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Abstract. Let (x, y, z) ∈ C3. In this paper we shall study the solvability of singular first order

partial differential equations of nilpotent type by the following typical example:

Pu(x, y, z) := (y∂x − z∂y)u(x, y, z) = f(x, y, z) ∈ Ox,y,z,

where

P = y∂x − z∂y : Ox,y,z → Ox,y,z.

For this equation, our aim is to characterize the solvability on Ox,y,z by using the Im P , Coker P

and Ker P , and we give the exact forms of these sets.

1. Introduction and result. Let X = (x1, x2, . . . , xn) ∈ Cn. We consider the following
first order nonlinear partial differential equation:

( n∑
i,j=1

ai,jxi∂xj
+ c
)
u(X) =

n∑
i=1

bjxj + f2(X,u, ∂Xu),

u(0) = 0,

(1)

where ai,j , bj and c denote constants and ∂xj
= ∂/∂xj , ∂Xu = (∂x1u, . . . , ∂xn

u).
We assume that the function f2(X,u, ξ) (ξ = (ξ1, . . . , ξn) ∈ Cn) is holomorphic in a

neighborhood of the origin in (X,u) ∈ Cn+1 variables and an entire function in ξ ∈ Cn
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variables with the following Taylor expansion.

f2(X,u, ξ) =
∑

|α|+p≥2

fα,p(ξ)Xαup, (2)

where α = (α1, . . . , αn) ∈ Nn, p ∈ N, and Xα = x1
α1 · · ·xnαn and fα,p(ξ) denotes an

entire function in Cn.
Before stating the results, we prepare some notation and definitions.
Let Ox1 be the set of holomorphic functions at x1 = 0, C[[x1, x2, . . . , xn]] be the set

of formal power series of variables (x1, x2, . . . , xn) over C, Ox1 [[x2, . . . , xn]]—the set of
formal power series of variables (x2, . . . , xn) over Ox1 and OX(= Ox1,...,xn

)—the set of
holomorphic functions at X = 0.

Definition 1.1. For a formal power series u(X) =
∑
uαX

α ∈ C[[X]], we say that
u(X) belongs to the Gevrey class of order s, if the power series

∑
uαX

α/|α|!s−1

(|α| = α1 + . . .+ αn) converges in a neighborhood of X = 0.

For the equation (1), we know the following results (cf. [GT], [MS1], [MS2], [H], [O],
[S], etc.)

Theorem 1.2. Let Λ = {λj}j=1,2,...,n be the set of eigenvalues of the matrix A =
(ai,j)i,j=1,...,n.

(i) If Λ satisfies the Poincaré condition, then the formal solution converges in a neigh-
borhood of the origin (if it exists).

(ii) Let λj = 0 for all j = 1, 2, . . . , n. If c 6= 0, then the formal solution u(X) exists
uniquely, and it belongs to the Gevrey class of order at most 2n.

Theorem 1.2(i) is a very famous result for the theory of first order partial differential
equations (cf. [GT], [MS1], [MS2], [O], etc.). On the other hand, when λj = 0 for all
j = 1, 2, . . . , n, we say that equation (1) is of nilpotent type. In this paper, we shall study
the solvability on OX in the nilpotent case. In the case c 6= 0, by Theorem 1.2(ii), the
formal solution of (1) is not convergent in a neighborhood of the origin in general (cf.
[H], [O], [S]). Therefore, the purpose of this paper is to study whether the formal solution
is convergent or not in the case when c = 0.

In this paper, we study an example of equation of nilpotent type in X = (x, y, z) ∈ C3

of the form

P (X, ∂X)u(X) := (y∂x − z∂y)u(x, y, z) = f(x, y, z) ∈ OX , (3)

or equivalently we study the kernel and cokernel of the mapping

P (X, ∂X) : OX −→ OX . (4)

In order to study this equation or the mapping, we express the function g(x, y, z) ∈ OX
or Ox[[y, z]] by

g(x, y, z) =
{ ∑
i+2j=even

+
∑

i+2j=odd

}
gi,j(x)yizj =: ge(x, y, z) + go(x, y, z), (5)

where ge and go denote the even part and the odd part of g, respectively.
Now our main result is stated as follows.
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Main Theorem 1.3.

(i) Let Im(P ;OX) be the image of the mapping (4). Then f(X) ∈ Im(P ;OX) if and
only if it satisfies f(x, 0, 0) ≡ 0 and the infinitely many compatibility conditions:

f2n+2,0(x) +
n∑
k=0

(2k − 1)!!
(2n+ 1)!!

