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Prologue
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The one-time Mlle Sklodovska reflected in silence for a moment. Then, her
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in Russia, Germany and Austria—the oppressor countries—and answered
timidly:
“Could we call it ’polonium’?”
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existence of this new metal is confirmed we propose to call it polonium, from
the name of the original country of one of us.”

—from the book MADAME CURIE
A Biography by Ève Curie.

The Literary Guild of America, Inc.
New York 1937 (page 161)

2010 Mathematics Subject Classification: Primary 35J60; Secondary 41A05, 47B38.
Key words and phrases: Marcinkiewicz, Nonlinear Interpolation, p-Laplacian, Nonlinear Com-
mutators.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc95-0-4 [55] c© Instytut Matematyczny PAN, 2011



56 T. IWANIEC

In May, 1921, President Harding presented Maria Skłodowska with one gram of ra-
dium. Later, in 1929, she donated a second gram of radium to help build The Radium
Institute in Warsaw (1932).

Maria Skłodowska’s life, regardless of her fame, has immensely inspired fellow gener-
ations of scientists in Poland and abroad. Józef Marcinkiewicz was about two years old
when she was awarded her second Nobel Price (in chemistry, December 10, 1911). This
year we will celebrate the one hundredth anniversary of this event.

In 1939, following their secret protocol (signed by Molotov and Ribbentrop on August
23, 1939), Adolf Hitler (on September 1) and Joseph Stalin (on September 17) attacked
Poland hoping to erase it from the map of the world again. Józef Marcinkiewicz, like Maria
Skłodowska forty years before, stood up for his beloved country. In August 1939, when
the Second World War was imminent, he came back from London to Wilno (Vilnius). He
put on Polish military uniform to say no to the Nazis and the Bolsheviks.

“As a patriot and son of my homeland I would never attempt to refuse the
service to the country in such difficult time as war ”.

—fragment of a letter of Józef Marcinkiewicz
to his adviser Antoni Zygmund, see [26]

Marcinkiewicz, along with 22 thousand Polish army officers, police members, land
owners—great patriots who dared to exhibit a love and pride of independent Poland,
were executed by NKVD murderers. By the order of J. Stalin, they were shot in the back
of the head and buried secretly in mass graves of gloomy forested sites near Starobielsk,
Ostashkovo and the most documented Katyń.

KATYŃ CAROL
Someday maybe a great musician will rise up,
will transform speechless rows of gravestones into a keyboard,
a great Polish song writer will compose a frightening ballad with blood and
tears.
[. . . ]
And there will emerge untold stories,
strange hearts, bodies bathed in light. . .
And the Truth again will embody
The Spirit
with living words—of the sand of Katyń

Kazimiera Iłłakowiczówna
(translated by the author of this article)
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“. . . his early death may be seen as a great blow to Polish Mathematics, and
probably its heaviest individual loss during the Second World War ”.

—remark by Professor Antoni Zygmund
about his pupil Józef Marcinkiewicz [11, 28, 39]

Good scientific communities, like families, honor the memory of their eminent mem-
bers, great patriots and martyrs. I devote my essay to the memory of Józef Marcinkiewicz
and all Polish mathematicians whose glorious scientific careers came to a cruel end during
Nazi-Soviet occupation. Józef Marcinkiewicz, Stanisław Saks and Juliusz Paweł Schauder
were inspiration to me. I am mindful of them not only as mathematicians.

Stanisław Saks (1897–1942) was born to a Polish-Jewish family. He joined the Polish
underground, was arrested and executed on November 23, 1942, by the German Gestapo
in Warsaw.

Words written on the wall of a cell by an anonymous prisoner of the Gestapo in Aleja
Szucha in Warsaw can be translated as saying:

Speaking of Poland is easy
working for it is harder

dying is harder still
but suffering is the hardest.

Juliusz Paweł Schauder (1899–1943), a Polish mathematician of Jewish origin who
was shot in Lwów by the Gestapo in September 1943. Immediately after that, his wife
Emilia and her daughter Ewa were hiding in the sewers. They eventually surrendered to
the Gestapo. Transported to the concentration camp in Lublin, Emilia died, her daughter
Ewa survived the camp.

In August 1944 the staff of The Radium Institute in Warsaw suffered the same fate
as the victims of the Katyń massacre; they were executed by a shot in the back of the
head. After the Second World War The Institute was named “Maria Skłodowska-Curie
Institute of Oncology”.

Acknowledgement. I feel highly honored by the invitation to speak at the Józef Mar-
cinkiewicz Centenary Conference in Poznań, the city of the poet Kazimiera Iłła-
kowiczówna, and the city where Marcinkiewicz got his last, unrealized, offer to work
(August 1939).

Heart-felt thanks to the organizers.

The author was supported by the NSF grant DMS-0800416 and the Academy of
Finland project 1128331.
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1. Introduction. The total record of accomplishments of Marcinkiewicz in his short life,
his talent, perceptions rich in concepts, and technical novelties, go far beyond my ability
to give full play within the confines of one article. The importance of Marcinkiewicz’s
short paper [27], see also [38], is reflected in the myriad applications and generalizations
[2, 3, 5, 6, 8, 10, 25, 36, 38] which earns the right to be called

Marcinkiewicz Interpolation Theory.

