi + κi]}2n−1

i=1 ,
where κ2i−1 = δi for i = 1, 2, . . . , n,

∑n−1
i=1 κ2i ≤ C

∑n
i=1 δi and the points bi are defined

as follows:

b2i = b2i−1 + κ2i−1, i = 1, 2, . . . , n− 1;

b2i+1 = max
(
b2i + κ2i,max Ω

(
{[b2j−1; b2j−1 + κ2j−1]}j∈f(i)

))
, i = 1, 2, . . . , n− 1.

It is not difficult to see that w ∈ A′, that is, Ω(w) is connected. Indeed, [b2i−1; b2i] =
[b2i−1; b2i−1 + κ2i−1] ⊂ Ω(w), i = 1, 2, . . . , n − 1. Further, [b2i; b2i + κ2i] ⊂ Ω(w) and,
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by Lemma 2.2,[
b2i−1; max Ω({[b2j−1; b2j−1 + κ2j−1]}j∈f(i))

]
⊂ Ω

(
{[b2j−1; b2j−1 + κ2j−1]}j∈f(i)

)
⊂ Ω(w),

whence [b2i; b2i+1] ⊂ Ω(w), i = 1, 2, . . . , n − 1. Finally, [b2n−1; max Ω(w)] ⊂ Ω(w) (by
Lemma 2.2) and we get [b1; max Ω(w)] = Ω(w).

Note, that there exist continuum rarefications for any given configuration. Still, there
is a common property shared by all of them.

Lemma 2.7. Let v = {[ai; ai + δi]}ni=1 be an f -admissible configuration for a function of
intervals f and w = {[bi; bi + κi]}2n−1

i=1 be a C, f-rarefication of v. Then µΩ(w) ≥ µΩ(v).

Proof. By Lemma 2.1, it suffices to consider the case a1 = b1. We need to prove that
b2i−1 ≥ ai, i = 1, 2, . . . , n; then we will automatically get max Ω(w) ≥ max Ω(v). We
will act as in proof of Lemma 2.6. Let m ∈ [1;n] be the maximum number such that
b2i−1 ≥ ai for i = 1, 2, . . . ,m, and suppose that m ≤ n − 1. By definition of C, f -
rarefications, b2m+1 ≥ max Ω

(
{[b2j−1; b2j−1+κ2j−1]}j∈f(m)

)
. On the other hand, am+1 ≤

max Ω
(
{[aj ; aj + δj ]}j∈f(m)

)
, where δj = κ2j−1 and aj ≤ b2j−1, j = 1, 2, . . . ,m. It follows

that b2m+1 ≥ am+1. Consequently, the assumption is wrong and m = n.

Remark. With v and w defined as in Lemma 2.7, it is clear that K(w) ≥ 1
C+1K(v).

Lemma 2.8. Let f be a function of intervals of order n, w = {[bi; bi + κi]}2n−1
i=1 be a

C, f-rarefication of an f -admissible configuration v and w̃ = {[b̃i; b̃i + κi]}2n−1
i=1 be a

configuration from A′ such that

b̃2i = b̃2i−1 + κ2i−1, i = 1, 2, . . . , n− 1;

b̃2i+1 ≤ max
(
b̃2i + κ2i,max Ω

(
{[b̃2j−1; b̃2j−1 + κ2j−1]}j∈f(i)

))
, i = 1, 2, . . . , n− 1.

Then µΩ(w̃) ≤ µΩ(w).

Proof. The proof can be conducted the same way as in Lemma 2.6: we suppose that
b1 = b̃1 and show by induction that bi ≥ b̃i, i ∈ [1; 2n − 1]. It follows that max Ω(w) ≥
max Ω(w̃).

Further, we will use the notation C-rarefication instead of C, f -rarefication when
f(i) = {1, 2, . . . , i}, i = 1, 2, . . . . The essence of the conception of rarefications is that in
some cases it is much simpler to estimate the measure of Ω for a rarefication than for the
original configuration. Next, we will prove Conjecture 1.2 with an additional restriction
on lengths of intervals. LetM⊂ A be a set of configurations {[ai; ai + δi]}ni=1 defined for
all possible n, ai and δi satisfying δ1 ≥ δ2 ≥ . . . ≥ δn.

Theorem 2.9. K(M) <∞.