Dn+1−k
x f2k,n+1−k(x) ≡ 0 (n = 0, 1, 2, . . . ), (6)

where (−1)!! = 1 and (2n + 1)!! := 1 · 3 · · · (2n + 1) and Dx = d/dx denotes the
differentiation in x. In other words, we have the following isomorphism for the
cokernel Coker(P ;OX) of (4):

Coker(P ;OX) ' F :=
{
f(x, y) =

∞∑
n=0

f2n,0(x)y2n ∈ Ox,y
}
. (7)

(ii) Let Ker(P ;OX) be the kernel of the mapping (4). Then we have

Ker(P ;OX) ' K :=
{
v(y, z) =

∞∑
n=0

n∑
k=0

C2n−2k,ky
2n−2kzk ∈ Oy,z

}
, (8)

and the isomorphism is given by

K 3 v(y, z) 7→ u(X) =
∞∑
n=0

n∑
k=0

C2n−2k,k(y2 + 2xz)n−kzk. (9)

Theorem 1.3 will be proved by showing the unique solvability of the following Cauchy
problem: {

P (X, ∂X)u(X) ≡ f(X) (mod F),

ue(0, y, z) = v(y, z) ∈ K.
(10)

2. Proof of Main Theorem 1.3. The proof of Main Theorem 1.3 will be done by the
following plan.

1. We give the compatibility condition (6) or (7) in formal sense.
2. We give the condition (8) and property (9) in formal sense.
3. We prove the convergence of formal solution.

2.1. Research on Im(P ; OX). We define the set of quasi-homogeneous polynomials
Ox[y, z]p (p ∈ N) by

Ox[y, z]p =
{
fp(x, y, z) =

∑
i+2j=p

fi,j(x)yizj : fi,j(x) ∈ Ox
}
⊂ Ox[[y, z]].

Then we easily see that

P : Ox[y, z]p → Ox[y, z]p+1 (p = 0, 1, 2, . . . ).

Here after, fp(x, y, z) denotes the quasi-homogeneous polynomial of degree p. For
u(X) =

∑
p≥0 up(x, y, z), we have Pu(X) =

∑
p≥1 fp(x, y, z). Therefore, in order that

f(x, y, z) ∈ Im(P ;OX) it is necessary that f0(x, y, z) ≡ 0, that is, f(x, 0, 0) ≡ 0 for
f(x, y, z) =

∑
p≥0 fp(x, y, z).

Next we decompose the equation (3) into a series of equations for quasi-homogeneous
polynomials.

Pup(x, y, z) = fp+1(x, y, z), p = 0, 1, 2, . . . . (11)
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From now on, we research on the conditions for each fp+1(x, y, z) in order that
fp+1(x, y, z) ∈ Im(P ;OX). We write the expansions of up and fp by

up(x, y, z) =
∑

i+2j=p

ui,j(x)yizj and fp(x, y, z) =
∑

i+2j=p

fi,j(x)yizj .

The case p = 0. Since u0(x, y, z) = u0,0(x) and f1(x, y, z) = f1,0(x)y, we have

Pu0 = u′0,0(x)y = f1,0(x)y, that is, u′0,0(x) = f1,0(x). (12)

This implies u0,0(x) = C0,0 + D−1
x f1,0(x) where C0,0 ∈ C denotes the Cauchy data at

x = 0 and D−1
x :=

∫ x
0

denotes the integration from 0 to x.

The case p = 1. Since u1(x, y, z) = u1,0(x)y and f2(x, y, z) = f2,0(x)y2 + f0,1(x)z, we
have

Pu1 = u′1,0(x)y2 − u1,0(x)z = f2,0(x)y2 + f0,1(x)z,

that is, {
u′1,0(x) = f2,0(x),

−u1,0(x) = f0,1(x)
⇔

(−Dx

1

)
u1,0(x) = −

(f2,0(x)
f0,1(x)

)
. (13)

This implies a compatibility condition

f2,0(x) + f ′0,1(x) ≡ 0

and u1,0(x) = −f0,1(x) which is uniquely determined.