Marcinkiewicz interpolation theorem came after the celebrated convexity theorem of
M. Riesz [32] and his student G. O. Thorin [37]. These fundamental works by M. Riesz,
G. O. Thorin and J. Marcinkiewicz deal with estimates of the L p-norms of an operator
knowing its behavior at the end-points of the interval of the exponents p, where the oper-
ator is still defined. There are, however, some subtle differences between the Riesz-Thorin
and the Marcinkiewicz ideas. The Marcinkiewicz approach can be adapted to nonlinear
operators, this is what we are going to demonstrate in the present paper. On the other
hand, the very elegant idea of complex interpolation by G. O. Thorin [37] has found nu-
merous applications, especially when dealing with sharp inequalities for singular integrals.
The interested reader may wish to take a note of the interpolation lemmas in [1].

In the present paper I will try to elucidate some new advances of the Marcinkiewicz
interpolation theorem which arise from a study of the nonlinear p-harmonic type PDEs,
[12, 13, 14, 16, 17, 18, 19]. The principal result in this paper can be described as follows:

Let (X,dx) be a σ-finite measure space, L 2(X,V) the space of square integrable
functions valued in a finite-dimensional inner product space V, and L 2

+
(X,V) a closed

subspace of L 2(X,V). We study the orthogonal projection

Π : L 2(X,V) onto−−→ L 2
+

(X,V).

The standing assumption about the subspace L 2
+

(X,V) is that Π extends as a continuous
linear operator,

Π : L s(X,V) onto−−→ L s
+

(X,V)
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to some range of exponents s ∈ (s1, s∞), where 1 6 s1 < 2 < s∞ 6 ∞. For example,
the L 2-projection of vector fields in Rn onto gradient fields is represented by the Riesz
transforms, so s1 = 1 and s∞ =∞.

Now, choose and fix p ∈ (s1, s∞). The L p-projection of f ∈ L p(X,V) onto the space
L p

+
(X,V) is defined to be a function α ∈ L p(X,V) that is the closest, in L p-distance,

to f. This gives rise to a nonlinear continuous operator

Rp : L p(X,V) onto−−→ L p
+

(X,V).

This operator can be viewed as p-harmonic variant of the Riesz transforms. The space
L p(X,V) is the natural domain of definition of Rp. However, we are interested in the
action of Rp on spaces different from L p(X,V); namely,

Rp : L s(X,V) onto−−→ L s
+

(X,V), with some exponents s 6= p.

Theorem 1.1 (Interpolation of the L p-projections). Suppose

Rp : L ri(X,V) onto−−→ L ri

weak(X,V), i ∈ {1, 2}, where s1 6 r1 < r2 6 s∞.

This means that for each i ∈ {1, 2} there is a constant Ci such that

meas{x ∈ X : |Rpf(x)| > t} 6 Cit
−ri

∫
X
|f(x)|ri dx, for all t > 0,

whenever f ∈ L p(X,V) ∩L ri(X,V).
Then for every r ∈ (r1, r2) there exists a constant Cr such that∫

X
|Rpf(x)|r dx 6 Cr

∫
X
|f(x)|r dx

whenever f ∈ L p(X,V) ∩L r(X,V).

The proof is immediate from a more general result that we included in Theorem 5.2,
see Section 5 and Section 6.

2. A motivation from Hodge theory. The Hodge decomposition of differential forms
provokes a nonlinear setting of Marcinkiewicz Interpolation.

2.1. The linear Hodge theory. Let X be an oriented Riemannian n-dimensional
smooth manifold (with or without boundary) [15, 21, 24, 30, 35]. To every point x ∈ X and
0 6 ` 6 n there corresponds a linear space

∧`
x of `-covectors. This is an

(
n
`

)
-dimensional

inner product space:
〈α |β〉dx = 〈α |β〉

x
dx = α ∧ ∗β

where dx stands for the unit n-covector induced by the metric and orientation of the
manifold, and ∗ :

∧`
x →

∧n−`
x is the Hodge-star duality operator. The volume element

dx gives rise to a measure on X.
Let

∧` =
∧`(X) =

⋃
x∈X

∧`
x denote the bundle of `-covectors over X. One might

consider various classes of sections of this bundle; that is, differential forms. The class
of smooth `-forms will be denoted by C∞(X,∧`). There are two underlying differential
operators acting on forms: the exterior differential and its formal adjoint, called Hodge
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codifferential

d : C∞(X,∧`−1)→ C∞(X,∧`), d∗ : C∞(X,∧`+1)→ C∞(X,∧`).

The Hodge theory asserts that every differential `-form ω ∈ C∞(X,∧`) can be written as

ω = du+ d∗v + h, u ∈ C∞(X,∧`−1), v ∈ C∞(X,∧`+1), h ∈ C∞(X,∧`).

The exact component du, the coexact component d∗v, and the harmonic field h, dh =
d∗h = 0, are determined uniquely once we impose suitable boundary conditions on u, v, h
(no conditions are required for compact manifolds without boundary), see [15, 21, 24, 30].
Under such boundary conditions these components are mutually orthogonal in the space

L 2(X,∧`) =
{
ω : ‖ω‖22 =

∫
X
ω ∧ ∗ω =

∫
X
〈ω(x) |ω(x)〉dx <∞

}
.

In fact this is the space where the Hodge decomposition theory is born. Let us look briefly
at the following two closed subspaces of L 2(X,∧`); those that consist of the exact and
coclosed forms, respectively:

L 2
+(X,∧`) = L 2-closure of the forms du, with u ∈ C∞◦ (X,∧`−1)

L 2
−(X,∧`) = L 2-closure of the forms β ∈ C∞(X,∧`) such that d∗β = 0.