Proof. By Lemma 2.5, it is sufficient to prove the statement for configurations v =
{[ai; ai + δi]}ni=1 ∈M∩A′. Let

n(k) = card{i ∈ [1;n] : 4k ≤ δi < 4k+1}, k ∈ Z.
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Next, we construct a 256-rarefication w = {[bi; bi + κi]}2n−1
i=1 of v by setting

κ2i = 32 max{4l : l ∈ Z,
+∞∑
k=l

2k−ln(k) ≥ i}, i = 1, 2, . . . , n− 1. (6)

Note that the function N(l) =
∑+∞
k=l 2k−ln(k) is non-increasing, vanishing for sufficiently

large l, and liml→−∞N(l) = +∞, so, κ2i are determined correctly. Further, for any l ∈ Z

{i ∈ [1;n− 1] : κ2i ≥ 32 · 4l} = {i ∈ [1;n− 1] : max{4p : N(p) ≥ i} ≥ 4l}
= {i : 1 ≤ i ≤ min(n− 1;N(l))}

and we get the estimate

n−1∑
i=1

κ2i ≤ 4
+∞∑
l=−∞

32 · 4l card{i ∈ [1;n− 1] : κ2i ≥ 32 · 4l} ≤ 128
+∞∑
l=−∞

4lN(l)

= 128
+∞∑
l=−∞

2l
+∞∑
k=l

2kn(k) = 128
+∞∑

k=−∞

2kn(k)
k∑

l=−∞

2l = 256
+∞∑

k=−∞

4kn(k) ≤ 256
n∑
i=1

δi,

so w is indeed a rarefication with constant 256.
Our next goal is to show that b2i+1 = b2i + κ2i for all 1 ≤ i ≤ n− 1. Fix i ∈ [1;n− 1]

and consider any j ∈ [1; i]. Let p ∈ Z be such a number that 4p ≤ κ2j−1 < 4p+1. By
definition of M, the sequence {κ2h−1}nh=1 is non-increasing and

∑+∞
k=p n(k) = card{h ∈

[1;n] : κ2h−1 ≥ 4p} ≥ j. Therefore, N(p − 1) ≥
∑+∞
k=p 2n(k) ≥ 2j. Denote by αj the

relative length of the interval [b2j−1; b2j−1 + κ2j−1] with respect to the distance between
b2i+1 and b2j−1, i.e. the value κ2j−1/(b2i+1 − b2j−1).

First, suppose that 2j ≥ i. Then N(p− 1) ≥ i and for all h ∈ [j; i]

κ2h ≥ 32 max{4l : N(l) ≥ i} ≥ 32 · 4p−1 > 2κ2j−1. (7)

Applying (7) we get the estimation

αj ≤
κ2j−1

b2i + κ2i − b2j−1
≤ κ2j−1∑i

h=j κ2h

<
1

2(i− j + 1)
. (8)

Next, consider the case 2j < i. Using similar arguments, we get for all h ∈ [j; 2j]

κ2h = 32 max{4l : N(l) ≥ h} ≥ 32 max{4l : N(l) ≥ 2j} > 2κ2j−1.

Thus,

αj ≤
κ2j−1

b2i + κ2i − b2j−1
≤ κ2j−1∑2j

h=j κ2h

<
1

2(j + 1)
. (9)

Now, suppose that b2i+1 = max Ω
(
{[b2h−1; b2h−1 + κ2h−1]}ih=1

)
> b2i + κ2i. It means

that there exist k ∈ [1; i] and 1 ≤ i1 < i2 < . . . < ik ≤ i such that b2i+1 ≤ b2il−1+kκ2il−1,
that is, αil ≥ 1

k , l = 1, 2, . . . , k. On the other hand, from (8) and (9) it follows that
αh < 1/(2 min(i− h+ 1;h+ 1)), h = 1, 2, . . . , i. Consequently,

k ≤ card{h ∈ [1; i] : kαh ≥ 1} ≤ card{h ∈ [1; i] : 2 min(i− h+ 1;h+ 1) < k}
≤ card{h ∈ [1; i] : 2(i− h+ 1) < k}+ card{h ∈ [1; i] : 2(h+ 1) < k} < k
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and the assumption is wrong. Thus, b2i+1 = b2i+κ2i for all i ∈ [1;n−1]. It remains to note
that, according to Lemma 2.4, max Ω(w)− b2n−1 ≤

∑2n−1
j=1 κj . Finally, by Lemma 2.7,

µΩ(v) ≤ µΩ(w) =
2n−2∑
j=1

κj + (max Ω(w)− b2n−1) < 2
2n−1∑
j=1

κj ≤ 2(256 + 1)
n∑
j=1

δj ,

and K(v) ≤ 514.