The case for p is even, that is, p = 2n (n ≥ 1). Since

u2n(x, y, z) =
∑

i+2j=2n

ui,j(x)yizj

= u2n,0(x)y2n + u2n−2,1(x)y2n−2z + u2n−4,2(x)y2n−4z2 + . . .+ u0,n(x)zn,

and

f2n+1(x, y, z) =
∑

i+2j=2n+1

fi,j(x)yizj

= f2n+1,0(x)y2n+1 + f2n−1,1(x)y2n−1z + f2n−3,2(x)y2n−3z2 + . . .+ f1,n(x)yzn,

we have

Pu2n(x, y, z) = y∂x
(
u2n,0(x)y2n + u2n−2,1(x)y2n−2z

+ u2n−4,2(x)y2n−4z2 + . . .+ u0,n(x)zn
)

− z∂y
(
u2n,0(x)y2n + u2n−2,1(x)y2n−2z

+ u2n−4,2(x)y2n−4z2 + . . .+ u0,n(x)zn
)

= u′2n,0(x)y2n+1 + u′2n−2,1(x)y2n−1z

+ u′2n−4,2(x)y2n−3z2 + . . .+ u′0,n(x)yzn

− 2nu2n,0(x)y2n−1z − (2n− 2)u2n−2,1(x)y2n−3z2

− (2n− 4)u2n−4,2(x)y2n−5z3 − . . .− 2u2,n−1(x)yzn

= f2n+1,0(x)y2n+1 + f2n−1,1(x)y2n−1z

+ f2n−3,2(x)y2n−3z2 + . . .+ f1,n(x)yzn.
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The last expression leads us to the following system of differential equations.

u′2n,0(x) = f2n+1,0(x),

u′2n−2,1(x)− 2nu2n,0(x) = f2n−1,1(x),
...

u′0,n(x)− 2u2,n−1(x) = f1,n(x).

(14)

This system is rewritten by the matrix form as follows.

Dx 0 · · · · · · · · · 0
−2n Dx 0 · · · · · · 0

0 −2n+ 2 Dx 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −4 Dx 0
0 · · · · · · 0 −2 Dx





u2n,0

u2n−2,1

u2n−4,2

...
u2,n−1

u0,n


=



f2n+1,0

f2n−1,1

f2n−3,2

...
f3,n−1

f1,n


. (15)

The size of matrix differential operator is (n+ 1)× (n+ 1). Therefore, by giving the
Cauchy data {u2n−2k,k(0)}k=0,...,n at x = 0, {u2n−2k,k(x)} are uniquely determined by
repeated integrations.

The case for p is odd, that is, p = 2n+ 1 (n ≥ 1). By the same argument as above, the
coefficients {u2n−2k+1,k(x)}k=0,...,n satisfy the following matrix relation.

Dx 0 · · · · · · · · · 0
−2n− 1 Dx 0 · · · · · · 0

0 −2n+ 1 Dx 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −5 Dx 0
0 · · · · · · 0 −3 Dx

0 · · · · · · 0 0 −1





u2n+1,0

u2n−1,1

u2n−3,2

...
u3,n−1

u1,n


=



f2n+2,0

f2n,1
f2n−2,2

...
f4,n−1

f2,n
f0,n+1


. (16)

The size of matrix differential operator is (n + 2) × (n + 1). In order to determine
the coefficients {u2n−2k+1,k(x)} of formal solution, we must assume the compatibility
conditions.

The (n+2)-th row equation is −u1,n(x) = f0,n+1(x). Therefore, the coefficient u1,n(x)
is determined by u1,n(x) = −f0,n+1(x) uniquely. Next, the coefficient u3,n−1(x) is deter-
mined by u3,n−1(x) = (u′1,n(x) − f2,n(x))/3 = (−f ′0,n+1(x) − f2,n(x))/3. By repeat-
ing this argument, we can determine {u2n−2k+1,k(x)}k=0,...,n from the equations ex-
cept the first row. However, {u2n−2k+1,k(x)}k=0,...,n must satisfy the first row equation
u′2n+1,0(x) = f2n+2,0(x). By the careful calculation, this is rewritten by

n+1∑
k=0

(2k − 1)!!
(2n+ 1)!!

Dn−k+1
x f2k,n−k+1(x) = 0, (17)

which gives the compatibility condition (6).
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2.2. Research on Ker(P ; OX). In this subsection, we calculate explicitly the kernel
of the mapping P : Ox[[y, z]]→ Ox[[y, z]]. We consider the equation

Pu(X) = 0 ⇐⇒ Pup(X) = 0 (18)

for p = 0, 1, 2, . . . .
First we note that if p is odd, then we have up(x, y, z) ≡ 0 from (16).
In the case when p = 2n, the matrix representation is as follows.

