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Abstract. I consider p-Bernoulli bond percolation on transitive, nonamenable, planar graphs
with one end and on their duals. It is known from [BS01] that in such a graph G we have three
essential phases of percolation, i.e.

0 < pc(G) < pu(G) < 1,

where pc is the critical probability and pu—the unification probability. I prove that in the middle
phase a.s. all the ends of all the infinite clusters have one-point boundaries in ∂ H2. This result
is similar to some results in [Lal].

1. Introduction. For any graph G, let V (G) denote its set of vertices and E(G)—its
set of edges. A percolation on G is a random subgraph of G or, one can say, a probability
measure on the space of subgraphs of G. For any infinite connected graph G and p ∈ [0; 1]
let ω(p)(G) denote the process of p-Bernoulli bond percolation on G, which is a random
subgraph of G formed by taking stochastically independently each edge of G with prob-
ability p to the random graph (we call these edges open) and taking all the vertices of G
to it. The components of ω(p)(G) are often called clusters. One can say that in some
sense the clusters of ω(p) increase with the value of parameter p.1 When p increases from
0 to 1, first we have a.s. no infinite clusters and, suddenly, above some threshold we have
a.s. some infinite cluster in ω(p). Then, it turns out that in the case of transitive, non-
amenable, planar graphs with one end (which are exactly vertex-transitive tiling graphs
in the hyperbolic plane H2) we have a.s. infinitely many infinite clusters in ω(p) for some
period of time, and then, after another threshold, we get exactly one infinite cluster till
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1This is formalized in [Grim], Chapter 2.1.
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the value of 1 (these infinitely many clusters “merge” into one). Therefore we say about
three phases of Bernoulli bond percolation in such graphs.2 This was established in [BS01]
for transitive, nonamenable, planar graphs with one end and in [Lal] for Cayley graphs of
a wide class of Fuchsian groups (see Remark 7). Earlier examples of graphs on which we
have three phases (in a generalized sense) were products of regular tree and Zd given in
[GN]. Let us define precisely the thresholds described above. The critical probability (or
critical parameter) pc(G) of any graph G is defined to be the infimum of p ∈ [0; 1] such
that a.s. there is some infinite cluster in ω(p)(G). Similarly, the unification probability
pu(G) is the infimum of p ∈ [0; 1] such that ω(p)(G) has exactly one infinite cluster a.s.

Fig. 1. The idea of four phases of percolation in H3. Authors of the photos (from the left):
1. Dorota R. (radzido); 2, 3. Agata Piestrzyńska-Kajtoch; 4. Kazimiera Stelmach

A couple of important book on percolation, including the basics of percolation, are
[Grim] and [LP]. Also the papers [BS01] and [Lal] considering Bernoulli percolation on
planar graphs in H2 have references on percolation on other planar graphs (e.g. trees and
lattice Z2); I base on the paper [BS01] in this work.

The motivation for investigating the boundaries of ends of infinite clusters comes
from considering percolation phases in case of regular tilings of H2 and the 3-dimensional
hyperbolic space H3. Let us visualize H2 and H3 as the Poincaré disc models.

On graphs of regular tilings of H3 we conjecturally have three phases of percolation.
(It is due to Conjecture 6 and Question 3 in [BS96], see also Theorem 10 of [BB]. The
inequality pc(G) < pu(G) has been also established for some Cayley graphs of all nona-
menable finitely generated groups in [PSN] and for some kind of continuous percolation
in Hn in [Tyk].) So in the first phase (for 0 ≤ p ≤ pc) we have a.s. only finite clusters,
which roughly look like points (in large scale), so 0-dimensional objects. In the last phase
(for pu ≤ p ≤ 1) there is only one big one-ended infinite cluster (one-ended means: after
throwing out a bounded set it still has only one infinite component), so it looks like the
whole Poincaré ball, which is of dimension 3. The conjecture of my advisor is that in the
middle phase we have a.s. “1-dimensional” (fibrous) infinite clusters with p below some
threshold p1/2 ∈ (pc; pu) and “2-dimensional” (fan-shaped) with p above p1/2 (see Fig. 1).
So we should have four phases—one more than the dimension of the space (H3).

