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Abstract. We will consider the nonlinear partial differential equation

(E) tγ(∂/∂t)mu = F (t, x, {(∂/∂t)j(∂/∂x)αu}j+|α|≤L,j<m)

(with γ ≥ 0 and 1 ≤ m ≤ L) and show the following two results: (1) (Maillet type theorem) if
(E) has a formal solution it is in some formal Gevrey class, and (2) (Gevrey regularity in time)
if (E) has a solution u(t, x) ∈ C∞([0, T ], E{σ}(V )) it is in some Gevrey class also with respect
to the time variable t. It will be explained that the mechanism of these two results are quite
similar, but still there appears some difference between them which is very interesting to the
author.

1. Introduction. We denote by t the time variable in Rt, and by x = (x1, . . . , xn)
the space variable in Rnx . We use the notation: N = {0, 1, 2, . . . }, N∗ = {1, 2, . . . }, α =
(α1, . . . , αn) ∈ Nn, |α| = α1 + . . .+ αn, ∂t = ∂/∂t, ∂x = (∂x1 , . . . , ∂xn) with ∂xi = ∂/∂xi
(i = 1, . . . , n) and ∂αx = ∂α1

x1
· · · ∂αnxn .

For σ ≥ 1 and an open subset V of Rnx we denote by E{σ}(V ) the set of all functions
f(x) ∈ C∞(V ) satisfying the following: for any compact subset K of V there are C > 0
and h > 0 such that

max
x∈K
|∂αx f(x)| ≤ Ch|α||α|!σ ∀α ∈ Nn.

A function in the class E{σ}(V ) is called a function of the Gevrey class of order σ.
The class E{1}(V ) is nothing but the set of all analytic functions on V and usually

is denoted by A(V ). For convenience, we set E{∞}(V ) = C∞(V ). If 1 < σ1 < σ2 <∞
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we have
A(V ) ⊂ E{σ1}(V ) ⊂ E{σ2}(V ) ⊂ C∞(V ).

Thus, functions in the class E{σ1}(V ) are closer to analytic functions than those in
E{σ2}(V ); in this sense, we can say that functions in E{σ1}(V ) are more regular than
those in E{σ2}(V ).

For an interval [0, T ] = {t ∈ R : 0 ≤ t ≤ T} we denote by C∞([0, T ], E{σ}(V )) the
set of all infinitely differentiable functions u(t, x) in t ∈ [0, T ] with values in E{σ}(V )
equipped with the usual local convex topology.

Similarly, for s ≥ 1 and σ ≥ 1 we denote by E{s,σ}([0, T ]× V ) the set of all functions
u(t, x) ∈ C∞([0, T ] × V ) satisfying the following: for any compact subset K of V there
are C > 0 and h > 0 such that

max
(t,x)∈[0,T ]×K

|∂kt ∂αx u(t, x)| ≤ Chk+|α|k!s|α|!σ ∀(k, α) ∈ N× Nn.

Obviously, we have

E{s,σ}([0, T ]× V ) ⊂ C∞([0, T ], E{σ}(V )).

In the case s = σ we write E{σ}([0, T ]× V ) instead of E{σ,σ}([0, T ]× V ).
In this paper, we will consider the nonlinear partial differential equation

(1.1) tγ∂mt u = F
(
t, x, {∂jt ∂αx u}j+|α|≤L,j<m

)
where γ ≥ 0 and L ≥ m ≥ 1 are integers, and F (t, x, {zj,α}j+|α|≤L,j<m) is a suitable
function in a Gevrey class (for the precise assumptions, see Section 2). And, we will
consider the following problem on Gevrey regularity in time:

Problem 1.1. Let u(t, x) ∈ C∞([0, T ], E{σ}(V )) be a solution of (1.1); can we have the
result u(t, x) ∈ E{s,σ}([0, T ]×V ) for a suitable s ≥ 1? If this is true, determine the precise
bound of the index s of the time regularity.

Some particular cases are studied by Hannah–Himonas–Petronilho [HHP] (for KdV
equation), Łysik [L1] (for KdV equation), Gramchev–Łysik [GL1, GL2] (for semilinear
heat equation), Tahara [T1] (for linear Fuchsian equation) and Kinoshita–Taglialatela
[KT] (for linear hyperbolic equation). In this paper, we will show a general result on the
equation (1.1).