Thus we have an orthogonal decomposition

L 2(X,∧`) = L 2
+(X,∧`)⊕L 2

−(X,∧`).

Let
E : L 2(X,∧`)→ L 2

+(X,∧`) and C : L 2(X,∧`)→ L 2
−(X,∧`)

denote the orthogonal projections. These operators are locally represented by singular
integrals (Riesz Transforms) and as such keep acting as continuous operators on every
L s-space, with 1 < s <∞, [21, 24, 30, 35]

E : L s(X,∧`)→ L s
+(X,∧`) and C : L s(X,∧`)→ L s

−(X,∧`).

Let us record the following generalization of the orthogonality of exact and coclosed forms∫
X
〈α(x) |β(x)〉dx = 0, whenever α ∈ L p

+(X,∧`) and β ∈ L q
−(X,∧`).

Hereafter p and q are Hölder conjugate exponents; that is, real numbers in the interval
(1,∞) that satisfy the Hölder relation p+ q = p · q.

These projection operators also act on L 1(X,∧`) with values, respectively, in exact
and coclosed forms of the Marcinkiewicz class L 1

weak(X,∧`).

2.2. The L p-projection. The quintessential problem is to find an exact differential
form α ∈ L p

+(X,∧`), p 6= 2, which is the nearest possible in the L p-distance to a given
form ω ∈ L p(X,∧`). In the pursuit of the solution we minimize the p-harmonic energy
integral

min
γ∈L p

+(X,∧`)

∫
X
|ω(x)− γ(x)|p dx =

∫
X
|ω(x)− α(x)|p dx.

Such a form α ∈ L p
+(X,∧`) solves the Euler-Lagrange equation

d∗|ω − α|p−2(ω − α) = 0. (1)
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Equivalently,

|ω − α|p−2(ω − α) def= β ∈ L q
−(X,∧`). (2)

Here, we are dealing with Hölder conjugate exponents, p + q = p · q, and the Hodge
codifferential d∗ : L q(X,∧`) → D ′(X,∧`−1) acting in the sense of distributions. Now,
by the very definition, the L p-projection onto exact forms is a nonlinear operator which
takes ω into α,

Ep : L p(X,∧`) onto−−→ L p
+(X,∧`), Epω = α. (3)

It is plain that the operator Ep is bounded,

‖Epω‖p 6 ‖ω‖p. (4)

But it is less obvious, because of nonlinearity, that Ep is also continuous; precisely, we
have ∫

X
|Epω1 −Epω2|p �

(∫
X
|ω1 − ω2|p

)θ
·
(∫

X
|ω1|p + |ω2|p

)1−θ
(5)

for some exponent 0 < θ = θ(p) 6 1. Throughout this text we shall make use of the
symbol � to indicate that the inequality holds with some positive constant, so-called
implied constant, in front of the expression after this symbol. The implied constants will
vary from line to line; their detailed dependence on the exponents and other parameters
can easily be perceived from the computation. The implied constants will never depend
on the functions of concern.

While the space L p(X,∧`) is considered the natural domain of definition of the op-
erator Ep we shall depart from this space and move into the realm of exponents different
from p. A wider and unifying framework will be set up for such operators to capture the
essence of Marcinkiewicz interpolation.

3. Setting the stage. From now on (X,dx) will be an arbitrary σ-finite measure space
and V a finite-dimensional vector space equipped with an inner product 〈· | ·〉 = 〈· | ·〉V
and the induced norm | · | = | · |V = 〈· | ·〉1/2. We shall discuss L s-spaces, 1 6 s <∞, of
dx-measurable functions on X valued in V,

L s(X,V) =
{
ω : ‖ω‖s =

(∫
X
|ω(x)|sV dx

)1/s

<∞
}
.

Remark 3.1. The observant reader may wish to note that our subsequent considerations
remain valid for functions in X whose values ω(x) lie in a given inner product space Vx
assigned to each point x ∈ X, like differential forms on Riemannian manifolds. Rigorous
treatment of this setting, however, would require introduction of relevant vector bundles
over X, so that ω would become a measurable section. For the sake of readability, we do
not enter this territory; instead, we confine ourselves to trivial bundle X× V.

3.1. The L 2-projections. Let us choose and fix a closed subspace L 2
+(X) = L 2

+(X,V)
⊂ L 2(X,V) and its orthogonal complement L 2

−(X) = L 2
−(X,V) ⊂ L 2(X,V). Thus, we

have an orthogonal decomposition

L 2(X) = L 2
+(X)⊕L 2

−(X) (6)
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and the induced L 2-projections

Π+ : L 2(X) onto−−→ L 2
+(X), Π− : L 2(X) onto−−→ L 2

−(X), I = Π+ + Π− .