2See also Remark 10.
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Following this idea, in the percolation on a graph of tiling of H2 we should have only
three such phases. We already know three phases of it by [BS01]—see Theorem 8 and
Corollary 9, so we want the clusters to be 0-dimensional in the first phase, 1-dimensional
in the second and 2-dimensional in the third.

My formalization of 1-dimensional is the following: all the ends of each infinite cluster
have one-point boundaries (which is to be explained further). The main result in this
paper (Theorem 20 and Corollary 21) says that in the middle phase (for a transitive,
nonamenable, planar graph with one end and also for its dual) the infinite clusters are
a.s. 1-dimensional.

Acknowledgements. I wish to express gratitude to my advisor, Jan Dymara, who once
proposed me percolation as master thesis topic and led me through doing it. My master
thesis has developed to this article.

2. Boundaries of ends. Now I am going to define the boundary of an end of an infinite
cluster in H2, but the definition is formulated in case of any “nice” topological space.

Fig. 2. An end e of a set a, its boundary ∂ e and the boundary ∂ a of the whole set in case of
Poincaré disc. (K in the picture is shown as getting bigger and bigger.)

Definition 1. Let X be a completely regular Hausdorff (T3 1
2
), locally compact topo-

logical space. Then:

• An end of a subset a ⊆ X is a function e defined on the family of all compact
subsets of X, satisfying the following:

– for any compact K ⊆ X the set e(K) is one of the components of a \K;

– for K ⊆ K ′ ⊆ X—both compact—we have

e(K) ⊇ e(K ′).
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Now let X̂ be an arbitrary compactification of X. Then

• The boundary of a ⊆ X is
∂a = aX̂ \X

(by aY I mean the closure taken in the space Y ).
• Finally the boundary of an end e of a ⊆ X is

∂ e =
⋂
K⊆X

K – compact

∂ e(K).

In this paper I always take X = H2 and X̂ = Ĥ2 (the closed Poincaré ball, i.e.
Ĥ2 = H2 ∪ ∂H2). The role of a will be played by clusters of percolation in H2.

3. The graph. Now I introduce some notions needed to explain what class of graphs
I am considering. Then I provide two equivalent definitions of this class.

Definition 2. By a polygonal tiling of H2, or tiling of H2 for short, I mean a locally
finite family of hyperbolic polygons (in this paper by a polygon I mean only a bounded
finite-sided polygon whose perimeter is a simple closed polygonal chain) which covers
the hyperbolic plane in such a way that they have pairwise disjoint interiors and any two
different of them either are disjoint, or intersect exactly at a sum of some of their common
sides and vertices. The graph of such a tiling as above is just the graph obtained from
all the vertices and edges of the tiling. Obviously such a graph is always a planar graph.
A regular tiling is a polygonal tiling by congruent regular polygons (regular polygons
means: equilateral and equiangular).

A plane graph is a geometric realization of a planar graph in the plane (in this defi-
nition only the topology plays a role, so it does not matter if the plane is hyperbolic). In
this paper faces of a plane graph are the components of its complement in the plane. Here
I overload the notation, denoting both the abstract planar graph and its plane realization
by G (although it does matter, when taking the dual graph, see Definition 22).

Remark 3. I declare all the graphs mentioned in this paper to be locally finite, i.e.
having every vertex of finite degree.

Further in this paper I consider graphs of polygonal tilings of H2 which are vertex-
transitive in the sense that some groups of isometries of H2 preserving them act on their
vertices transitively. I call such graphs vertex-transitive tiling graphs. I consider also their
duals as well (see Definition 22).

The class of vertex-transitive tiling graphs can be completely characterized as follows:

Proposition 4. Every vertex-transitive tiling graph G is a transitive, nonamenable, pla-
nar graph with one end.