3. Generalized Cantor sets. First, let us clarify the notion “generalized Cantor set”.
Let [a; b] be some interval and {di}∞i=1 be a sequence of positive reals, such that

∞∑
i=1

2i−1di < b− a.

We construct a sequence of open intervals {Ii}∞i=1 by induction. At first step, let I1 be an
open interval of length d1 from [a; b] such that a < inf I1 and sup I1 < b. We will refer to it
as the interval of the first rank. At second step, we choose two intervals of the second rank
I2 and I3 such that µI2 = µI3 = d2 and a < inf I2 < sup I2 < inf I1 < sup I1 < inf I3 <
sup I3 < b. At step k, k > 2, we have 2k−1 − 1 intervals already constructed. The set
[a; b]\

⋃2k−1−1
i=1 Ii consists of 2k−1 closed segments Kk,1,Kk,2, . . . ,Kk,2k−1 (numbered from

left to right). Then for each i ∈ [2k−1; 2k−1] we choose Ii ⊂ Kk,i−2k−1+1 of rank k having
length dk such that inf Kk,i−2k−1+1 < inf Ii and sup Ii < supKk,i−2k−1+1 (certainly, we
must see to it that Kk,j are large enough to comprise corresponding open intervals). Let
C := [a; b] \

⋃∞
i=1 Ii. Whenever C is nowhere dense, we will call it the generalized Cantor

set. It is clear that C is closed and of positive measure.
Next, for a given n > 0 consider a function rn = rn(i) defined on the set

{1, 2, . . . , 2n − 1} by the formula

rn(i) = n−max{k ≥ 0 : i ≡ 0 mod 2k}. (10)

In other words, rn(i) is the minimal number such that i2rn(i)−n is an integer (cer-
tainly, i2rn(i)−n is odd). Clearly, rn takes its values from {1, 2, . . . , n} and for each
k ∈ {1, 2, . . . , n} we have card{h ∈ [1; 2n − 1] : rn(h) = k} = 2k−1. Let also

qn(i) := 2rn(i)−1 − 1 + card{h ∈ [1; i] : rn(h) = rn(i)}
for i ∈ [1; 2n − 1]. Note that the value 2rn(i)−1 − 1 is the number of indexes h such that
rn(h) < rn(i). It is not difficult to see that qn is a bi-unique mapping of {1, 2, . . . , 2n−1}
onto itself. Specifically, all h ∈ [1; 2n − 1] with rn(h) = k, k ∈ [1;n], are mapped into
[2k−1; 2k − 1].

Next, let di, i = 1, 2, . . . , n, be some positive reals. A set of configurations s defined
by the formula

s = {[ai; ai + drn(i)]}2
n−1
i=1 (11)

for all possible n, ai, di will be denoted by T . Note that, in the above construction of C,
{Iqn(i)}2

n−1
i=1 ∈ T for any n > 0 where Iqn(i) is the closure of Iqn(i) (we use the function

qn here to reorder the intervals {Ii}2
n−1
i=1 to get the valid configuration). Moreover, for

any i ∈ [1; 2n − 1] the rank of Iqn(i) coincides with the value of rn(i). So, it is natural
to refer to the i-th interval of a configuration s = {[ai; ai + δi]}2

n−1
i=1 ∈ T as one having
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the rank rn(i). It is clear that there is a straightforward connection between generalized
Cantor sets and configurations from T , so the latter will be used as a tool for proving
the property we are concerned with. Now, we are ready to formulate the main results of
the paper.

Theorem 3.1. K(T ) <∞.

An immediate consequence of the above theorem is the following

Corollary 3.2. Let C be an arbitrary generalized Cantor set, {di}∞i=1 and {Ii}∞i=1 have
the same meaning as in the definition of C and si(x) denote the distance from x to the
interval Ii. Then for almost all points x ∈ C{ µIi

si(x)

}∞
i=1
∈ l1,∞.

Proof. For any m > 0 let

Ωm :=
{
t : ∃k = k(t) > 0 card{i ≥ 2m−1 : t ∈ (inf Ii; inf Ii + 2kµIi)} ≥ k

}
and

Ω−m :=
{
t : ∃k = k(t) > 0 card{i ≥ 2m−1 : t ∈ (sup Ii − 2kµIi; sup Ii)} ≥ k

}
.