Dx 0 · · · · · · · · · 0
−2n Dx 0 · · · · · · 0

0 −2n+ 2 Dx 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −4 Dx 0
0 · · · · · · 0 −2 Dx





u2n,0

u2n−2,1

u2n−4,2

...
u2,n−1

u0,n


=



0
0
0
...
0
0


. (19)

The first row equation is solved as u2n,0(x) = C2n,0. The second row equation is solved
as u2n−2,1(x) = C2n−2,1 + 2nC2n,0x, and the third equation is solved as u2n−4,2(x) =
C2n−4,2 +(2n−2)C2n−2,1x+2n(2n−2)C2n,0x

2/2. We repeat these observations, we have
the following relation by the careful calculations.

u2n−2k,k(x) =
k∑
`=0

C2n−2`,`
(n− `)!

(n− k)!(k − `)!
(2x)k−` (20)

with u2n−2`,`(0) = C2n−2`,` ∈ C which is the Cauchy data. Therefore,

u2n(x, y, z) =
n∑
k=0

u2n−2k,k(x)y2n−2kzk

=
n∑
k=0

k∑
`=0

C2n−2`,`
(n− `)!

(n− k)!(k − `)!
(2x)k−`y2n−2kzk

=
n∑
`=0

C2n−2`,`

( n∑
k=`

(n− `)!
(n− k)!(k − `)!

(y2)n−k(2xz)k−`
)
z`

=
n∑
`=0

C2n−2`,`(y2 + 2xz)n−`z`. (21)

By these observations we have the following proposition which includes a part of Main
Theorem 1.3(ii).

Proposition 2.1.

(i) The kernel of the mapping P : Ox[[y, z]] → Ox[[y, z]] has an infinite dimensional
basis {(y2 + 2xz)n−`z` : 0 ≤ ` ≤ n, n = 0, 1, 2, . . . }.

(ii) The kernel of the mapping P : OX → OX is isomorphic to the analytic functions

K :=
{
v(y, z) =

∞∑
n=0

n∑
k=0

C2n−2k,ky
2n−2kzk ∈ Oy,z

}
,
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and for v(y, z) ∈ K, the corresponding kernel is given by

u(x, y, z) =
∞∑
n=0

n∑
k=0

C2n−2k,k(y2 + 2xz)n−kzk ∈ OX .

2.3. Convergence of formal solutions. We decompose the formal solution u into
u = ue + uo by the even part ue and the odd part uo. Then for f(x, y, z) ∈ OX , which
satisfies the compatibility conditions (6), the following Cauchy problem has a unique
formal solution u(x, y, z) ∈ Ox[[y, z]].{

Pu = f(x, y, z) (f satisfies (6))

ue(0, y, z) = v(y, z) ∈ K (see (8)).
(22)

By putting U(x, y, z) = u(x, y, z)−v(y, z) as a new unknown function, we may assume
that v(y, z) ≡ 0 for the Cauchy data. Namely, in the following, we consider the equation{

Pu = f(x, y, z) (f satisfies (6))

ue(0, y, z) ≡ 0.
(23)

By the matrix representation (15), we have the following expressions for zero Cauchy
data.

u2n,0(x) = D−1
x f2n+1,0(x),

u2n−2,1(x) = 2nD−2
x f2n+1,0(x) +D−1

x f2n−1,1(x),

u2n−4,2(x) = 22n(n− 1)D−3
x f2n+1,0(x) + 2(n− 1)D−2

x f2n−1,1(x) +D−1
x f2n−3,2(x),

and in general

u2n−2k,k(x) =
k∑
`=0

2k−`
(n− `)!
(n− k)!

D`−k−1
x f2(n−`)+1,`(x), (24)

where `− k − 1 < 0. Therefore u2n(x, y, z) is given by

u2n(x, y, z) =
n∑
k=0

k∑
`=0

2k−`
(n− `)!
(n− k)!

D`−k−1
x f2(n−`)+1,`(x)y2n−2kzk. (25)

Here we notice that f(x, y, z) ∈ OX by the assumption, we may assume

sup
|x|≤r

|fj,k(x)| ≤ CAj+2k, j, k = 0, 1, 2, . . . , (26)

by some positive constants C and A, where r is some fixed positive constant.
By using this estimate, we easily have the following inequality on |x| ≤ r:∣∣D−(k−`+1)

x f2(n−`)+1,`(x)
∣∣ ≤ CA2n+1 |x|k−`+1

(k − `+ 1)!
.

