
MARCINKIEWICZ CENTENARY VOLUME
BANACH CENTER PUBLICATIONS, VOLUME 95

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2011

WEAK AND STRONG MOMENTS
OF RANDOM VECTORS

RAFAŁ LATAŁA

Institute of Mathematics, University of Warsaw
Banacha 2, 02-097 Warszawa, Poland

Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, 00-956 Warszawa, Poland

E-mail: rlatala@mimuw.edu.pl

Abstract. We discuss a conjecture about comparability of weak and strong moments of log-
concave random vectors and show the conjectured inequality for unconditional vectors in normed
spaces with a bounded cotype constant.

1. Introduction. Let X be a random vector with values in some normed space (F, ‖ ‖).
The question we will discuss is how to estimate ‖X‖p = (E‖X‖p)1/p for p ≥ 1. Obviously
‖X‖p ≥ ‖X‖1 = E‖X‖ and for any continuous linear functional ϕ on F with ‖ϕ‖∗ ≤ 1
we have ‖X‖p ≥ (E|ϕ(X)|p)1/p. It turns out that in some situations one may reverse
these obvious estimates and show that for an absolute constant C and any p ≥ 1,

(E‖X‖p)1/p ≤ C
(
E‖X‖+ sup

‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p
)
.

This is for example the case when X has Gaussian or product exponential distribution.
In this note we will concentrate on the more general case of log-concave vectors.

A measure µ on Rn is called logarithmically concave (log-concave in short) if for any
compact nonempty sets A,B ⊂ Rn and λ ∈ (0, 1),

µ
(
λA+ (1− λ)B

)
≥ µ(A)λµ(B)1−λ.

By the result of Borell [3] a measure µ on Rn with full dimensional support is log-concave
if and only if it is absolutely continuous with respect to the Lebesgue measure and has a
density of the form e−f , where f : Rn → (−∞,∞] is a convex function. Log-concave mea-
sures are frequently studied in convex geometry, since by the Brunn-Minkowski inequality
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uniform distributions on convex bodies as well as their lower dimensional marginals are
log-concave. In fact the class of log-concave measures on Rn is the smallest class of proba-
bility measures closed under linear transformation and weak limits that contains uniform
distributions on convex bodies. Vectors with logarithmically concave distributions are
called log-concave.

In the sequel we discuss the following conjecture posed in a stronger form in [7] about
the comparison of strong and weak moments for log-concave vectors.

Conjecture 1.1. For any n-dimensional log-concave random vector and any norm ‖ ‖
on Rn we have for 1 ≤ p <∞,

(E‖X‖p)1/p ≤ C1E‖X‖+ C2 sup
‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p, (1)

where C1 and C2 are absolute constants.

In Section 2 we gather known results about validity of (1) in special cases. Section 3 is
devoted to the unconditional vectors. In particular we show that Conjecture 1.1 is satisfied
under additional assumption of unconditionality of X and bounded cotype constant of
the underlying normed space.

Notation. Let (εi) be a Bernoulli sequence, i.e. a sequence of independent symmetric
random variables taking values ±1. We assume that (εi) are independent of other random
variables.

By (Ei) we denote a sequence of independent symmetric exponential random variables
with variance 1 (i.e. the density 2−1/2 exp(−

√
2|x|)). We set E = E(n) = (E1, . . . , En)

for an n-dimensional random vector with product exponential distribution and identity
covariance matrix.

By 〈·, ·〉 we denote the standard scalar product on Rn and by (ei) the standard basis
of Rn. We set Bnp for a unit ball in `np , i.e. Bnp = {x ∈ Rn : ‖x‖p ≤ 1}. For a random
variable Y and p > 0 we write ‖Y ‖p = (E|Y |p)1/p.

We write C (resp. C(α)) to denote universal constants (resp. constants depending
only on parameter α). Value of a constant C may differ at each occurrence.

2. Known results. Since any norm on Rn may be approximated by a supremum of
exponential number of functionals we get

Proposition 2.1 (see [7, Proposition 3.20]). For any n-dimensional random vector X
inequality (1) holds for p ≥ n with C1 = 0 and C2 = 10.

It is also easy to reduce Conjecture 1.1 to the case of symmetric vectors.

Proposition 2.2. Suppose that (1) holds for all symmetric n-dimensional log-concave
vectors X. Then it is also satisfied with constants 4C1 + 1 and 4C2 by all log-concave
vectors X.
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Proof. Assume first that X has a log-concave distribution and EX = 0. Let X ′ be an
independent copy of X, then X −X ′ is symmetric and log-concave. Moreover for p ≥ 1,

(E‖X‖p)1/p = (E‖X − EX ′‖p)1/p ≤ (E‖X −X ′‖p)1/p,
E‖X −X ′‖ ≤ E‖X‖+ E‖X ′‖ = 2E‖X‖

and for any functional ϕ,

(E|ϕ(X −X ′)|p)1/p ≤ (E|ϕ(X)|p)1/p + (E|ϕ(X ′)|p)1/p = 2(E|ϕ(X)|p)1/p.