First, it is clear that Ωm =
⋃∞
h=m+1 Ωm,h, where

Ωm,h :=
{
t : ∃k = k(t) > 0 card{i ∈ [2m−1; 2h−1 − 1] : t ∈ (inf Ii; inf Ii + 2kµIi)} ≥ k

}
.

Moreover, Ωm,h ⊂ Ωm,h+1, h = m + 1,m + 2, . . . , so by continuity of measure µΩm =
limh Ωm,h. On the other hand, Ωm,h ⊂ Ω(s) for any configuration s = {[ai; ai+δi]}2

h−1
i=1 ∈

T satisfying the conditions ai = inf Iqh(i), δi = 2µIqh(i) for i ∈ {l : rh(l) ≥ m} (note that
for other indexes we can choose as small δi as we please). In view of Theorem 3.1,

µΩ(s) ≤ K(T )
(
ε+

2h−1−1∑
i=2m−1

2µIi
)

where ε =
∑
i:rh(i)<m δi can be as small as we want. Consequently, µΩm ≤

2K(T )
∑∞
i=2m−1 µIi. In the definition of Ω−m, the participating intervals “expand” in

the opposite direction, nevertheless, we can apply the above arguments to the set {t :
−t ∈ Ω−m}. So, we get µΩ−m ≤ 2K(T )

∑∞
i=2m−1 µIi.

It is not difficult to see that for any point x /∈ Ωm ∪ Ω−m{
µIi+2m−1−1

si+2m−1−1(x)

}∞
i=1

∈ l1,∞. (12)

Indeed, suppose that (12) is false. Then, in particular, there exist k > 0 and 0 < i1 <

i2 < . . . < i2k such that
µIil+2m−1−1

sil+2m−1−1(x)
> 1

k , l = 1, 2, . . . , 2k. This implies

x ∈ (inf Iil+2m−1−1 − kµIil+2m−1−1; sup Iil+2m−1−1 + kµIil+2m−1−1)

⊂
(
sup Iil+2m−1−1 − 2kµIil+2m−1−1; inf Iil+2m−1−1 + 2kµIil+2m−1−1

)
,
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l = 1, 2, . . . , 2k, and, consequently, x ∈ Ωm ∪ Ω−m. Thus, the assumption is wrong and
(12) is fulfilled. It follows easily that for almost all points x ∈ C \ (Ωm ∪ Ω−m),{

µIi
si(x)

}∞
i=1

∈ l1,∞.

Taking m to infinity and having in mind the estimations for µΩm, µΩ−m, we get the
result.

Before proving Theorem 3.1, we need to consider some auxiliary statements.
Let us begin by making some notations. Let n > 0. Every i ∈ {1, 2, . . . , 2n − 1} can

be uniquely represented in the form

i =
n−1∑
j=0

γj2j , γj ∈ {0; 1}, 0 ≤ j ≤ n− 1. (13)

Define a function of intervals Pn : {1, 2, . . . , 2n − 2} → 2{1,2,...,2
n−2} by the formula

Pn(i) =
{
h : ∃k ∈ [0;n− 1] such that h =

n−1∑
j=k

γj2j
}
,

where γj are coefficients from the “binary” representation of i (13). Note that each element
of Pn(i) is the maximal multiple of 2k (for some k ≥ 0) not exceeding i. Cardinality of
Pn(i) equals to the number of “1”-s in the “binary” representation of i.

Further, let f be some function of intervals of order 2n − 1 and s be an f -admissible
configuration from T defined by the formula (11). Then the C, f -rarefication s′ = {bi; bi+
κi}2

n+1−3
i=1 of the configuration s is called uniform if for all 1 ≤ i ≤ 2n − 2 we have

κ2i =
C

2n − 2

2n−1∑
j=1

drn(j).

Lemma 3.3. Let s ∈ T be a configuration defined by (11) and s′ = {[a′i; a′i+2drn(i)]}2
n−1
i=1

be a Pn-admissible configuration. Then for any C1 ≥ 2 and the uniform C1, Pn-rarefica-
tion w′ of s′ we have µΩ(w′) ≥ µΩ(s).