By this inequality, (25) is estimated as follows.

|u2n(x, y, z)| ≤
n∑
k=0

k∑
`=0

2k−`
(n− `)!
(n− k)!

|D`−k−1
x f2(n−`)+1,`(x)| |y|2n−2k|z|k

≤
n∑
k=0

k∑
`=0

2k−`
(n− `)!
(n− k)!

CA2n+1 |x|k−`+1

(k − `+ 1)!
|y|2n−2k|z|k
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≤ CA2n+1|x|
n∑
k=0

k∑
`=0

(n− `)!
(n− k)!(k − `)!

(|y|2)n−k(2|xz|)k−`|z|`

= CA2n+1|x|
n∑
`=0

n−∑̀
i=0

(n− `)!
(n− `− i)! i!

(|y|2)n−`−i(2|xz|)i|z|`

= CA2n+1|x|
n∑
`=0

(|y|2 + 2|xz|)n−`|z|`

≤ CA2n+1|x|(|y|2 + 2|xz|+ |z|)n.

This shows the convergence of the even part ue(x, y, z) =
∑∞
n=0 u2n(x, y, z) in a neigh-

borhood of the origin.
Next, we estimate the odd part uo(x, y, z) =

∑∞
n=0 u2n+1(x, y, z). By the matrix

representation (16), we have the following expressions.

u1,n(x) = −f0,n+1(x),

u3,n−1(x) = −1
3
f2,n(x)− 1

3
Dxf0,n+1(x),

u5,n−1(x) = −1
5
f4,n−1(x)− 1

5 · 3
Dxf2,n(x)− 1

5 · 3
D2
xf0,n+1(x),

and in general

u2k+1,n−k(x) = −
k∑
`=0

(2(k − `)− 1)!!
(2k + 1)!!

D`
xf2(k−`),n−k+`+1(x). (27)

Therefore, u2n+1(x, y, z) is given by

u2n+1(x, y, z) =
n∑
k=0

u2k+1,n−k(x)y2k+1zn−k

= −
n∑
k=0

k∑
`=0

(2(k − `)− 1)!!
(2k + 1)!!

D`
xf2(k−`),n−k+`+1(x)y2k+1zn−k. (28)

Here we take and fix r′ satisfying 0 < r′ < r and r − r′ < 1. Since

sup
|x|≤r

|f2(k−`),n−k+`+1(x)| ≤ CA2n+2

(see (26)), we have the following estimate by using the Cauchy integral formula.
For |x| ≤ r′,∣∣D`

xf2(k−`),n−k+`+1(x)
∣∣ =

∣∣∣ `!
2πi

∮
|z−x|=r−r′

f2(k−`),n−k+`+1(z)
(z − x)`+1

dz
∣∣∣

≤ `!
2π

∮
|z−x|=r−r′

CA2n+2

(r − r′)`+1
|dz|

= `!× CA2n+2
( 1
r − r′

)`
=: CA2n+2B``!,

where B = 1/(r − r′) is a constant greater than 1.
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By using this inequality, we have the following estimate on |x| ≤ r′ for u2k+1,n−k(x):

|u2k+1,n−k(x)| ≤
k∑
`=0

(2(k − `)− 1)!!
(2k + 1)!!

|D`
xf2(k−`),n−k+`+1(x)|

≤ CA2n+2
k∑
`=0

(2(k − `)− 1)!! `!
(2k + 1)!!

B`.

By an easy calculation, we get the estimate (2(k−`)−1)!! `!
(2k+1)!! ≤ 1. Therefore,

|u2k+1,n−k(x)| ≤ CA2n+2
k∑
`=0

(2(k − `)− 1)!! `!
(2k + 1)!!

B`

≤ CA2n+2
k∑
`=0

B` = CA2n+2 B
k+1 − 1
B − 1

<
CA2n+2

B − 1
×Bk+1.

Hence we can estimate for u2n+1(x, y, z) =
∑n
k=0 u2k+1,n−k(x)y2k+1zn−k on |x| ≤ r′ as

follows.

|u2n+1(x, y, z)| ≤
n∑
k=0

|u2k+1,n−k(x)||y|2k+1|z|n−k ≤
n∑
k=0

CA2n+2

B − 1
Bk+1|y|2k+1|z|n−k

=
CA2n+2B|y|

B − 1

n∑
k=0

(B|y|2)k|z|n−k < CA2n+2B|y|
B − 1

(B|y|2 + |z|)n.

Therefore, uo(x, y, z) is convergent on |x| ≤ r′ and in a neighborhood of (y, z) = (0, 0).
This completes the proof of Main Theorem 1.3.
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