2. Maillet type theorem. Let γ ∈ N, m ∈ N∗, L ∈ N∗, Λ be a subset of {(j, α) ∈
N × Nn : j + |α| ≤ L, j < m} and d = #Λ (the cardinal of Λ). We will consider the
following nonlinear partial differential equation

(2.1) tγ∂mt u = F
(
t, x, {∂jt ∂αx u}(j,α)∈Λ

)
.

For simplicity we write
Du = {∂jt ∂αx u}(j,α)∈Λ :

we denote the corresponding variable by z = {zj,α}(j,α)∈Λ ∈ Rd. Let Ω be an open subset
of Rt×Rnx ×Rdz , and let F (t, x, z) be a C∞ function on Ω. Let s1 ≥ 1, σ ≥ 1 and s2 ≥ 1,
let T > 0, and let V be an open subset of Rn. The main assumptions are as follows.
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a1) γ ≥ 0, L ≥ m ≥ 1, s1 ≥ 1 and σ ≥ s2 ≥ 1.
a2) Λ is a subset of {(j, α) ∈ N× Nn : j + |α| ≤ L, j < m}.
a3) F (t, x, z) ∈ E{s1,σ,s2}(Ω).
a4) u(t, x) ∈ C∞([0, T ], E{σ}(V )) is a solution of (2.1) on [0, T ] × V ; this involves the

property: (t, x) ∈ [0, T ]× V =⇒ (t, x,Du(t, x)) ∈ Ω.

Before considering Problem 1.1, we analyze a formal power series on this solution. Let

(2.2) û(t, x) =
∞∑
k=0

uk(x)tk ∈ E{σ}(V )[[t]]

be the formal Taylor expansion at t = 0 of the solution u(t, x) in a4), and let us look for
Gevrey type estimates of the coefficients uk(x) (k = 1, 2, . . . ).

In the case σ = 1 (that is, in the analytic case), we have many results on Gevrey type
estimates of the coefficients of a formal power series solution (see Ōuchi [O], Gérard–
Tahara [GT], Shirai [S], Lysik [L2], and their references), and such results are called
Maillet type theorem.

In order to state our result in the general case, we define

Definition 2.1. For a formal power series f̂(t, x) =
∑
k≥0 ak(x)tk ∈ E{σ}(V )[[t]] we

define the valuation of f̂(t, x) in t (which we denote by valt(f̂)) by

valt(f̂) = min{k ∈ N : ak(x) 6≡ 0 on V }
(if ak(x) ≡ 0 on V for all k ∈ N, we set valt(f̂) =∞). If f(t, x) ∈ C∞([0, T ], E{σ}(V )) we
define valt(f) by using the formal Taylor expansion of f(t, x) at t = 0.

Under the conditions a1)–a4) we set

kj,α = valt
( ∂F

∂zj,α
(t, x,Du(t, x)), V

)
, (j, α) ∈ Λ

and we suppose:

(2.3)

{
kj,α ≥ γ −m+ j, if (j, α) ∈ Λ and |α| = 0,

kj,α ≥ γ −m+ j + 1, if (j, α) ∈ Λ and |α| > 0.

Then, if we use the norm

(2.4) |||f |||K,ρ =
∑
|α|≥0

‖∂αx f‖K
|α|!σ

ρ|α| for f(x) ∈ E{σ}(V ) and K b V

(where ‖∂αx f‖K denotes the maximum norm on K, and ρ is a parameter) we can apply
the same arguments as in references quoted above and we have

Theorem 2.2 (Maillet type theorem). Suppose the conditions a1)–a4) and (2.3). Then
the coefficients uk(x) (k = 1, 2, . . . ) of the formal Taylor expansion (2.2) satisfy the
estimate: for any compact subset K of V there are ρ > 0, C > 0 and h > 0 such that

(2.5) |||uk|||K,ρ ≤ Chkk!s−1 ∀k ∈ N
for any s ≥ max{s∗0, s1, s2} with

(2.6) s∗0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

( j + σ|α| −m
kj,α − γ +m− j

)]
.
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From now, we use the following notation: for û(t, x) =
∑∞
k=0 uk(x)tk ∈ E{σ}(V )[[t]]

we write û(t, x) ∈ E{s,σ}({t}, V ) if it satisfies the estimate (2.5). In this case we say that
û(t, x) is in a formal Gevrey class of order s in t.