In general these linear operators may, or may not, extend to any of L s-spaces with
s 6= 2. Moreover, if they do extend, the range of such exponents depends on the decom-
position (6). Let us take for granted an assumption that

Π+ : L q(X) into−−→ L q
weak(X), for some 1 6 q < 2, (7)

meaning that for every t > 0

meas{x : |Π+ω(x)| > t} � 1
tq

∫
X
|ω|q, whenever ω ∈ L 2(X) ∩L q(X), (8)

where the implied constant depends neither on t nor on the function ω. Of course the
same is true for the operator Π−. By virtue of the Marcinkiewicz Interpolation Theorem
these two projections extend as continuous operators:

Π+ : L s(X) onto−−→ L s
+(X), for all q < s 6 2, (9)

and
Π− : L s(X) onto−−→ L s

−(X), for all q < s 6 2, (10)

where the spaces L s
+(X) and L s

−(X) are the closures of L 2
+(X) ∩ L s(X)and L 2

−(X) ∩
L s(X) in the norm of L s(X), respectively. It is rather intriguing that a direct application
of Marcinkiewicz interpolation does not guarantee a uniform bound of the norms of Π± as
s approaches 2, though such uniform bounds are evident from the Riesz-Thorin convexity
theorem. Nevertheless, since the operators Π± are selfadjoint in L 2(X,V), we may appeal
to Hölder’s duality to infer that

Π+ : L s(X) onto−−→ L s
+(X), for all 2 6 s < p, (11)

and
Π− : L s(X) onto−−→ L s

−(X), for all 2 6 s < p, (12)

where 1 6 q < 2 < p 6∞ is a Hölder conjugate pair; that is, q + p = q · p.
Now, a uniform bound of the s-norms with s ≈ 2 follows from the Marcinkiewicz

interpolation theorem as well. Let us summarize the above findings as

Π± : L s(X) onto−−→ L s
±(X), for all q < s < p. (13)

The spaces L s
+(X) and L s

−(X) can also be characterized through the following properties

L s
+(X) = {α ∈ L s(X) : Π+α = α}, L s

−(X) = {β ∈ L s(X) : Π−β = β}.

From now on we reserve the letters p, q for a pair of Hölder conjugate exponents in
the range

q < q 6 p < p, where
1
p

+
1
q

= 1.

Let us conclude this subsection by recording the (p, q)-orthogonality equation, reminis-
cent of the familiar div-curl product equation [9, 20, 21, 23, 31]∫

X
〈α(x) |β(x)〉 dx = 0 for α ∈ L p

+(X) and β ∈ L q
−(X). (14)
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This shows that the dual space to Lp+(X) is Lq+(X), and the dual space to Lp−(X) is Lq−(X).
In symbols, we have

Lp+(X)? = Lq+(X), Lq+(X)? = Lp+(X),

Lp−(X)? = Lq−(X), Lq−(X)? = Lp−(X).

Thus all the above are reflexive Banach spaces.

3.2. The Πp
+ and Πq

− projections. To every a ∈ L p(X,V) there corresponds exactly
one α ∈ L p

+(X,V) which is the nearest to a in the sense of L p-distance.∫
X
|a(x)− α(x)|p dx = min

γ∈L p
+(X,V)

∫
X
|a(x)− γ(x)|p dx.

The variational equation for α takes the form

|a− α|p−2(a− α) ∈ L q
−(X,V). (15)

In this way we have defined a nonlinear operator

Πp
+ : L p(X,V) onto−−→ L p

+(X,V), by the rule: Πp
+a = α.

Similarly, to every b ∈ L q(X,V) there corresponds exactly one β ∈ L q
−(X,V) which is

the L q-nearest to b. The analogous variational equation for β takes the form

|b− β|q−2(b− β) ∈ L p
+(X,V) (16)

and defines a nonlinear operator

Πq
− : L q(X,V) onto−−→ L q

−(X,V), by the rule: Πq
−b = β.

Let us weld together the above variational equations by introducing so-called (p, q)-
system.

Lemma 3.2. Given a pair f = (a, b) ∈ L p(X,V)×L q(X,V), there exists exactly one pair
φ = (α, β) ∈ L p

+(X,V)×L q
−(X,V) such that

|a− α|p−2(a− α) = b− β ∈ L q
−(X,V) (17)

or, equivalently,
|b− β|q−2(b− β) = a− α ∈ L p

+(X,V). (18)

Proof. One finds, uniquely, α ∈ L p
+(X,V) and β ∈ L q

−(X,V) by solving the following
strictly convex variational problem: given a pair f = (a, b) ∈ L p(X,V)×L q(X,V), find
φ = (α, β) ∈ L p

+(X,V)×L q
−(X,V) such that

min
α′∈L p

+(X,V)

∫
X
|a− α′|p − p〈b |α′〉 =

∫
X
|a− α|p − p〈b |α〉

or, equivalently,

min
β′∈L q

−(X,V)

∫
X
|b− β′|q − q〈a |β′〉 =

∫
X
|b− β|q − q〈a |β〉.

The reader may wish to keep an eye on a duality between these two variational
problems; precisely, the solution of one of them yields the solution of the other via the



64 T. IWANIEC

equations (17) and (18). In fact, they can be given one aesthetically pleasing symmetric
form,

(a− α)p = (b− β)q ∈ L 1(X,V). (19)

Here we have introduced the notation vs
def= |v|s−1v for the s-power of a vector v in a

normed space.
It is worthwhile to put the equation (19) in even more general framework.

3.3. The most general setting. Let A : X×V→ V be a given function satisfying the
following requirements:

• Carathéodory regularity :
The function x 7→ A(x, v) is measurable for every v ∈ V.
The function v 7→ A(x, v) is continuous for almost every x ∈ X.

• Homogeneity :
A(x, λv) = λp−1 · A(x, v) for λ > 0.

• Lipschitz condition:

|A(x, v1)− A(x, v2)| �
(
|v1|+ |v2|

)p−2|v1 − v2|.

• Monotonicity condition:

〈A(x, v1)− A(x, v2) |v1 − v2〉 �
(
|v1|+ |v2|

)p−2|v1 − v2|2.