Below I define the graph properties mentioned above:

Definition 5. Let G be any locally finite graph. We define it to:

• have one end , if for any finite set V0 ⊆ V (G) the subgraph induced on its comple-
ment V (G) \ V0 has exactly one unbounded component;
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• be nonamenable, if there is a constant ε > 0 such that for every finite nonempty
V0 ⊆ V (G) we have |∂V0|/|V0| ≥ ε, where ∂V0 is the set of edges of G with exactly
one vertex in V0 (a kind of boundary of V0). Otherwise we call G amenable.

Proof of Proposition 4. Planarity and transitiveness are obviously satisfied, so the re-
maining properties of G to show are having only one end and nonamenability:

One end : Let V0 be finite subset of V (G). Remove V0 from V (G) and take the induced
subgraph G′ (here I mean the plane graph). Take a hyperbolic ball B which covers V0

together with all the tiles meeting V0. Now, for every two vertices not lying in B there is
a polygonal path P0 in H2 joining them and not intersecting B. We can replace this path
by a path P in graph G chosen to go along perimeters of consecutive tiles visited by P0.
This path may meet B, but is still disjoint with V0. Hence all vertices in V (G) \B lie in
one component of G′. But the rest of vertices of G lie in B, so there are finitely many of
them, whence G′ has exactly one unbounded component.

Nonamenability : The tiling related to G is vertex-transitive, so all its tiles belong to
finitely many classes of congruence. Therefore this case is just a particular case of the
following lemma:

Lemma 6. Let T be a tiling of H2 by polygons of finitely many classes of congruence and
let G be the graph of T . Then G is nonamenable.

Proof. Let us build a tiling dual (in some sense) to T (for the notion of duality see
Definition 22).

First, we construct the dual tiling on some finite set F ⊂ T which includes all types
of congruence of tiles of T (more precisely, we construct traces of the dual tiling on the
tiles from F ). Let A ∈ F . Let us choose a point A† ∈ intA (considered dual to A). Join
it to the midpoints of all the edges of A by polygonal paths which meet pairwise only
in A† and meet boundary of A only in their ends. Call these paths rays.

Then we move the picture to any other tile of T by an isometry moving some A ∈ F
to it. Let us denote the obtained dual tiling by T †.

Now, let K ⊂ V (G) be finite, nonempty. We are going to bound |∂K|/|K| from below
by a positive constant independent of K.

Let us estimate |∂K| from below. Each edge of ∂K is hit by two rays, one from one
side and second—from the other side. Let L be the maximal number of segments of rays
(for all tiles in F ; obviously, L exists). Then the number of segments of sum of the two
rays hitting our edge, which we think of as path dual to the edge, is not greater than 2L.
Let K† be the family of tiles of T † dual to vertices in K. Note that ∂

(⋃
K†
)
is the set

of sides of
⋃
K†. Then

2L|∂K| ≥
∣∣∂ (⋃K†

)∣∣.
Let a be the minimal area of a polygon in T † (a exists, because every polygon in T †

contains one of the components of some polygon of T divided by its rays and there are
finitely many classes of congruence of such components). Then

Area
(⋃

K†
)
≥ a|K†| = a|K|.
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Now, we show that
π
∣∣∂ (⋃K†

)∣∣ ≥ Area
(⋃

K†
)
.

Let us assume that
⋃
K† is simply connected (and therefore also connected). (It suffices

to do the proof in this case, because then making “holes” in
⋃
K† increases |∂

(⋃
K†
)
|

and decreases Area
(⋃

K†
)
, hence preserves the inequality, and taking disjoint union of

such “holed” polygons acts additively on both
∣∣∂ (⋃K†)∣∣ and Area

(⋃
K†
)
, hence also

preserves the inequality.) In this case the Euler characteristic χ
(⋃

K†
)

= 1 and by the
Gauss–Bonnet formula for polygons we have

−Area
(⋃

K†
)

+
∑

v – vertex
of ∂ (

⋃
K†)

(π − ]v) = 2π,

because H2 has constant curvature −1 (here ]v denotes the angle between the consecutive
edges of ∂

(⋃
K†
)
. In the sum each vertex is counted each time the boundary path goes

through it.) Hence

Area
(⋃

K†
)

=
∑

v – vertex
of ∂ (

⋃
K†)

(π − ]v)− 2π ≤
∑

v – vertex
of ∂ (

⋃
K†)

π = π
∣∣∂ (⋃K†

)∣∣,
which we needed.

