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Abstract. For some classes of periodic linear ordinary differential equations and functional

equations, it is known that the existence of a bounded solution in the future implies the existence

of a periodic solution. In order to think on such phenomena for hyperfunction solutions to linear

functional equations, we introduced a notion of bounded hyperfunctions, and translated the

problems into the problems on analytic solutions to some equations in complex domains.

In this article, after recalling the terminology, we briefly review our approach to the equations

with finite delay, and announce our recent result on some classes of equations with infinite delay.

1. Introduction

1.1. Hyperfunctions. The notion of hyperfunction was introduced in the late 50’s by
M. Sato (refer to [S1], [S2], [S3]), and plays important roles in the study of analytic ordi-
nary and partial differential equations. The following properties are well-known. Hyper-
functions form a flabby sheaf B on Rn, or on a real-analytic manifold, and they admit
boundary value representations by holomorphic defining functions on wedge domains.
A linear differential operator P ∈ D with analytic coefficients acts on hyperfunctions,
and its actions on hyperfunctions are directly given from the actions on defining func-
tions. On the other hand, there is no good topology of B(Ω) for an open set Ω ⊂ Rn.
Moreover, there are no inequality nor boundedness for f ∈ B(Ω).

Hyperfunctions on Rn are defined in terms of local cohomology groups of the sheaf
of holomorphic functions on Cn. Here, let us first recall the notion of hyperfunctions in
one-dimensional case.

We denote by O the sheaf of holomorphic functions on C. For Ω ⊂ R, a complex
neighborhood of Ω is an open set in C including Ω as a closed subset.
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Definition 1.1. The space B(Ω) of hyperfunctions on an open set Ω ⊂ R is defined by

B(Ω) := lim−→
U

O(U \ Ω)
O(U)

. (1.1)

Here, U runs through complex neighborhoods of Ω.

As we already mentioned, the correspondence Ω 7→ B(Ω) becomes a flabby sheaf
on R, and differential operators with analytic coefficients act on B(Ω) via their actions
on O(U \ Ω).

1.2. Classical Massera type theorems. In [M], Massera studied the existence of
a periodic solution to a periodic ordinary differential equation of normal form, and in the
linear case, he gave the following result.

Theorem 1.2 (Massera, linear case). Consider a linear ordinary differential equation

dx

dt
= A(t)x+ f(t),

where A : R→ Rm×m and f : R→ Rm are 1-periodic and continuous. Then the existence
of a bounded solution in the future (i.e., defined and bounded on {t > t0} with some t0)
implies the existence of a 1-periodic solution.

Note that the inverse implication of Theorem 1.2 follows from the fact that periodic
C1-functions are bounded on R. Therefore, we have the equivalence between the existence
of a bounded solution in the future and the existence of a 1-periodic solution.

After Massera, many generalizations by many authors have appeared also on linear
functional equations. Let ω be a positive constant (which represents the period of a pe-
riodic equation). We are interested in the following

Problem. Consider an ω-periodic linear functional equation. Does “the existence of
a bounded solution in the future” imply “the existence of an ω-periodic solution”?

We give here a few references on this problem.
Chow–Hale [CH] studied functional differential equations with retarded type. An ex-

ample is
dx

dt
= A(t)x+

∫ r

0

B(t, s)x(t− s) ds+ f(t). (1.2)

Here A, B (resp. f) are square matrices (resp. a vector) of size m, whose entries are
continuous and ω-periodic in t, and r > 0 is a constant representing the “delay”.

Hino–Murakami [HM1] studied similar equations with infinite delay,

dx

dt
= A(t)x+

∫ ∞
0

B(t, s)x(t− s) ds+ f(t). (1.3)

Here we assume the continuity and ω-periodicity in t for A, B and f , and we also pose
some integrability assumption on B. Moreover, solutions x must belong to some restricted
class concerning the behavior near −∞, so that the integral becomes well-defined.