Proof. According to Lemma 2.5, it suffices to consider configurations s ∈ T ∩ A′. Let
δi = dr(i), 1 ≤ i ≤ 2n−1. We may assume that n > 1. Consider the uniform C-rarefication
w = {[bi; bi + κi]}2

n+1−3
i=1 of the configuration s (C ≥ 4). Suppose that b2i+1 > b2i + κ2i

for some i ∈ [1; 2n − 2] and let Mi ⊂ {1, 2, . . . , i} be a set of indexes such that

b2i+1 = max Ω({[b2j−1; b2j−1 + κ2j−1]}ij=1)

= max
⋂
j∈Mi

[b2j−1; b2j−1 + cardMi · κ2j−1]. (14)

Consider two cases.
1) card(Mi ∩ Pn(i)) ≥ 1

2 cardMi. Then, clearly,

b2i+1 ≤ max
⋂

j∈Mi∩Pn(i)

[b2j−1; b2j−1 + 2 card(Mi ∩ Pn(i)) · κ2j−1]. (15)
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2) card(Mi ∩ Pn(i)) < 1
2 cardMi. First, note that whenever k ∈ Mi \ Pn(i), there

exists l ∈ {k + 1, k + 2, . . . , i} such that rn(l) ≤ rn(k). Indeed, suppose it is not true.
Then, by definition of the function rn, none of the numbers k+1, k+2, . . . , i is a multiple
of 2n−rn(k). Thus, k is the maximal multiple of 2n−rn(k) not exceeding i, so k ∈ Pn(i)
and the assumption is wrong. Further, if k ∈ Mi \ Pn(i) and rn(l) ≤ rn(k) for some
l ∈ [k + 1; i] then l − k ≥ 2n−rn(k), so

b2l−1 − b2k−1 ≥ 2n−rn(k) C

2n − 2

2n−1∑
j=1

δj . (16)

For some r ∈ [1;n] consider a set

Zr := {k ∈Mi \ Pn(i) : rn(k) = r}.

Suppose that cardZr > 0 and denote the elements of Zr by ih, h ∈ [1; cardZr], i1 < i2 <

. . . < icardZr . In view of (14) and (16),

cardMi · dr > b2i−1 − b2i1−1 = (b2i−1 − b2icardZr−1)

+
cardZr−1∑

h=1

(b2ih+1−1 − b2ih−1) ≥ 2n−r cardZr
C

2n − 2

2n−1∑
j=1

δj ,

whence

cardZr < 4
2r−1dr card(Mi \ Pn(i))

C
∑n
j=1 2j−1dj

.

Summing by all r such that cardZr > 0 we get

card(Mi \ Pn(i)) <
4
C

card(Mi \ Pn(i)).

Since C ≥ 4, the last inequality is impossible, implying card(Mi ∩ Pn(i)) ≥ 1
2 cardMi.

Thus, by (15), for all 1 ≤ i ≤ 2n − 2

b2i+1 ≤ max
{
b2i + κ2i,max Ω({[b2j−1; b2j−1 + 2κ2j−1]}j∈Pn(i))

}
. (17)

Now, let w̃ = {[bi; bi + κ̃i]}2
n+1−3
i=1 with κ̃2i−1 = 2κ2i−1, i ∈ [1; 2n − 1]; κ̃2i = κ2i,

i ∈ [1; 2n − 2], and let w′ = {[b′i; b′i + κ′i]}
2n+1−3
i=1 be the uniform (C/2), Pn-rarefication

of s′. Clearly, µΩ(w̃) ≥ µΩ(w). Further, κ̃i = κ′i for all 1 ≤ i ≤ 2n+1 − 3 and from (17)
and Lemma 2.8, µΩ(w̃) ≤ µΩ(w′). Thus,

µΩ(w′) ≥ µΩ(w̃) ≥ µΩ(w) ≥ µΩ(s).

Lemma 3.3 will allow us to consider only Pn-admissible configurations and their rar-
efications when proving Theorem 3.1. However, the rarefications are not so simple as in
the proof of Theorem 2.9, and we have to use some probabilistic results to estimate K(T ).
The following lemma delivers an upper estimate for the probability of a specific event for
the Bernoulli process. It is quite possible that the result cannot be directly derived from
the known facts, so, the full proof is given.

Lemma 3.4. Let η̃ = {ηj}ρj=1 be a sequence of independent random variables ηj,
P{ηj = 1} = P{ηj = 0} = 1

2 . Let also k, l1, l2, . . . , lρ be some non-negative integers
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such that
ρ∑
j=1

2−lj ≤ k

e
.