So for finite, nonempty K ⊂ V (G)

2L|∂K| ≥
∣∣∂ (⋃K†

)∣∣ ≥ Area
(⋃

K†
)

π
≥ a|K|

π
,

hence
|∂K|
|K|

≥ a

2πL
> 0.

This completes the proof of Proposition 4.

Fig. 3. An example of tiling of H2 by regular right-angled pentagons
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Remark 7. The main theorem is proven for all vertex-transitive tiling graphs (Theo-
rem 20) and their duals (Corollary 21). Earlier in my master thesis I considered only
graphs of two special regular tilings of H2 (one of them is shown in Fig. 3). On the other
hand, Lalley in [Lal] proves similar facts about Bernoulli percolation for Cayley graphs of
cocompact Fuchsian groups of genus at least 2 and for some class of hyperbolic triangle
groups (namely: for groups of presentation 〈c1, c2, c3 | c21 = c4m2 = c4m3 = c1c2c3 = 1〉,
where m ≥ 5).

First of all I deduce from [BS01, Theorem 1.1], cited below, that, indeed, on the graphs
I consider, there are three essential phases of Bernoulli bond percolation, mentioned in
the introduction.

Theorem 8 ([BS01]). Let G be a transitive, nonamenable, planar graph with one end.
Then

0 < pc(G) < pu(G) < 1,

for Bernoulli bond or site3 percolation on G.

Basing on Proposition 4 the following is obvious:

Corollary 9. For any vertex-transitive tiling graph G we have

0 < pc(G) < pu(G) < 1.

Remark 10. In fact, for p ∈ [0; pc] there are a.s. no infinite cluster in ω(p), there are a.s.
∞ of them for p ∈ (pc; pu) and exactly 1 for p ∈ [pu; 1] (so we have three essential and
pure phases, determined by the number of infinite clusters). The same is true about the
dual G† (see Section 5 for notions of duality). These remarks can be easily deduced from
Theorems 1.1, 3.7, 1.2 and 1.3 of [BS01] (see also proofs of Theorems 1.1 and 3.8 there;
the fact that the event of existence of an infinite cluster is increasing should be used; for
increasing and decreasing events, see [Grim], Chapter 2.1, especially Theorem 2.1).

Remark 11. One can easily deduce from the proof of Proposition 2.1 from [BS01] that in
fact any transitive, nonamenable, planar graph with one end can be realized as a vertex-
transitive tiling graph in H2. Hence vertex-transitive tiling graphs are all the graphs
known by [BS01, Thm. 1.1] to have three essential phases of Bernoulli bond percolation.

It turns out also that, in this setting, the property that all the infinite clusters of the
random subgraph have one-point boundaries of ends does not depend on the embedding of
the underlying whole graph in H2, but just on the abstract graph. This can be explained in
terms of Gromov boundary4: ∂H2 can be defined as the Gromov boundary of H2. On the
other hand, when graph G is embedded by a quasi-isometry in H2 (it is then closed in H2),
then by [BH], Chapter III.H, Theorem 1.9, G is hyperbolic (in the sense of Gromov) and
from Theorem 3.9 from this chapter that quasi-isometry induces a homeomorphism of
the Gromov boundaries of G and H2. Let Ĝ be the compactification of an abstract graph
G by its Gromov boundary ∂G. Then one can embed Ĝ in Ĥ2 sending ∂G onto ∂H2 by

3Bernoulli site percolation is performed by removing vertices of the graph (instead of edges
in bond percolation).

4For basics on Gromov boundaries, see [BH], Chapter III.H.3.
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the above homeomorphism. One can easily check that for a subset A of G ⊆ H2 ⊆ Ĥ2 its
ends and boundaries of ends are in principle the same as when A is considered a subset
of Ĝ. It follows that phenomena of 1-dimensional clusters occurring on abstract Ĝ and
on Ĥ2 agree.