Remark 3.3. In the above inequalities the implied constants are independent of x ∈ X
and v1, v2 ∈ V. The Carathéodory regularity makes certain that the function x 7→
A(x, v(x)) is measurable whenever v = v(x) is measurable, by Scorza-Dragoni Theorem.

It is clear that for x fixed the mapping v 7→ A(x, v) is invertible. Let its inverse be
denoted by v 7→ B(x, v); that is, for almost every x ∈ X, we have

B(x, ∗) ◦ A(x, ∗) = A(x, ∗) ◦B(x, ∗) = I : V→ V.

3.4. The natural domain of definition. The problem of solving the most general
equation in its natural domain of definition reads as follows.

Problem 1. Given a pair f = (a, b) ∈ L p(X,V)×L q(X,V) solve the equation

A(x, a + α) = b + β, equivalently B(x, b + β) = a + α, (20)

for φ = (α, β) ∈ L p
+(X,V)×L q

−(X,V).

A duality between the two equations at (20) is emphasized by the fact that the
inverse mapping v 7→ B(x, v) satisfies the same requirements as v 7→ A(x, v), but with
the Hölder conjugate exponent q in place of p. The key to the existence and uniqueness of
the solutions lies in the (p, q)-orthogonality relation (14) between the unknown functions
α and β.

Theorem 3.4. The equation (20) has unique solution. Moreover∫
X
|α|p + |β|q �

∫
X
|a|p + |b|q. (21)
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Proof. Since, in general, the equation (20) is not arising from a minimization of a vari-
ational integral, the existence of the solutions cannot be established by a variational
method. The Minty-Browder theory of monotone operators [4], [29] will come to the res-
cue. Fix a function a ∈ L p

+(X) and consider a map T from the reflexive Banach space
L p

+(X) into its dual L q
+(X), defined by the rule

Tα = Πq
+A(x, a + α) ∈ L q

+(X) for α ∈ L p
+(X).

A routine application of the requirements for A shows that this map is:

• continuous,
• strictly monotone, that is,∫

X
〈Tα1 −Tα2 |α1 − α2〉 > 0, whenever α1 6= α2 in L p

+(X),

• and coercive, that is,

lim
‖α‖p→∞

∫
X〈Tα |α〉
‖α‖p

=∞.

The Minty-Browder theory asserts that T is bijective. Let b ∈ L q(X) be given, so
we are given an element Πq

+b ∈ L q
+(X). There is exactly one α ∈ L p

+(X) such that
Πq

+A(x, a + α) = Πq
+b, meaning that A(x, a + α) = b + β, where β ∈ L q

−(X).
A key step in obtaining estimate (21) is the (p, q)-orthogonality of α ∈ L p

+(X) and
β ∈ L q

−(X). By using the properties imposed on A and B a computation runs as follows

|a + α|p � 〈A(x, a + α) |a + α〉 = 〈A(x, a + α) |a〉+ 〈b + β) |α〉
� |a + α)|p−1|a|+ 〈a + α |b〉 − 〈a |b〉+ 〈α |β〉.

This yields
|a + α|p � |a|p + |b|q + 〈α |β〉.

On the other hand, in view of (20) it follows that

|b + β|q � |a + α|p � |a|p + |b|q + 〈α |β〉.

Summing these two inequalities, we obtain

|a + α|p + |b + β|q � |a|p + |b|q + 〈α |β〉. (22)

We arrive at the following point-wise estimate,

|α|p + |β|q � |a|p + |b|q + 〈α |β〉 (23)

which, upon integration, gives the desired estimate (21).

4. Beyond the natural domain of definition. It makes sense to consider the equation
(20) in which the given pair f = (a, b) lies in L λp(X,V)×L λq(X,V), so the proper space
in which to seek the solution φ = (α, β) is L λp

+ (X,V) × L λq
− (X,V), where λ is close

enough to 1 so that λq > 1 and λp > 1. Taking into an account the projection operators
Π± : L s(X) → L s

±(X), q < s < p, we shall restrict ourselves to the parameters λ such
that

q < λq 6 λp < p. (24)
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The estimates are similar to those in the proof of Theorem 3.4, with one principal ingre-
dient. Let us begin with a point-wise inequality

|a + α|λp + |b + β|λq � |a + α|λp �
〈
A(x, a + α)

∣∣ (a + α)|a + α|(λ−1)p
〉
.

We decompose the vector field v = (a + α)|a + α|(λ−1)p as v = Π+v + Π−v, use the
equation A(x, a + α) = b + β, and integrate. By the orthogonality of β ∈ L λq

− (X) and
Π+v ∈ L

λq/(λq−1)
+ (X), we obtain∫

X
|a + α|λp + |b + β|λq �

∫
X
〈b |Π+v〉+

∫
X
〈A(x, a + α) |Π−v〉

� ‖b‖λq‖Π+v‖λq/(λq−1) + ‖(a + α)p−1‖λq‖Π−v‖λq/(λq−1)

� ‖b‖λq‖a + α‖λp−p+1
λp + ‖a + α‖p−1

λp ‖Π−v‖λq/(λq−1).

where we have used boundedness of the operator Π+ : L s(X) → L s(X) with s = λq
λq−1

and the identity ‖v‖s = ‖a + α‖λp−p+1
λp . With the aid of Young’s inequality the term

‖a + α‖λp can be absorbed by the left hand side. We thus obtain∫
X
|a + α|λp + |b + β|λq �

∫
X
|b|λq +

∫
X
|Π−v|s. (25)

Now the principal ingredient in the proof comes: we have Π−α = 0, so

Π−v = [Π−(a + α)1+ε]− [Π−(a + α)]1+ε + (Π−a)1+ε (26)

where ε = (λ− 1)p.
The s-norm of (Π−a)1+ε is controlled by the λp-norm of a, because the operator Π−

is bounded in the space L (1+ε)s(X) = L λp(X); namely,∫
X
|Π−v|s �

∫
X
|a|λp. (27)

The first two terms in the right hand side of (26) form a power type commutator. Precisely,
we are dealing with a commutator of the linear operator Π− and the nonlinear map
v 7→ |v|εv with ε close to zero; the exponent ε can be both positive or negative. Here is
what a complex interpolation method yields [21, 22, 23, 33, 34].