Hence (1) holds for X with constants 2C1 and 2C2.
If X is arbitrary log-concave then X − EX is log-concave with mean zero. We have

for any p ≥ 1,

(E‖X‖p)1/p ≤ (E‖X − EX‖p)1/p + E‖X‖, E‖X − EX‖ ≤ 2E‖X‖

and for any functional ϕ,

(E|ϕ(X − EX)|p)1/p ≤ (E|ϕ(X)|p)1/p + |ϕ(EX)| ≤ 2(E|ϕ(X)|p)1/p.

Remark. Estimating ‖X‖p is strictly connected with bounding tails of ‖X‖. Indeed by
Chebyshev’s inequality we have

P
(
‖X‖ ≥ e‖X‖p

)
≤ e−p

and by the Paley–Zygmund inequality and the fact that ‖X‖2p ≤ C‖X‖p for p ≥ 1 we
get

P
(
‖X‖ ≥ 1

C
‖X‖p

)
≥ min

{ 1
C
, e−p

}
.

Gaussian concentration inequality easily implies (1) for Gaussian vectors X (see for
example Chapter 3 of [8]). For Rademacher sums comparability of weak and strong mo-
ments was established by Dilworth and Montgomery-Smith [4]. More general statement
was shown in [5].

Theorem 2.3. Suppose that X =
∑
i viξi, where vi ∈ F and ξi are independent symmet-

ric random variables with logarithmically concave tails. Then for any p ≥ 1 inequality (1)
holds with absolute constants C1 and C2.

This immediately implies

Corollary 2.4. Conjecture 1.1 holds under additional assumption that coordinates of X
are independent.

Proof. We have X =
∑n
i=1 eiXi with Xi independent log-concave real random variables.

It is enough to notice that variables Xi have log-concave tails and in the symmetric case
apply Theorem 2.3. General independent case may be reduced to the symmetric one as
in the proof of Proposition 2.2.

The crucial tool in the proof of Theorem 2.3 is the Talagrand two-level concentration
inequality for the product exponential distribution [12]:

νn(A) ≥ 1
2
⇒ 1− νn(A+

√
tBn2 + tBn1 ) ≤ e−t/C , t > 0,

where ν is the symmetric exponential distribution, i.e. dν(x) = 1
2 exp(−|x|) dx.
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In [7] more general concentration inequalities were investigated. For a probability
measure µ on Rn define

Λµ(y) = log
∫
e〈y,z〉 dµ(z), Λ∗µ(x) = sup

y
(〈y, x〉 − Λµ(y))

and
Bµ(t) = {x ∈ Rn : Λµ(x) ≤ t}.

One may show that Bνn(t) ∼
√
tBn2 + tBn1 . The argument presented in [7, Section 3.3]

gives

Proposition 2.5. Suppose that for some α ≥ 1 and β > 0 and any convex symmetric
compact set K ⊂ Rn we have

µ(K) ≥ 1
2
⇒ 1− µ(αK +Bµ(t)) ≤ e−t/β , for all t > 0. (2)

Then inequality (1) holds with C1 = α and C2 = Cβ.

In [7] it was shown that the concentration inequality (2) holds with α = 1 for sym-
metric product log-concave measures and for uniform distributions on Bnr balls. This
gives

Corollary 2.6. Inequality (1) holds with C1 = 1 and universal C2 for uniform distri-
butions on Bnr balls, 1 ≤ r ≤ ∞.

Comparability of weak and strong moments of log-concave vectors in Euclidean spaces
follows from Paouris’ results [11] (see [1] for details and applications):

Theorem 2.7. If X is a log-concave n-dimensional random vector then for any Euclidean
norm ‖ ‖ on Rn we have

(E‖X‖p)1/p ≤ C
(
E‖X‖+ sup

‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p
)
.

3. Unconditional case. We say that a random vector X = (X1, . . . , Xn) has uncondi-
tional distribution if the distribution of (η1X1, . . . , ηnXn) is the same as X for any choice
of signs η1, . . . , ηn. A random vector X is called isotropic if it has identity covariance
matrix, i.e. Cov(Xi, Xj) = δi,j .

Theorem 3.1. Suppose that X is an n-dimensional isotropic, unconditional, log-concave
vector. Then for any norm ‖ ‖ on Rn and p ≥ 1,

(E‖X‖p)1/p ≤ C
(
E‖E‖+ sup

‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p
)
. (3)

Proof. Let T = {t ∈ Rn : ‖t‖∗ ≤ 1} be the unit ball in the space (Rn, ‖ ‖∗) dual to
(Rn, ‖ ‖). Then ‖x‖ = supt∈T 〈t, x〉. By the result of Talagrand [13] (see also [14]) there
exist subsets Tn ⊂ T and functions πn : T → Tn, n = 0, 1, . . . , such that πn(t) → t for
all t ∈ T , #T0 = 1, #Tn ≤ 22n

and
∞∑
n=0

∥∥〈πn+1(t)− πn(t), E〉
∥∥

2n ≤ CE sup
t∈T
〈t, E〉 = CE‖E‖. (4)
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Let us fix p ≥ 1 and choose n0 ≥ 1 such that 2n0−1 < 2p ≤ 2n0 . We have