4. Main theorem. Before I prove the main theorem (Theorem 20), I need the following
lemmas.

Let G be a vertex-transitive tiling graph and ω(p) be p-Bernoulli bond percolation
process on G in the middle phase.

Lemma 12. The limits in ∂H2 of paths in ω(p) a.s. lie densely in ∂H2.

Proof. This can be deduced from Theorem 4.1 and Lemma 4.3 of [BS01], which I quote
here:

Theorem 13 ([BS01]). Let T be a vertex-transitive tiling of H2 with finite-sided faces,
let G be the graph of T , and let ω be Bernoulli percolation on G. Almost surely, every
infinite component of ω contains a path that has a unique limit point in ∂H2.

The following lemma is formulated for invariant percolation process on G, i.e. random
subgraph process whose probability distribution is invariant on some vertex-transitive
group action on G. Bernoulli bond percolation is an example of invariant percolation.

Lemma 14 ([BS01]). Let T be a vertex-transitive tiling of H2 with finite-sided faces, let
G be the graph of T , and let ω be invariant percolation on G. Let Z be the set of points
z ∈ ∂H2 such that there is a path in ω with limit z. Then a.s. Z = ∅ or Z is dense
in ∂H2.

Basing on Theorem 13 and on Remark 10, in our situation there are a.s. some paths
in ω(p) with limit points in ∂H2 and hence set Z from Lemma 14 is a.s. dense in ∂H2.

Remark 15. In special case of G being the graph of regular tiling of H2 with right-angled
pentagons and p > 1

2 , this lemma can also be proved in the following more elementary
way, similar to the technique used in the proof of Theorem 1 in [Lal] (on p. 171):

I embed an infinite complete binary tree in the graph G (see Fig. 4). (It is done by
using hyperbolic geometry.)

When I have such a tree T embedded in G, I can move it by an isometry γ preserving
G so that ∂γ(T ) will be included in arbitrary (small) arc Φ of ∂H2 (see Proposition 19).
The random graph ω(p)∩γ(T ) is p-percolation process on the tree γ(T ), where the critical
probability equals 1

2 . So for p > 1
2 we a.s. obtain an open infinite path in ω(p) ∩ γ(T );

such path in γ(T ) has always a limit in ∂γ(T ) ⊆ Φ. Such limits lie a.s. densely in ∂H2.

Lemma 16. In the middle phase a.s. every halfplane meets infinitely many infinite clus-
ters of ω(p).

Remark 17. In this paper a halfplane is always closed.

Before proving the lemma let us consider a group Γ of isometries of H2 which acts
transitively on vertices of G (by the assumption on G). One can easily see that Γ is a
discrete subgroup of Isom(H2) (with the usual topology), because it preserves a tiling
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Fig. 4. Infinite complete binary tree embedded in G in Remark 15

of H2. Basing on that we are going to say something about the action of Γ on H2 using
basic theory of Fuchsian groups, which can be found in [K].

Definition 18. There are three kinds of orientation preserving isometries of H2 other
than identity: so-called hyperbolic, parabolic and elliptic. This classification is based on
how many fixed points in ∂H2 such isometry has (it makes sense, since every isometry of
H2 extends continuously in a unique way to a homeomorphism of Ĥ2). Such isometries
with exactly two fixed points in ∂H2 are hyperbolic, one fixed point—parabolic and no
fixed points—elliptic. One may think of hyperbolic and elliptic isometries as analogues of
translations and rotations in Euclidean plane, respectively. Some basics of these notions
are present in [K].

A Fuchsian group is a discrete subgroup of Isom(H2) consisting only of orientation
preserving isometries of H2. The limit set of a Fuchsian group ΓF is the boundary in ∂H2

of orbit ΓFx0 of some point x0 ∈ H2 (one can observe that it does not depend on the
choice of x0).