Theorem 4.1. Suppose a linear operator Π : L r(X,V) → L r(X,V) is continuous for
all exponents r in the range 1 6 q < r < p 6∞. Then for every 1 6 q < s < p 6∞, we
have ∥∥Π(v1+ε)− (Πv)1+ε

∥∥
s
� |ε| · ‖v1+ε‖s, whenever

q

s
< 1 + ε <

p

s
.

This gives:∥∥[Π−(a + α)1+ε]− [Π−(a + α)]1+ε
∥∥
s
� |ε| · ‖(a + α)1+ε‖s = |ε| · ‖a + α‖1+ελp .

Finally, we choose ε small enough, meaning that λ ≈ 1, to absorb this last term by
the left hand side of equation (25). Combining with equation (27), we obtain∫

X
|a + α|λp + |b + β|λq �

∫
X
|b|λq +

∫
X
|a|λp. (28)

Let us introduce the notation

[f] = |a|p + |b|q, [φ] = |α|p + |β|q. (29)
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We just proved that

Theorem 4.2. For all parameters λ sufficiently close to 1; precisely, for

λ ∈ (λ−, λ+), where
q

q
6 λ− < 1 < λ+ 6

p

p
, (30)

we have ∫
X

[φ]λ �
∫

X
[f]λ. (31)

4.1. Acceptable solutions. We shall speak of (λ−, λ+) as the fundamental interval
for the equation (20), see Definition 5.3 for clarification of this notion. The estimate (31)
raises an interesting question. Suppose we are given f = (a, b) such that

∫
X[f]λ <∞, one

might consider solutions φ = (α, β) of the equation (20) satisfying
∫

X[φ]τ <∞, for some
τ 6= λ. We assume that both exponents λ and τ lie in the fundamental interval. Is it true
that

∫
X[φ]λ < ∞ and, therefore, the estimate (31) holds? In general the answer to this

question is “yes”. However, the proof requires somewhat more elaborate variants of the
power type commutators and the associated estimates, like in Theorem 4.1. The interested
reader may wish to consult [7] for such commutators to verify the above statement. This
affirmative answer also settles the case λ = 1; that is, when the data f = (a, b) belongs to
the natural setting of the equation. The term acceptable solution refers to a pair φ = (α, β)
satisfying equation (20) such that

∫
X[φ]τ < ∞, for some τ ∈ (λ−, λ+). Thus, within the

fundamental interval for τ , if the data [f] belongs to L 1(X), then the acceptable solutions
actually belong to the natural setting of the equation. This means that [φ] ∈ L 1(X) and,
in particular, such solutions are unique.

4.2. A nonlinear counterpart of the Riesz Transforms. Associated with each sys-
tem (20) is its operator

R : L p(X)×L q(X)→ L p(X)×L q(X), defined by Rf = φ.

We regard R as a counterpart of the classical Riesz Transforms in L 2(Rn,V). Actual
extension of the domain of definition of R may be accomplished based on estimates of the
acceptable solutions to the system (20). Such an approach is commonly realized by first
estimating the operator in a conveniently chosen dense subspace of its natural domain
of definition, and then extending it in accordance with the estimate. We shall work with
the following dense subspace

L ∗(X)×L ∗(X) ⊂ L p(X)×L q(X), where L ∗(X) =
⋂

16s6∞

L s(X,V).

5. Marcinkiewicz interpolation in a nonlinear context. This section takes on the
Marcinkiewicz interpolation theorem to the context of nonlinear equations (20). The idea
of decomposing and integrating functions over their level sets is the core of the matter.
In our nonlinear setting, however, one faces additional challenges because of insufficient
additivity properties of the solutions to (20); these properties proved very proficient in
case of the linear operators.
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Definition 5.1. Whenever q/q 6 λ 6 p/p, the operator R will be said to satisfy the
weak λ-type inequality if

meas{x : [Rf(x)] > t} � 1
tλ

∫
X

[f]λ for every t > 0.

Here the implied constant is independent of f = (a, b) ∈ L ∗(X) × L ∗(X). Thus, in
particular, the induced solution Rf = (α, β) ∈ L p(X)×L q(X) is implicitly assumed to
belong to L λp(X)×L λq(X) as well.

5.1. The main result. The following generalization of the Marcinkiewicz Theorem
turns out particularly useful when applied to the p-harmonic type PDEs.