Finally, let

Gρ,j(η̃) =

{
1, if j ≤ ρ− lj , ηj = 1 and ηv = 0 for all v ∈ [j + 1; j + lj ],

0, else.

Then

P
{ ρ∑
j=1

Gρ,j(η̃) ≥ k
}
≤ 2−k. (18)

Proof. Note that P{Gρ,j(η̃) = 1} ∈ {0; 2−lj−1}, j = 1, 2, . . . , ρ. Now, let 1 ≤ j1 < j2 <

. . . < jk ≤ ρ. It is evident that whenever jv + lv ≥ jv+1 for some 1 ≤ v < k or jk > ρ− lk
then

P{Gρ,j1(η̃) = Gρ,j2(η̃) = . . . = Gρ,jk(η̃) = 1} = 0.

Otherwise, the events (Gjv (η̃) = 1), v = 1, 2, . . . , k, are independent. Thus, we have

P{Gρ,j1(η̃) = Gρ,j2(η̃) = . . . = Gρ,jk(η̃) = 1} ≤ 2−k−
∑k
v=1 ljv .

As a consequence we get the following estimate:

P
{ ρ∑
j=1

Gρ,j(η̃) ≥ k
}
≤

∑
j1,j2,...,jk

2−k−
∑k
v=1 ljv , (19)

where the sum in the right part is taken over all samples 1 ≤ j1 < j2 < . . . < jk ≤ ρ. Let
us denote the right part of the inequality (19) by h(l1, l2, . . . , lρ). We will consider h as a
function of real variables x1, x2, . . . , xρ with the restrictions

ρ∑
j=1

2−xj ≤ k

e
. (20)

We will show that h reaches its maximum when x1 = x2 = . . . = xρ. Indeed, suppose
that arg maxh = (x′1, x

′
2, . . . , x

′
ρ), x

′
n 6= x′m for some n and m. Let

x′′j =

{
x′j , j /∈ {n,m},
1− log2(2−x

′
n + 2−x

′
m), j ∈ {n,m}.

Clearly,
2−x

′′
n + 2−x

′′
m = 2−x

′
n + 2−x

′
m , (21)

so, (20) is fulfilled for x′′j . Further, in view of (21),

h(x′′1 , x
′′
2 , . . . , x

′′
ρ)− h(x′1, x

′
2, . . . , x

′
ρ) =

∑
j1,j2,...,jk

(
2−k−

∑k
v=1 x

′′
v − 2−k−

∑k
v=1 x

′
v

)
=

∑
j1,j2,...,jk−2

n,m/∈{j1,...,jk−2}

(2−x
′′
n−x

′′
m − 2−x

′
n−x

′
m)2−k−

∑k−2
v=1 x

′
jv ,
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where the last sum is taken over all samples 1 ≤ j1 < j2 < . . . < jk−2 ≤ ρ such that
n,m /∈ {j1, j2, . . . , jk−2}. Taking into account that

2−x
′′
n−x

′′
m = 22 log2(2

−x′n+2−x
′
m )−2 =

1
4

(2−x
′
n + 2−x

′
m)2

=
1
4

(2−x
′
n − 2−x

′
m)2 + 2−x

′
n−x

′
m > 2−x

′
n−x

′
m ,

we get h(x′′1 , x
′′
2 , . . . , x

′′
ρ) > h(x′1, x

′
2, . . . , x

′
ρ). Thus, the assumption was false, and

x′1 = x′2 = . . . = x′ρ = log2

eρ

k
.

Finally, applying the Stirling formula, we obtain

h(x′1, x
′
2, . . . , x

′
ρ) =

(
k

ρ

)
2−k(1+log2 eρ/k) = 2−k

ρ!
k!(ρ− k)!

( k
eρ

)k
≤ 2−k

kk

k!ek
≤ 2−k,

and (18) follows.

Proof of Theorem 3.1. Certainly, we may assume that n > 1. Let s be an arbitrary
configuration from T defined by the formula (11), and s′ = {[a′i; a′i + 2drn(i)]}2

n−1
i=1 be a

Pn-admissible configuration. In view of Lemma 3.3, it is sufficient to verify that for the
uniform 8e, Pn-rarefication w′ = {[b′i; b′i+κ′i]}

2n+1−3
i=1 of the configuration s′ the inequality

µΩ(w′) ≤ C
2n−1∑
i=1

κ′2i−1

holds for an absolute constant C. For each i ∈ {1, 2, . . . , 2n − 2} let Mi be a subset of
Pn(i), such that

max
⋂
j∈Mi

[b′2j−1; b′2j−1 + cardMi · κ′2j−1] = max Ω
(
{[b′2j−1; b′2j−1 + κ′2j−1]}j∈Pn(i)

)
.