Let ΓF be the Fuchsian group of all orientation preserving isometries in Γ. (The index
of this subgroup in Γ is at most 2.) We claim that ΓF acts cocompactly on H2, which
means that there exists a compact set K ⊆ H2 such that the family ΓFK covers H2.
Indeed, since Γ itself acts cocompactly on H2, then if we take K ∪ γK (for K the witness
for Γ), where γ is some orientation changing isometry γ ∈ Γ, we have covering of H2 by
ΓF(K ∪ γK).

Next we observe that the limit set of ΓF is the whole ∂H2. If it were not, then the
open set Ĥ2 \ (ΓFx0 ∪ ∂ΓFx0) for some orbit ΓFx0 meets ∂H2, so some halfplane would
be disjoint with this orbit, which is impossible because of cocompactness of ΓF. So, by
Theorem 3.4.4 from [K], the set of fixed points in ∂H2 of hyperbolic translations in ΓF

is dense in ∂H2.
This gives us the following fact:



108 J. CZAJKOWSKI

Fig. 5. Proof of Proposition 19

Proposition 19. Every halfplane H1 in H2 can be mapped into any halfplane H2 by
some isometry in ΓF (and hence in Γ).

Proof. Take arbitrary halfplanes H1 and H2. Let γ ∈ ΓF be a hyperbolic translation with
attracting point aγ ∈ ∂H2 lying in the interior of the closed arc ∂H2. If the repelling
point rγ ∈ ∂H2 of γ is not in ∂H1, then some multiply composition of γ moves H1 into
H2 (see left picture in Fig. 5). Now if rγ ∈ ∂H1, then take any δ ∈ ΓF with repelling
point rδ distinct from aγ and rγ and not lying in ∂H1. It can be deduced from the proof
of Theorem 2.4.3 (Case 1) of [K] that the attracting point aδ of δ is as well different from
rγ . Hence again some multiply composition of δ maps H1 to H ′1 which is arbitrarily close
to aδ, so that its boundary ∂H ′1 does not include point rγ (middle picture in Fig. 5).
Then some multiply composition of γ pushes H ′1 into H2 (see right picture in Fig. 5).
Composition of these two compositions gives us desired isometry.

Fig. 6. Proof of Lemma 16

Proof of Lemma 16. Let us assume a contrario that there is a halfplane H which meets
only finitely many infinite clusters of ω(p) with positive probability. In such situation the
halfplane H ′ = Hc includes entirely infinitely many infinite clusters (by Remark 10). Let
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H1, H2, . . . be a sequence of pairwise disjoint halfplanes all lying in H, and even more:
such that distances between them are greater than twice the maximal hyperbolic length
of an edge in G. By the above proposition we can move H ′ by some sequence of isometries
γ1, γ2, . . . ∈ Γ into H1, H2, . . . , respectively (see Fig. 6).

Note that one can precisely say whether a halfplane contains infinitely many infi-
nite clusters looking only at the behaviour of ω(p) on the edges intersecting with this
halfplane. So the random event C(I) that in a halfplane I there are infinitely many infi-
nite clusters depends only on these edges, for any halfplane I. There follows that events
C(H1), C(H2), . . . are stochastically independent, because the underlying sets of edges
are pairwise disjoint. Moreover, they have the same positive probability as C(H ′), so the
probability that none of them occurs is less or equal than (1−P(C(H ′)))n for any n ∈ N,
whence equal to 0. This gives us that a.s. some Hn contains infinitely many infinite clus-
ters but so does H, because it includes Hn, a contradiction. This ends the proof of the
lemma.

Now I state the main theorem.

Theorem 20. In the middle phase of Bernoulli bond percolation on any vertex-transitive
tiling graph G a.s. all the ends of all the infinite clusters have one-point boundaries
in ∂H2.