Theorem 5.2. Let λ− and λ+ be exponents, q/q 6 λ− < 1 < λ+ 6 p/p, for which R is
both of weak λ−-type and weak λ+-type. Then for every τ ∈ (λ−, λ+) the operator R is
of strong τ -type, meaning that∫

X
[Rf]τ �

∫
X
[f]τ for all f ∈ L ∗(X)×L ∗(X). (32)

At this stage we shall make the following

Definition 5.3 (Fundamental Interval). The largest interval (λ−, λ+), q/q 6 λ− < 1 <
λ+ 6 p/p, for which R acts from L λ−(X) into−−→ L

λ−
weak(X) and from L λ+(X) into−−→

L
λ+
weak(X), will be called the fundamental interval of the equation (20).

Remark 5.4. The point to make here is that in Section 4 we were able to establish the
estimate (31) only for λ’s sufficiently close to 1. In the above definition, however, we do
not insist on this assumption. Thus Theorem 5.2 broadens estimate (31) to be true in
the entire fundamental interval.

Proof. Let us refresh the equations

A(x, a + α) = b + β, B(x, b + β) = a + α,

and remind our notation

f = (a, b), φ = (α, β) = Rf,

∫
X
〈α(x) |β(x)〉 dx = 0.

For further notational convenience we introduce

A = a + α, B = b + β, H = (A,B) = f + Rf, [H] = |A|p + |B|q.

Thus the system of equations abbreviates to:

A(x,A) = B or, equivalently, B(x,B) = A (33)

and we are reduced to showing that∫
X
[H(x)]τ dx�

∫
X

[f(x)]τ dx for τ ∈ (λ−, λ+) (34)

which is certainly true for τ = 1, so we need only consider τ between 1 and λ = λ±;
precisely, for τ satisfying

0 6
τ − 1
λ− 1

< 1, where either λ = λ− < 1 or λ = λ+ > 1.
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We shall demonstrate the proof for 1 < τ < λ = λ+. The case λ− = λ < τ < 1 goes in
an exactly similar way, which will be emphasized several times as the proof develops. We
observe that whenever vector fields A and B are coupled by the relations (33), they are
comparable in the following fashion

|A|p u 〈A |A(x,A)〉 = 〈A |B〉 = 〈B(x,B) | B〉 u |B|q.

5.2. Marcinkiewicz decomposition. For t > 0 and a given pair f(x) = (a, b) we
consider a decomposition:

f(x) = ft(x) + ft(x)

where

ft(x) = (at, bt) =

{
(a, b) = f(x), if [f(x)] = |a(x)|p + |b(x)|q > t

0, if [f(x)] = |a(x)|p + |b(x)|q 6 t.

Similarly

ft(x) = (at, bt) =

{
(a, b) = f(x), if [f(x)] 6 t

0, if [f(x)] > t.

Then we solve the equations for φt(x) = (αt, βt) ∈ L p
+(X)×L q

−(X) and φt(x) = (αt, βt) ∈
L p

+(X)×L q
−(X), respectively.

A(x, at + αt) = bt + βt, A(x, at + αt) = bt + βt,

where ∫
X
〈αt(x) |βt(x)〉dx = 0,

∫
X
〈αt(x) |βt(x)〉dx = 0.

Caution. It is not true in general that φ(x) = φt(x) + φt(x).

Let us define

At = at + αt, Bt = bt + βt and At = at + αt, Bt = bt + βt,

Ht = (At,Bt), [Ht] = |At|p + |Bt|q,
Ht = (At,Bt), [Ht] = |At|p + |Bt|q.

We shall also introduce the energy integrands

Et(x) = 〈A −At | B − Bt〉 > 0, Et(x) = 〈A −At | B − Bt〉 > 0.

Lemma 5.5 (point-wise inequalities). We have

[H−Ht]� Et + [H] and [H−Ht]� Et + [H], (35)

[H−Ht]� Et + [Ht] and [H−Ht]� Et + [Ht]. (36)
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Proof. For all exponents 1 < p <∞, we can write

|A − At|p � |A−At|2(|A|+ |At|)p−2 +

{
either |A|p

or |At|p

�
〈
A−At |A(x,A)− A(x,At)

〉
+

{
either [H]

or [Ht]

� 〈A−At | B − Bt〉+

{
either [H]

or [Ht]
= Et +

{
either [H]

or [Ht].

Similarly, for the exponent 1 < q <∞,

|B − Bt|q � |B − Bt|2(|B|+ |Bt|)q−2 +

{
either |B|q

or |Bt|q

�
〈
B − Bt |B(x,B)−B(x,Bt)

〉
+

{
either [H]

or [Ht]

� 〈B − Bt |A − At〉+

{
either [H]

or [Ht]
= Et +

{
either [H]

or [Ht].

Adding up the above inequalities we conclude with the desired estimate corresponding
to the lower subscript t > 0.

[H−Ht] = |A − At|p + |B − Bt|q � Et +

{
either [H]

or [Ht]

In an exactly the same way we derive the inequalities for the upper superscript t > 0.

Now, the (p, q)-orthogonality comes into play when integrating the truncated energy
functions Et and Et,

Lemma 5.6 (the energy estimates). We have

E tf :=
∫

X
Et(x) dx�

∫
X
[ft] +

∫
X
[ft]1/p[H]1/q +

∫
X

[ft]1/q[H]1/p.

Similarly,

Etf :=
∫

X
Et(x)dx�

∫
X

[ft] +
∫

X
[ft]1/p[H]1/q +

∫
X
[ft]1/q[H]1/p.

Proof. Since a− at = at and b− bt = bt, we can write

Et = 〈A −At | B − Bt〉 = 〈at + α− αt |bt + β − βt〉
= −〈at |bt〉+ 〈at | B − Bt〉+ 〈bt |A − At〉+ 〈α− αt |β − βt〉

� [ft] + [ft]1/p(Et + [H])1/q + [ft]1/q(Et + [H])1/p + 〈α− αt |β − βt〉.