Zubelevich [Z] studied discrete dynamical systems in reflexive Banach spaces and
those in sequentially complete Hausdorff locally convex spaces with the Montel property.



NOTION OF BOUNDEDNESS FOR HYPERFUNCTIONS 103

Their results gave positive answers to the problem and we wonder whether such
phenomena appear commonly in periodic linear equations.

1.3. Massera phenomena in hyperfunctions. Now our interest is

Question. Is there any counterpart to this phenomenon in the framework of hyperfunc-
tions?

In order to think about Massera phenomena in hyperfunctions, we must at least think
about a notion of

“boundedness (in a neighborhood of +∞)”

for univariate hyperfunctions. But, since there is no notion of inequality for hyperfunc-
tions, the usual notion of boundedness does not make sense. Moreover, it seems impossi-
ble to introduce “boundedness” for usual hyperfunctions defined on an open set ]t0,+∞[
(that is, sections in B(]t0,+∞[)).

To overcome this difficulty, we introduce a new class of “bounded hyperfunctions”.

2. Boundedness for hyperfunctions. In this section, we recall the sheaf BL∞ of
bounded hyperfunctions at infinity in one variable, which we introduced in [O] in a
similar manner as Sato defined the sheaf B of hyperfunctions and the sheaf Q of Fourier
hyperfunctions in one variable. In fact, we define the sheaf BL∞ on a compactification
D1 := [−∞,+∞] = R t {±∞} of R, using the sheaf OL∞ of bounded holomorphic
functions on D1 + iR.

On the other hand, there is a notion of bounded hyperfunctions (the space BL∞) given
by duality due to Chung–Kim–Lee [CKL]. The space of the global sections of BL∞ can
be identified with BL∞ (in 1-dimensional case). Refer also to [O] for this identification.

2.1. Bounded hyperfunctions at infinity. As a preparation, we define a compacti-
fication D1 := [−∞,+∞] = R t {±∞} of R and consider the diagram of the topological
spaces

C = R + iR ⊂ D1 + iR
∪ ∪

R = ]−∞,+∞[ ⊂ D1 = [−∞,+∞]

Here, a set Ω ⊂ D1 is a neighborhood of +∞ (resp. −∞) if it includes a set ]a,+∞] (resp.
[−∞, a[) with some a ∈ R. We take coordinates t ∈ R and w ∈ C (Rew = t) and denote
by O the sheaf of holomorphic functions on C.

First we define the sheaf of bounded holomorphic functions.

Definition 2.1. We define the sheaf OL∞ of bounded holomorphic functions on D1 + iR,
as the sheaf associated with the presheaf given by the correspondence:

D1 + iR
open
⊃ U 7→ O(U ∩ C) ∩ L∞(U ∩ C).

We have OL∞(U) = {f ∈ O(U ∩C) : ∀K b U ‖f‖K < +∞}, where ‖·‖K is given by

‖f‖K := sup
w∈K∩C

|f(w)| (2.1)
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for f ∈ O(U ∩C) and K b U . Note that OL∞(U) is endowed with a Fréchet topology by
the system of seminorms ‖·‖K for K b U , and that OL∞ |C = O, i.e., OL∞ is an extension
of O to D1 + iR.

Next we introduce bounded hyperfunctions at infinity.

Definition 2.2 (sheaf BL∞ of bounded hyperfunctions at infinity). We define the sheaf
BL∞ of bounded hyperfunctions at infinity on D1, as the sheaf associated with the presheaf
given by correspondence:

D1
open
⊃ Ω 7→ lim−→

U

OL∞(U \ Ω)
OL∞(U)

. (2.2)

Here U runs through complex neighborhoods of Ω, that is, open sets U ⊂ D1 + iR
including Ω as a closed subset.

Refer to a similar formula (1.1), and also to the case of the sheaf Q of Fourier hyper-
functions on D1 (in one variable): Q is defined as the sheaf associated with the presheaf

D1
open
⊃ Ω 7→ lim−→U

Õ(U\Ω)

Õ(U)
, where Õ is the sheaf on D1 + iR of holomorphic functions with

infra-exponential growth on the real direction. See Kawai [K] for the theory of Fourier
hyperfunctions.