Proof. The techniques used here are similar to those of Lalley used in [Lal]. Let ω(p) be
p-Bernoulli bond percolation process on G, when p ∈ (pc(G); pu(G)). Let us assume a
contrario that with positive probability there is an end e of an infinite cluster a of ω(p)

with non-one-point boundary.
One can prove a topological fact saying that always the boundary of an end is con-

nected and compact (the proof is given in Appendix). So in our situation ∂ e is a non-
degenerate closed arc in ∂H2, or the whole ∂H2. Let Φ be an open non-empty arc in ∂H2,
included in ∂ e. By Lemma 12 the limits of paths in ω(p) lie densely in Φ. I consider two
cases:

Fig. 7. Proof of Theorem 20, the first case
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1) There are two paths P1, P2 ⊆ ω(p) not lying in a with distinct limits in Φ.

Let us take a closed ball B in H2, meeting P1 and P2. Then ∂ e(B) (and also e(B)
Ĥ2

)
contains Φ, and e(B) is connected, but P1 and P2 have limits in Φ so they should cut
e(B) ⊆ a, which is a contradiction (see Fig. 7).

2) In Φ there are infinitely many limits of open paths lying in a.
Then, let us take two such paths P1, P2 with distinct limits in Φ and two others P ′1,

P ′2 with still other limits in Φ such as in Fig. 8.

Fig. 8. Proof of Theorem 20, the second case

We can join P1 and P2 by an open path P0 in a and so P ′1 and P ′2 by P ′0 in a. It
provides paths σ, σ′ ⊆ a shown in Fig. 8, which disconnects H2 into components, two of
which—C and D—are shown in the figure. We can take two halfplanes lying in C and D,
respectively. From Lemma 16 we know that each of them a.s. meets some infinite cluster
other than a. So one of these clusters lies in C and the other in D—denote them by c
and d, respectively. So ∂ c ⊆ ∂C and ∂d ⊆ ∂D, which means that for a sufficiently large
ball B the union of c and d disconnects H2 \ B into components, two of which are S1

and S2 containing respectively the tails of P1, P ′1 and P2, P ′2. But the areas of Si between
Pi and P ′i for i = 1, 2 meet e(B) (because their boundaries lie in Φ) so e(B) meet both
S1 and S2, which means that e(B) is not connected (because it is disjoint with c and d),
a contradiction.

This ends the proof.

5. Dual graphs

Corollary 21. Theorem 20 also applies to the dual graph of any vertex-transitive tiling
graph G.

Let us introduce notions of duality:

Definition 22. For any plane graph G one defines its dual graph G†: the set of vertices
is the set of faces of G and two such vertices are joined by an edge, iff the corresponding
faces are neighbours by an edge in G. (Note that to define the dual graph the plane
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realization is needed, not only the abstract graph.) Such a dual graph is also a planar
graph, because one can realize it in the plane placing its vertices inside the faces of the
original graph G (called also the primal graph), and constructing the edges as some plane
paths leading from any vertex of the dual graph to an interior point of an edge of the
face including it, then to the vertex inside the second face touching this edge. We call
the constructed edge the dual edge to the original edge, which is cut by it in exactly one
point.

Remark 23. The dual graph of a plane graph G does not need to be a simple graph, i.e.
it may have multiple edges or loops.

I will consider the dual percolation process for ω(p), which I define below:

Definition 24. For a plane graph G of a polygonal tiling and for any edge e of G let
e† ∈ G† denote the dual edge of e in the dual graph G†. (The operation e 7→ e† is a bijec-
tion between E(G) and E(G†).) Now for any subgraph H of G let the “dual subgraph” H†

be the subgraph of G† such that V (H†) = V (G†) and E(H†) =
{
e† : e ∈ E(G) \ E(H)

}
.

Then the random subgraph ω(p)† (“dual” to ω(p)) is called the dual percolation process
(dual to ω(p)).

Remark 25. Notice that ω(p)† is in fact a (1− p)-Bernoulli bond percolation on G†.