Evidently, whenever b′2i+1 > b′2i + κ′2i, we have cardMi > 1 and

b′2i+1 − b′2i ≤ cardMi · κ′2i−1.

By Lemma 2.4, the value maxµΩ(w′)−b′2n+1−3 is majorized by the total length of intervals
from the configuration. So, to prove the theorem, it is enough to check that∑

i∈{1,2,...,2n−2}
b′2i+1>b

′
2i+κ

′
2i

cardMi · κ′2i−1 ≤ C1

2n−1∑
i=1

κ′2i−1 (22)

for some absolute constant C1.
Let ρ be a number from {2, 3, . . . , n} and Rρ := {i ∈ [1; 2n − 1] : rn(i) = ρ}. Next,

consider a random variable ξρ taking values from Rρ with equal probability (that is,
P{ξρ = i} = 21−ρ, i ∈ Rρ). Let also ηm(i), m = 1, 2, . . . , ρ− 1, be defined on Rρ by the
formula

ηm(i) =

{
1, m = rn(j) for some j ∈ Pn(i),

0, else.

It is not difficult to see that {ηm(ξρ)}ρ−1
m=1 considered as random variables are independent,

and P{ηm(ξρ) = 1} = P{ηm(ξρ) = 0} = 1
2 , m = 1, 2, . . . , ρ − 1. Indeed, for any binary
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sequence {αm}ρ−1
m=1, αm ∈ {0; 1}, m = 1, 2, . . . , ρ− 1, there exists the single i ∈ Rρ such

that ηm(i) = αm, m = 1, 2, . . . , ρ− 1.
For any fixed k > 1, we are going to estimate probability of the event

ξρ ≤ 2n − 2, b′2ξρ+1 > b′2ξρ + κ′2ξρ , cardMξρ = k. (23)

Suppose (23) is fulfilled for ξρ = i, i ∈ Rρ. We have cardMi · κ′2j−1 > b′2i−1 − b′2j−1 for
any number j ∈Mi. On the other hand, if j 6= i and r′n(j) is defined by

r′n(j) := min
{
r > 0 : r = rn(h) for some h ∈ Pn(i) ∩ {j + 1, j + 2, . . . , i}

}
then the set {j+1, j+2 . . . , i} contains at least one multiple of 2n−r

′
n(j). Since Mi ⊂ Pn(i),

the rank of j must be strictly less than r′n(j), so, j is also a multiple of 2n−r
′
n(j). Thus,

i− j ≥ 2n−r
′
n(j), and

cardMi · κ′2j−1 > b′2i−1 − b′2j−1 ≥ 2n−r
′
n(j) 8e

2n − 2

2n−1∑
q=1

κ′2q−1.

The last inequality can we rewritten as follows:

2rn(j)−1drn(j)k

e
∑n
h=1 2h−1dh

>
4

2n − 2
2n−r

′
n(j)+rn(j) >

2
2r′n(j)−rn(j)−1

. (24)

Note that the left part of (24) depends only on rn(j). For any r ∈ [1; ρ− 1], let lr be the
smallest non-negative integer number such that

2r−1drk

e
∑n
h=1 2h−1dh

> 21−lr .

Then, summing by r, we get
ρ−1∑
r=1

2−lr <
k

2e
≤ k − 1

e
.

By definition of r′n, the set Mi does not contain indexes with ranks in the interval
(rn(j); r′n(j)) for any j ∈Mi\{i}. Taking into account that lrn(j) ≤ r′n(j)−rn(j)−1, we get
ηrn(j)+ν(i) = 0, ν = 1, 2, . . . , lrn(j). Evidently, ηrn(j) = 1, so Gρ−1,rn(j)({ηm(i)}ρ−1

m=1) = 1,
with G defined as in Lemma 3.4 and lr, r = 1, 2, . . . , ρ − 1, determined above. Thus,
conditions (23) imply

ρ−1∑
r=1

Gρ−1,r({ηm(i)}ρ−1
m=1) ≥ card(Mi \ {i}) = k − 1.

It follows that

P{ξρ satisfies (23)} ≤ P
{ρ−1∑
r=1

Gρ−1,r({ηm(ξρ)}ρ−1
m=1) ≥ k − 1

}
≤ 21−k.