We also consider vector-valued variants of these sheaves. Let E be a sequentially
complete Hausdorff locally convex space over C. We denote by EO the sheaf of E-valued
holomorphic functions on C. See, for example, [BS] for the notion of vector-valued holo-
morphic functions. Then, the sheaves EOL∞ and EBL∞ , the E-valued variants of OL∞

and BL∞ , can be defined in a similar manner.

Definition 2.3. We define the sheaf EOL∞ of E-valued bounded holomorphic functions
on D1 + iR, as the sheaf associated with the presheaf:

U 7→ {f ∈ EO(U ∩ C) : f is bounded},

and the sheaf EBL∞ of E-valued bounded hyperfunctions at infinity on D1, as that asso-
ciated with the presheaf:

Ω 7→ lim−→
U

EOL∞(U \ Ω)
EOL∞(U)

.

The sheaf EOL∞ is also an extension of EO to D1 + iR, that is, EOL∞(U) = EO(U)
if U ⊂ C. Denoting by N (E) the system of continuous seminorms of E, we define the
seminorms ‖·‖K,p (K b U , p ∈ N (E)) of EOL∞(U) for U ⊂ D1 + iR, similarly as (2.1),
by

‖f‖K,p := sup
w∈K∩C

p(f(w)). (2.3)

The space EOL∞(U) is endowed with the locally convex topology by those seminorms.
Note that Definition 2.3 extends Definitions 2.1 and 2.2. In fact, when E = C, EOL∞

and EBL∞ coincide with their scalar valued variants OL∞ and BL∞ respectively.
Sheaves of bounded hyperfunctions are extensions of those of usual hyperfunctions.

In fact, in the scalar case, BL∞ is an extension of B to D1, i.e.,

BL∞ |R = B.
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When E is a Fréchet space, EBL∞ is an extension of the sheaf EB of E-valued hyper-
functions due to Ion–Kawai [IK]. On the other hand, in the general case, we denote the
restriction EBL∞ |R by EB.

We are interested in the following

Example 2.4. E = O(V ) for an open V ⊂ Cnz , is a Fréchet space, while E = A (V ) for
an open V ⊂ Rnx , the space of real-analytic functions on V , is not a Fréchet space.

Bounded hyperfunctions can be represented by defining functions.

Fact. A section u on a compact set [a,+∞] admits a boundary value representation in
the interior:

u(t) = [v(w)] = v(t+ i0)− v(t− i0) on ]a,+∞],

where v ∈ EO({t+ is ∈ C : t > a, 0 < |s| < d}) is bounded on {t > a+ δ, δ < |s| < d− δ}
for any δ > 0. We call v a defining function of u.

Usual bounded functions can be regarded as bounded hyperfunctions. In fact, in the
scalar case, there exists a natural embedding

L∞(]a,+∞[) ↪→ BL∞(]a,+∞]),

while in the general case, bounded continuous maps f : ]a,+∞[ → E are regarded as
sections in EBL∞(]a,+∞]). Moreover, these two maps are compatible with the standard
morphism EOL∞ |D1 ↪→ EBL∞ .

In the scalar case, BL∞ admits the following properties.

• The sheaf BL∞ is flabby. Therefore, the restriction BL∞(]a,+∞]) → B(]a,+∞[)
is surjective. But it is not injective.
• The standard morphism BL∞ → Q is injective.

2.2. Duality. Chung–Kim–Lee [CKL] introduced the space BL∞ of bounded hyperfunc-
tions on the n-dimensional Euclidean space Rn. Their space is defined as the dual space
of the space of test functions:

BL∞ = (AL1)′.

Here, AL1 := lim−→h>0
AL1,h and

AL1,h :=
{
ϕ ∈ C∞(Rn) : ‖ϕ‖1,h := sup

α

‖∂αϕ‖L1(Rn)

h|α|α!
< +∞

}
.