Proof of Corollary 21. For given vertex-transitive tiling graph G and its dual G†, use
the fact that in the middle phase percolation on both the graphs we have infinitely
many infinite clusters (see Remark 10). Then in setting of proof of Theorem 20 (with
assumption a contrario, Φ, a and e), but with a—component of ω(p)† instead of ω(p), we
know by Lemma 12 that the limits of paths in ω(p) lie densely in Φ. So there are two
paths P1, P2 ⊆ ω(p) with distinct limits in Φ. Then, similarly as in the first case in proof
of the theorem, we have contradiction, because e(B) ⊆ a is connected subset of ω(p)† and

e(B)
Ĥ2

contains Φ (with limits of P1, P2, so these paths need to cut e(B)). See Fig. 7.

Appendix. The aim of this appendix is proving the following lemma, used in the proof
of Theorem 20.

Lemma 26. For any topological space X, which is locally compact and T3 1
2

(as in Defi-
nition 1) and for any compactification X̂ of it and for any a ⊆ X every end e of a has
non-empty connected boundary.

Remark 27. Recall that ∂X = X̂ \X is always closed (and X is open) in X̂.
There is classical topological notion of boundary (with other meaning than ∂ in

Definition 1). Due to it I will call this notion topological boundary.
Now let us consider a set A ⊆ X and its arbitrary end e. Notice that then for any

compact K ⊆ X the set ∂ e(K) is compact (as a subspace of X̂).
It is worth noting that in the above setting ∂ e(K) 6= ∅. It is so because e(K) is not

conditionally compact in X; if it were, e(K)
X

would be compact and e(K ∪ e(K)
X

) ⊆
e(K), but e(K ∪ e(K)

X
) and e(K)

X
are disjoint (by the definition of end), so e(K ∪

e(K)
X

) = ∅, which contradicts the definition of component.
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Similarly, ∂ e itself is non-empty as an intersection of family of compact sets from the
definition, whose each finite subfamily has, by an easy exercise, non-empty intersection.

Fig. 9. Proof of Lemma 26

Proof of Lemma 26. The set ∂ e is non-empty by the above remark, so it remains to show
the connectivity.

Let us assume a contrario that ∂ e is not connected. Then it is a sum of two closed
disjoint non-empty sets C,D ∈ X̂:

∂ e = C ∪· D.

Because X̂ is normal, there exist disjoint open neighbourhoods U and V in X̂ of the sets
respectively C and D.

Claim 28. There is a compact set K ⊆ X such that ∂ e(K) ⊆ U ∪· V .

Proof. Let us consider the family {U ∪ V, (∂ e(K))c : K ⊆ X,K—compact}. It is an open
cover of X̂, because

X̂ = (U ∪ V ) ∪ (∂ e)c = (U ∪ V ) ∪
⋃
K⊆X

K – compact

(∂ e(K))c.

Hence there is a finite subcover {U ∪ V, (∂ e(K1))c, . . . , (∂ e(Kn))c} for some compact
K1, . . . ,Kn ⊆ X. Let us take K =

⋃n
i=1Ki. Then

∂ e(K) ⊆
n⋂
i=1

∂ e(Ki), so
n⋃
i=1

(∂ e(Ki))c ⊆ (∂ e(K))c

and {U ∪ V, (∂ e(K))c} is also a cover of X̂. Hence ∂ e(K) ⊆ U ∪· V as we desired.
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Claim 29. There exists K ′—a superset of K such that even e(K ′) ⊆ U ∪· V .

Proof. The set e(K)
X̂
\ (U ∪ V ) is a compact subset of X, because it is closed in X̂ and

disjoint with ∂ X̂.

So let K ′ = K ∪
(
e(K)

X̂
\ (U ∪ V )

)
be a compact subset of X. Then

e(K ′) ⊆ e(K) \K ′ ⊆ e(K) \
(
e(K)

X̂
\ (U ∪ V )

)
⊆ U ∪· V,

and
∂ e(K ′) ⊆ ∂ e(K) ⊆ U ∪· V,

but on the other hand
C ∪· D = ∂ e ⊆ ∂ e(K ′).

It follows that ∂ e(K ′) intersects both U and V . Hence e(K ′) ⊆ U ∪· V is not connected,
which contradicts the definition of end.

This finishes the proof of the lemma.
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