Summing by k (recall that k > 1), we get∑
i∈Rρ\{2n−1}
b′2i+1>b

′
2i+κ

′
2i

cardMp · κ′2i−1 < 2ρ−1
∞∑
k=2

k21−k2dρ < 2ρ+2dρ. (25)
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Note that rn(i) = 1 only if i = 2n−1, and cardPn(2n−1) = 1. It means that with necessity
b′2n+1 = b′2n + κ′2n . Finally, applying (25), we get∑

i∈{1,2,...,2n−2}
b′2i+1>b

′
2i+κ

′
2i

cardMi · κ′2i−1 =
n∑
ρ=2

∑
i∈Rρ\{2n−1}
b′2i+1>b

′
2i+κ

′
2i

cardMi · κ′2p−1 < 4
2n−1∑
i=1

κ′2i−1.

Finally, we consider a question whether a stronger result for generalized Cantor sets
than Corollary 3.2 can be obtained. We can prove the following

Proposition 3.5. Whenever φ : N → N is an increasing function with limn→∞
φ(n)
n =

∞, there exists a generalized Cantor set Cφ such that for all x ∈ Cφ

lim
n→∞

φ(n)
(
µIn
sn(x)

)∗
=∞, (26)

where {Ii} are intervals from the definition of Cφ, si(x) is the distance from x ∈ Cφ to
Ii and ( µIn

sn(x) )∗ is the n-th element of the non-increasing rearrangement of { µIi
si(x)
}∞i=1.

Proof. First, note that we can find positive integer numbers km, km+1 > km + 1, m ≥ 0,
such that

(km+1 − km) ↑ ∞ (27)

and
φ(i)
i
≥ m2m+2 for all m ≥ 2 and i ≥ 2km−1−km−2−1. (28)

Next, let {di}∞i=1 be a sequence of positive real numbers such that dkj = 2−j−kj , j ≥ 0,∑∞
i=1 2i−1di < 1 and

max
{
dr : r ∈ [km−1 + 1; km − 1]

}
≤ 21−km , m ≥ 2.

We will construct the generalized Cantor set Cφ according to the algorithm described at
the beginning of the section, with initial interval [0; 1] and di determined above. The set
Cφ shall be “homogeneous” in the sense that for each k ∈ N the neighbor intervals from
{Ii}2

k−1
i=1 are equally distanced from each other and that for the distance hk we have:

hk = inf
⋃

1≤i<2k

Ii = 1− sup
⋃

1≤i<2k

Ii

(in other words, the distance between the leftmost interval and the point “0” equals the
distance between the rightmost interval and “1”, as well as the distance between any
two neighboring intervals). Next, fix x ∈ Cφ and m ≥ 2. The intervals Ii with ranks not
exceeding km−1 split [0; 1] into 2km−1 closed segments Ki and, with necessity, x ∈ Kj

for some j ∈ [1; 2km−1 ]. It is easy to see that Kj comprises 2km−km−1−1 intervals of rank
km. Moreover, for any two neighbor intervals Ih and Il (l > h) of rank km from the
segment Kj ,

inf Il − inf Ih < max{dr : r ∈ [km−1 + 1; km − 1]}+ 21−km+km−1µKj

≤ 21−km + 21−km+km−1µKj .

It is also evident that the leftmost interval of rank km from Kj is distanced from inf Kj

by not farther than 2−km+km−1µKj ; the analogous estimation holds for the rightmost
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interval and supKj . Thus, if the set Mm,x is defined by

Mm,x := {i : Ii has rank km and Ii ⊂ Kj}
then for any h ∈ [1; 2km−km−1−1]

card{i ∈Mm,x : si(x) ≤ h(21−km + 21−km+km−1µKj)} ≥ h, (29)

Formula (29) implies that for all i ≤ 2km−km−1−1 we have( µIi
si(x)

)∗
≥ dkm
i(21−km + 21−km+km−1µKj)

≥ 2−m−2

i
.

Taking into account (28), we get

φ(i)
( µIi
si(x)

)∗
≥ m, i ∈ [2km−1−km−2−1; 2km−km−1−1].

In view of (27), we come to (26).

Remark. In particular, from Proposition 3.5 one can deduce that the series (2) with
λ = 0 diverges for all x for some generalized Cantor sets. For instance, we can take Cφ
with φ(n) = n log(1 + n).
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