We have

Theorem 2.5. BL∞(D1) can be identified with BL∞ of the case n = 1.

3. Operators and periodicity. In this section, we recall classes of operators for BL∞

given by in [O], and also introduce new classes of operators in §3.2. In examples of
equations with retarded type, the former classes correspond to equations with finite
delay (see (1.2) as an example), and the latter classes to equations with infinite delay
(see (1.3)).
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3.1. Operators of type K with a closed interval K ⊂ R. Let K = [a, b] ⊂ R be a
closed interval, and U ⊂ D1 + iR an open set. We consider also the case a = b, that is,
K = {a}. Typically U is a strip neighborhood U = D1 + i]−d, d[ of D1 with some d > 0.

Definition 3.1 (operators of type K). Let P = {PV : EOL∞(V +K)→ EOL∞(V )}V⊂U
be a family of linear continuous maps, where V runs through open subsets in U . P is
said to be an operator of type K for EOL∞ on U , if the diagram below commutes for any
pair V1 ⊃ V2.

EOL∞(V1 +K)
PV1−−−−→ EOL∞(V1)y y

EOL∞(V2 +K)
PV2−−−−→ EOL∞(V2).

(3.1)

Here the vertical arrows are the restriction maps.

Note that V +K denotes the vectorial addition {w+ t : w ∈ V, t ∈ K}, which is also
defined in case V 6⊂ C, using the convention w+ t := w if w ∈ {±∞}+ iR and t ∈ R. See
the beginning of §3.2 for a brief discussion.

Let P be an operator of type K for EOL∞ on U . Then, P induces a family {PΩ :
EBL∞(Ω +K)→ EBL∞(Ω)}Ω⊂D1∩U with Ω open in D1 ∩ U , which makes the following
diagram commute for any Ω1 ⊃ Ω2.

EBL∞(Ω1 +K)
PΩ1−−−−→ EBL∞(Ω1)y y

EBL∞(Ω2 +K)
PΩ2−−−−→ EBL∞(Ω2).

(3.2)

An operator P of type {0} for EOL∞ on U (case K = {0}) is nothing but a sheaf endo-
morphism of EOL∞ |U consisting of continuous maps. Then P induces a sheaf morphism
of EBL∞ |D1∩U , and when U 3 +∞, P acts on the stalk (EBL∞)+∞. We denote its action
by P+∞. Therefore we can consider (EBL∞)+∞-solutions to Pu = f for f ∈ (EBL∞)+∞,
as a germ u ∈ (EBL∞)+∞ satisfying P+∞u = f .

In the case K 6= {0}, an operator P type K for EOL∞ on U does not induce a sheaf
endomorphism of EBL∞ , but when U 3 +∞, P still acts on (EBL∞)+∞. Again we denote
the action by P+∞, and we consider (EBL∞)+∞-solutions to Pu = f for f ∈ (EBL∞)+∞,
in the same way. On the other hand, for a fixed open set Ω ⊂ D1, u is said to be an
EBL∞(Ω)-solution to the equation Pu = f , if u is a section of EBL∞ on Ω + K (not
on Ω), and if PΩu = f holds in EBL∞(Ω).

Example 3.2. We define the sheaf DL∞ of ordinary differential operators with OL∞

coefficients on D1 + iR as the sheaf associated with the presheaf

U 7→
{
P (w, ∂w) :=

m∑
j=0

aj(w)∂jw : m ∈ N, aj ∈ OL∞(U)
}
.

Sections of DL∞ are operators of type {0}.
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Let k(t) ∈ B(R) be a hyperfunction with compact support, and K ⊂ R a convex hull
of − supp k. The convolution k∗ with kernel k becomes an operator of type K for EOL∞
on D1 + iR for any E. In particular, we give

Example 3.3. For a fixed ω > 0, the ω-translation operator Tω : u(t) 7→ u(t + ω) is an
operator of type {ω}, and the ω-difference operator Tω − 1 : u(t) 7→ u(t+ ω)− u(t) is an
operator of type [0, ω].