In the last step we have used inequalities in Lemma 5.5. Then, with the aid of Young’s
inequality, the term Et can be absorbed by the left hand side.

Et � [ft] + [ft]1/p([H])1/q + [ft]1/q([H])1/p + 〈α− αt |β − βt〉.
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Since α − αt ∈ L p
+(X) and β − βt ∈ L q

−(X), the integral of the last term vanishes.
Hence, integrating over X yields the first inequality of the lemma. The second one is
proven in much the same way.

Now the assumption that the operator R is L λ
weak-type comes into play.

Lemma 5.7. Let the exponent τ lie between 1 and λ; that is, 0 < τ−1
λ−1 < 1. Then∫ ∞

0

tτ−1meas{x : [Ht(x)] > t}dt�
∫

X
[f]τ if 1 < τ < λ = λ+ (37)

and ∫ ∞
0

tτ−1meas{x : [Ht(x)] > t} dt�
∫

X
[f]τ if λ− = λ < τ < 1. (38)

Proof. We shall be concerned with the level sets {x : Γ(x) > ct}, where c will be a
constant, again called implied constant, and the parameter t will run from 0 to ∞. This
implied constant may alter from line to line, but this will have no effect on the subsequent
estimates of the integrals over the entire domain X. Therefore, whenever it is convenient,
we shall abbreviate the notation {x : Γ(x) > ct} to {x : Γ(x) � t}.

Let us take the case 1 < τ < λ = λ+. We begin with the point-wise inequality
[Ht(x)] = [ft + Rft]� [ft] + [Rft]. Hence

meas{x : [Ht(x)] > t} � meas{x : [ft(x)] � t}+ meas{x : [Rft(x)] � t}.

Since the identity operator and R are both of L λ
weak-type, we can write∫ ∞

0

tτ−1meas{x : [Ht(x)] > t}dt

�
∫ ∞

0

tτ−1meas{x : [ft(x)] � t}dt+
∫ ∞

0

tτ−1meas{x : [Rft(x)] � t} dt

�
∫ ∞

0

tτ−1
(
t−λ

∫
X

[ft(x)]λ
)
dt+

∫ ∞
0

tτ−1
(
t−λ

∫
X

[ft(x)]λ
)
dt

= 2
∫ ∞

0

tτ−λ−1
(∫

[f]6t
[f(x)]λ dx

)
dt = 2

∫
X

[f(x)]λ
(∫ ∞

[f]

tτ−λ−1 dt
)
dx

=
2

λ− τ

∫
X
[f(x)]τ dx�

∫
X

[f(x)]τ dx.

as desired.
The case λ− = λ < τ < 1 is treated in much the same way; it begins with the

point-wise inequality [Ht(x)] = [ft + Rft] � [ft] + [Rft]. We leave the details to the
reader.

6. The interpolation estimate, proof of Theorem 5.2. We aim to show that∫
X

[φ(x)]τ dx�
∫

X
[f(x)]τ dx. (39)

Equivalently, ∫
X

[H(x)]τ dx =
∫

X
[f(x) + φ(x)]τ dx�

∫
X

[f(x)]τ dx. (40)
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Let us discuss in details the case 1 < τ < λ. We make use of (36), which yields [H] �
Et + [Ht], and the energy estimate in Lemma 5.6, to obtain∫

X
[H(x)]τ dx = τ

∫ ∞
0

tτ−1meas{x : [H(x)] > t}dt

� τ

∫ ∞
0

tτ−1meas{x : [Ht(x)] � t} dt+ τ

∫ ∞
0

tτ−1meas{x : [Et(x)] � t} dt

�
∫

X
[f]τ +

∫ ∞
0

tτ−2Etf dt

�
∫

X
[f]τ +

∫ ∞
0

tτ−2
(∫

X
[ft] +

∫
X

[ft]1/p[H]1/q +
∫

X
[ft]1/q[H]1/p

)
dt

�
∫

X
[f]τ +

∫ ∞
0

tτ−2
(∫

[f]>t

[f] + [f]1/p[H]1/q + [f]1/q[H]1/p
)
dt

=
τ

τ − 1

∫
X
[f]τ +

1
τ − 1

∫
X

(
[f]τ−1/q[H]1/q + [f]τ−1/p[H]1/p

)
.

The last equality is just an application of Fubini’s Theorem. It is at this stage that we
may (and will do) separate [H] from [f] without damaging the subsequent estimates. By
Hölder’s inequality it follows that∫

X
[H(x)]τ dx

�
∫

X
[f]τ +

(∫
X

[f]τ
)1−1/(τq)(∫

X
[H]τ

)1/(τq)

+
(∫

X
[f]τ
)1−1/(τp)(∫

X
[H]τ

)1/(τp)

.

Finally, with the aid of Young’s inequality the term
∫

X[H]τ in the right hand side can
be absorbed by the left hand side. It results in the desired estimate∫

X
[Rf(x)]τ dx�

∫
X

[f(x)]τ dx+
∫

X
[H(x)]τ dx�

∫
X

[f(x)]τ dx.

We leave it to the reader to verify, in an exactly similar fashion, the case λ < τ < 1;
simply the subscript t should be replaced by superscript t.

Finally, if we take b = 0 in the above estimates the proof of Theorem 1.1 goes through
with hardly any changes.
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