‖X‖ = sup
t∈T
〈t,X〉 ≤ sup

t∈T

∣∣〈πn0(t), X〉
∣∣+ sup

t∈T

∞∑
n=n0

∣∣〈πn+1(t)− πn(t), X〉
∣∣. (5)

We get(
E sup
t∈T
|〈πn0(t), X〉|p

)1/p

≤
(
E
∑
s∈Tn0

|〈s,X〉|p
)1/p

≤ (#Tn0)1/p sup
s∈Tn0

(E|〈s,X〉|p)1/p

≤ 16 sup
t∈T

(E|〈t,X〉|p)1/p = 16 sup
‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p. (6)

To estimate the last term in (5) notice that for u ≥ 16 we have by Chebyshev’s
inequality

P
(

sup
t∈T

∞∑
n=n0

∣∣〈πn+1(t)− πn(t), X〉
∣∣ ≥ u sup

t∈T

∞∑
n=n0

∥∥〈πn+1(t)− πn(t), X〉
∥∥

2n

)
≤ P

(
∃n ≥ n0 ∃t ∈ T

∣∣〈πn+1(t)− πn(t), X〉
∣∣ ≥ u∥∥〈πn+1(t)− πn(t), X〉

∥∥
2n

)
≤

∞∑
n=n0

∑
s∈Tn+1

∑
s′∈Tn

P
(
|〈s− s′, X〉| ≥ u‖〈s− s′, X〉‖2n

)
≤

∞∑
n=n0

#Tn+1#Tnu−2n

≤
∞∑

n=n0

( 8
u

)2n

≤ 2
( 8
u

)2n0

≤ 2
( 8
u

)2p

.

Integrating by parts this gives(
E
(

sup
t∈T

∞∑
n=n0

∣∣〈πn+1(t)− πn(t), X〉
∣∣)p)1/p

≤ sup
t∈T

∞∑
n=n0

∥∥〈πn+1(t)− πn(t), X〉
∥∥

2n

(
16 +

(
2p
∫ ∞

0

up−1
( 8
u+ 16

)2p)1/p
)

≤ 32 sup
t∈T

∞∑
n=n0

∥∥〈πn+1(t)− πn(t), X〉
∥∥

2n . (7)

The result of Bobkov and Nazarov [2] gives

‖〈t,X〉‖r ≤ C‖〈t, E〉‖r for any t ∈ Rn and r ≥ 1. (8)

Thus the statement follows by (4)–(7).

Remark. The only property of the vector X that was used in the above proof was
estimate (8). Thus inequality (3) holds for all n-dimensional random vectors satisfying (8).

Remark. Estimate (8) gives (E|ϕ(X)|p)1/p ≤ C(E|ϕ(E)|p)1/p for any functional ϕ, there-
fore Theorem 3.1 is stronger than the estimate from [6]:

(E‖X‖p)1/p ≤ C
(
E‖E‖p)1/p ∼ C

(
E‖E‖+ sup

‖ϕ‖∗≤1

(E|ϕ(E)|p)1/p
)
.

In some situation one may show that E‖E‖ ≤ CE‖X‖. This is the case of spaces with
bounded cotype constant.



120 R. LATAŁA

Corollary 3.2. Suppose that 2 ≤ q < ∞, F = (Rn, ‖ ‖) is a finite-dimensional space
with a q-cotype constant bounded by β <∞. Then for any n-dimensional unconditional,
log-concave vector X and p ≥ 1,

(E‖X‖p)1/p ≤ C(q, β)
(
E‖X‖+ sup

‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p
)
,

where C(q, β) is a constant that depends only on q and β.

Proof. Applying diagonal transformation (and appropriately changing the norm) we may
assume that X is also isotropic.

By the result of Maurey and Pisier [9] (see also Appendix II in [10]) one has

E‖E‖ = E
∥∥∥ n∑
i=1

eiEi
∥∥∥ ≤ C1(q, β)E

∥∥∥ n∑
i=1

eiεi

∥∥∥.
By the unconditionality of X and Jensen’s inequality we get

E‖X‖ = E
∥∥∥ n∑
i=1

eiεi|Xi|
∥∥∥ ≥ E

∥∥∥ n∑
i=1

eiεiE|Xi|
∥∥∥.

We have E|Xi| ≥ 1
C (E|Xi|2)1/2 = 1

C , therefore

E‖E‖ ≤ CC1(q, β)E‖X‖
and the statement follows by Theorem 3.1.

For general norm on Rn one has

E‖E‖ = E
∥∥∥ n∑
i=1

eiεi|Ei|
∥∥∥ ≤ E sup

i
|Ei|E

∥∥∥ n∑
i=1

eiεi

∥∥∥ ≤ C log nE
∥∥∥ n∑
i=1

eiεi

∥∥∥.
This together with the similar argument as in the proof of Corollary 3.2 gives the follow-
ing.

Corollary 3.3. For any n-dimensional unconditional, log-concave vector X, any norm
‖ ‖ on Rn and p ≥ 1 one has

(E‖X‖p)1/p ≤ C
(

log nE‖X‖+ sup
‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p
)
.
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