3.2. Operators of type K with K = [−∞, b]. We extend the notion of operators of
type K into the case K = [−∞, b].

We start by a remark on vectorial additions U+K and Ω+K of open sets U ⊂ D1+iR,
Ω ⊂ D1, and a closed interval K ⊂ D1. We have in mind the case K = [−∞, b] for b ∈ R.
Note that we do not admit K = {−∞} nor K = {+∞}, while we admitted K = {a} for
a ∈ R in §3.1.

Recall that A1 + A2 of two subsets Ai ⊂ C (i = 1, 2) is defined via the vectorial
addition in C, i.e., A1 + A2 := {w1 + w2 : wi ∈ Ai (i = 1, 2)}, and it is extended to the
case of A1 ⊂ D1 + iR and A2 ⊂ C (see §3.1 for the case A2 ⊂ R), and also to the case
A1, A2 ⊂ [−∞,+∞[ + iR and so on in a similar way. In fact, we use the convention

(t1 + is1) + (t2 + is2) = t1 + i(s1 + s2) for t1 = ±∞ and t2 ∈ R t {t1}. (3.3)

The convention (3.3) cannot be extended to the case (±∞+ is1) + (∓∞+ is2). Instead,
we define A1 +A2, first in the case where each A1 and A2 contains exactly one point, by

{t1 + is1}+ {t2 + is2} :=

{
{t+ i(s1 + s2) : t ∈ D1}, t1 = ±∞, t2 = ∓∞,
{(t1 + is1) + (t2 + is2)}, otherwise,

(3.4)

and then, next for general A1, A2 ⊂ D1 + iR, by

A1 +A2 :=
⋃

w1∈A1,w2∈A2

{w1}+ {w2}.

Note that we used the convention (3.3) again in the second case in (3.4).
Then, if U ⊂ D1 + iR is open, then U+K ⊂ D1 + iR is open. And a similar conclusion

holds for an open set Ω ⊂ D1. If U is a complex neighborhood of Ω satisfying U ∩D1 = Ω,
then U+K is a complex neighborhood of Ω+K satisfying (U+K)∩D1 = Ω+K. Moreover,
if K1 and K2 are closed intervals in D1, then we have (U +K1) +K2 = U + (K1 +K2).

After this preparation, we can give the following definition. Let U ⊂ D1 + iR be an
open set and b ∈ R a constant.

Definition 3.4 (operators of type [−∞, b]). Let P = {PV : EOL∞(V + [−∞, b]) →
EOL∞(V )}V⊂U be a family of linear continuous maps, where V runs through open subsets
in U . P is said to be an operator of type [−∞, b] for EOL∞ on U , if the diagram (3.1)
commutes for any pair V1 ⊃ V2, under the notation K = [−∞, b].

Such operator P also induces a family {PΩ : EBL∞(Ω+[−∞, b])→ EBL∞(Ω)}Ω⊂D1∩U
with Ω open in D1 ∩U , which makes the diagram (3.2) commute for any Ω1 ⊃ Ω2, again
under the notation K = [−∞, b].
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Remark 3.5. Let P be an operator of type K = [−∞, b] (b ∈ R).
If V ⊂ D1 + iR is non-empty then V + K always contains points at −∞, that is,

there exists a point −∞+ is in V +K for some s ∈ R. Moreover if Ω ⊂ D1 is open and
non-empty, then Ω + K is equal either to D1 or to [−∞, c[ with some c ∈ R t {+∞},
depending on Ω 3 +∞ or not. Therefore, any operand of PΩ (Ω 6= ∅) must be defined at
least in a neighborhood of −∞.

Unlike the case in §3.1, P does not act on the stalk (EBL∞)+∞ any more. For any
neighborhood Ω in D1 of +∞, Ω +K coincides with D1, and the subfamily {PΩ} for all
the neighborhoods Ω of +∞ induces the map

P+∞ : EBL∞(D1)→ (EBL∞)+∞.

Therefore, an (EBL∞)+∞-solution u to Pu = f for a germ f ∈ (EBL∞)+∞ is a global
section u ∈ EBL∞(D1) satisfying P+∞u = f . In other words, u is an (EBL∞)+∞-solution
to Pu = f if there exists a neighborhood Ω ⊂ D1 of +∞ such that f belongs to EBL∞(Ω)
and that PΩu = f .

3.3. Periodicity of bounded hyperfunctions and operators. Let ω be a positive
constant. u ∈ EBL∞(D1) (resp. EB(R)) is called ω-periodic if it satisfies (Tω − 1)u = 0.

Theorem 3.6. The restriction map EBL∞(D1)→ EBL∞(R) induces an isomorphism

{u ∈ EBL∞(D1) : (Tω − 1)u = 0} ∼−→ {u ∈ EB(R) : (Tω − 1)u = 0}. (3.5)

Therefore, every ω-periodic hyperfunction u ∈ EB(R) has the unique ω-periodic ex-
tension û ∈ EBL∞(D1). In other words, there is no non-trivial periodic bounded hyper-
function supported in {±∞}.

Moreover, we have

Theorem 3.7. Every ω-periodic bounded hyperfunction f ∈ EBL∞(D1) admits an
ω-periodic boundary value representation. That is, there exists a section

g ∈ EOL∞(D1 + i{s : 0 < |s| < d})

such that f = [g] and that (Tω − 1)g = 0.

Let U = D1 + iI be a strip domain in D1 + iR with an open interval I ⊂ R, and P an
operator of type K for EOL∞ on U , where K = [a, b] ⊂ R or K = [−∞, b] (b ∈ R).

Definition 3.8. P is said to be ω-periodic if it commutes with the ω-translation operator,
that is, the following diagram commutes for any V ⊂ U .

EOL∞(V + ω +K)
PV +ω−−−−→ EOL∞(V + ω)yTω

yTω

EOL∞(V +K) PV−−−−→ EOL∞(V )

Here we abbreviated “+{ω}” to “+ω”.

It follows directly from the definition that ω-periodic operators preserve the ω-peri-
odicity of their operands.
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4. Massera type theorems in BL∞ . In this section, we recall the results in the case
K ⊂ R studied in [O], and also a recent result in the case K = [−∞, b], under an
additional assumption, which we call the fading memory condition.

4.1. Massera type theorem in the case K ⊂ R. We prepare a notion of (sequential)
Montel property for locally convex spaces, and a weak variant of Montel type lemma.

Definition 4.1 (Montel property). Let E be a sequentially complete Hausdorff locally
convex space. We say that E admits the Montel property, if

(M) any bounded sequence in E has a convergent subsequence.

Lemma 4.2. Assume that E admits the Montel property. Then for any bounded sequence
(fj)j in EOL∞(U), there exists a subsequence (fjk)k and a section f ∈ EOL∞(U) such
that fjk → f in the topology of EO(U ∩ C).

Recall that EOL∞(U) is a subspace of EO(U ∩ C) = EOL∞(U ∩ C), and that they
are endowed with locally convex topologies given by the seminorms ‖·‖K,p (see (2.3)),
where K runs through compact sets in U and in U ∩C respectively, and p runs through
continuous seminorms of E. Note that the topology of EOL∞(U) is stronger than that
induced from the EO(U ∩ C), and that (fj)j does not necessarily have a subsequence
convergent in EOL∞(U).

Let K ⊂ R be a closed interval, ω a positive constant, U = D1 + i]−d, d[ a strip
neighborhood of D1, and f ∈ EBL∞(D1) an ω-periodic E-valued bounded hyperfunction
on D1. Now we give,

Theorem 4.3 (see [O, Theorem 4.3]). Let P be an ω-periodic operator of type K on U .
Assume that E admits (M). Then Pu = f has an ω-periodic EB(R)-solution if and only
if it has an (EBL∞)+∞-solution.

4.2. Massera type theorems in the case K = [−∞, b]. In Section 3, we defined the
notion of operators of type K = [−∞, b], using the continuity and the commutativity with
restrictions. Under the commutativity with restrictions, the continuity reads as follows.

P = {PV }V⊂U is an operator of type K = [−∞, b] for EOL∞ on U ⊂ D1 + iR, if and
only if

∀L b ∀M b ∀V b U ∀p ∈ N (E) ∃q = qL,M,p ∈ N (E) ∃C = CL,M,p > 0

∀u ∈ EOL∞(V +K) ‖PV u‖L,p ≤ C‖u‖M+K,q.

Here q and C can be taken independent of V .
We pose a further assumption on P .

Definition 4.4. Let P = {PV }V⊂U be an operator of type [−∞, b] for EOL∞ on U ⊂
D1 +iR. P is said to satisfy the fading memory condition, or the condition (FM) for short,
if

∀L b ∀M b ∀V ⊂ U ∀p ∈ N (E) ∃q = qL,M,p ∈ N (E)

∀ε > 0 ∃K0 = K0
L,M,p,ε b K ∩ R ∃C = CL,M,p,ε > 0

∀u ∈ EOL∞(V +K) ‖PV u‖L,p ≤ C‖u‖M+K0,q + ε‖u‖M+K,q.

Here we may assume that K0 is a closed interval.
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The condition (FM) seems to have relation with the notion of (uniform) fading mem-
ory spaces, studied in Hino–Murakami–Naito [HMN].

Consider, for example, the case E = C and K = [−∞, 0]. When P is an operator of
type K, the value (Pu)(w) at a point w ∈ C can be estimated by the values u(w+s) where
s runs through a fixed size neighborhood of the negative real axis. Roughly speaking, in
general (Pu)(w) may depend heavily on “u(w+ (−∞))”, but under the condition (FM),
we can make the dependence of (Pu)(w) on “u(w + (−∞))” as small as we please.

Now we come back to the situation that K = [−∞, b], w is a positive constant,
U = D1 + i]−d, d[ is a strip neighborhood of D1, and f ∈ EBL∞(D1) is an ω-periodic
E-valued bounded hyperfunction on D1. Moreover let P be an ω-periodic operator of
type K for EOL∞ on U . In order to express the result in a similar form to Theorem 4.3,
we explain the terminology: “an ω-periodic EB(R)-solution to the equation Pu = f”.

By Theorem 3.6, we have the canonical isomorphism

{u ∈ EBL∞(D1) : ω-periodic} ∼−→ {u ∈ EB(R) : ω-periodic},

which allows us to identify these spaces. Since P acts on the left hand side, we say, by
abuse of terminology, that u ∈ EB(R) is an ω-periodic EB(R) solution to Pu = f , if u is
ω-periodic and the canonical extension û of u satisfies the equation Pû = f .

Under these preparations, we give

Theorem 4.5. Assume that E admits (M) and that P satisfies (FM). Then Pu = f has
an ω-periodic EB(R)-solution if and only if it has an (EBL∞)+∞-solution.

We give an example of an operator of type K := [−∞, 0] for OL∞ on U := D1+i]−d, d[
satisfying the fading memory condition.

Example 4.6 (integral operators of Volterra type). Consider a kernel function k(w, s) ∈
C((U ∩C)× (K∩R)), holomorphic and ω-periodic in w, such that for any L b U ∩C, the
function s 7→ supw∈L|k(w, s)| on K ∩ R = ]−∞, 0] is integrable. We define linear maps
PV : OL∞(V +K)→ OL∞(V ) for V ⊂ U by

PV u(w) =
∫ 0

−∞
k(w, s)u(w + s) ds, u ∈ OL∞(V +K).

Then, P = {PV }V⊂U is an operator of type K for OL∞ on U , satisfying (FM).
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