Similarly, for U(t, x, z) =
∑
k+|ν|≥0 uk,ν(x)tkzν ∈ E{σ}(K)[[t, z]] we write U(t, x, z) ∈

E{s,σ}({t, z},K) if there are ρ > 0, C > 0 and h > 0 such that |||uk,ν |||K,ρ ≤ Chk+|ν| ×
(k + |ν|)!s−1 for all (k, ν) ∈ N× Nd.

Sketch of the proof of Theorem 2.2. Let û(t, x) be as in (2.2), and set s = max{s∗0, s1, s2}.
Take any compact subset K of V . Our purpose is to show the estimate (2.5) on K. We
will give a sketch of the proof only in the case s > 1.

Step 1. Reduction. We take q ∈ N sufficiently large and we divide our formal solution
û(t, x) into the form

(2.7) û(t, x) = ϕ(t, x) + tqŵ(t, x) with ϕ(t, x) =
q∑

k=0

uk(x)tk.

Then we have ŵ(t, x) ∈ E{σ}(K)[[t]], ŵ(0, x) ≡ 0, and we see that ŵ(t, x) satisfies the
formal equation of the form

(2.8)

C
(
t∂t, x

)
ŵ = f̂(t, x) +

∑
(j,α)∈Λ

âj,α(t, x)(t∂t)j∂αx ŵ

+
∑
|ν|≥2

b̂ν(t, x)
∏

(j,α)∈Λ

[
(t∂t)j∂αx ŵ

]νj,α
where C(λ, x) = λm+ c1(x)λm−1 + . . .+ cm(x) ∈ E{σ}(K)[λ], ν = {νj,α}(j,α)∈Λ ∈ Nd and
|ν| =

∑
(j,α)∈Λ νj,α. Moreover, we have the following conditions:

1) C(x, k) 6= 0 on K for all k = 1, 2, . . . ,
2) f̂(t, x), âj,α(t, x), b̂ν(t, x) ∈ E{s∗,σ}({t},K) for s∗ = max{s1, s2},
3) valt(f̂) ≥ 1, valt(âj,α) ≥ 1 and valt(b̂ν) ≥ (q −m+ 1)|ν| − (q + γ −m),
4)
∑
|ν|≥2 b̂ν(t, x)zν ∈ E{s∗,σ}({t, z},K), and

5) if we set qj,α = valt(âj,α) we have

(2.9) s∗0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

(j + σ|α| −m
qj,α

)]
.

We set pν = valt(b̂ν), and for |ν| ≥ 2 we set Lν = max{j + σ|α| : νj,α > 0}. Since we are
considering the case s > 1 and q is sufficiently large, we may suppose the condition

(2.10) s− 1 >
Lν −m

pν + |ν| − 1
for any |ν| ≥ 2.

Thus, to prove Theorem 2.2 it is sufficient to show that

(2.11) ŵ(t, x) =
∞∑
k=1

wk(x)tk ∈ E{s,σ}({t},K).

Step 2. Basic lemmas. We present two lemmas which are needed in the proof of (2.11).
In the discussion below we regard |||f |||K,ρ in (2.4) as a formal power series in ρ. We write∑
k≥0 akρ

k �
∑
k≥0 bkρ

k if |ak| ≤ bk holds for all k ≥ 0. We take c0 > 0 so that
|C(k, x)| ≥ c0k

m holds on K for any k = 1, 2, . . . , and also we take C0 > 0 and R0 > 0
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so that
|||C(k)|||K,ρ �

C0k
m

(1− ρ/R0)n
, k = 1, 2, . . . .

Lemma 2.3. Let w(x), g(x) ∈ E{σ}(K) satisfy the equation C(k, x)w(x) = g(x) on K. If
|||g|||K,ρ � A/(1− ρ/R)a for some A > 0, 0 < R < R0 and a ≥ 1, and if R satisfies

(2.12)
C0

c0

[ 1
(1−R/R0)n

− 1
]
≤ 1/2,

then we have
|||w|||K,ρ �

(2/c0)A
km(1− ρ/R)a

.

Lemma 2.4 (Nagumo’s type lemma, [T2, Proposition 4.5]). If |||f |||K,ρ � C/(1 − ρ/R)a

for some C > 0, a ≥ 1 and R > 0, we have

|||∂xif |||K,ρ �
Ceσ(a+ σ)σ/R
(1− ρ/R)a+σ

for i = 1, . . . , n.

Step 3. Proof of (2.11). Let f̂(t, x), âj,α(t, x) and b̂ν(t, x) be as

f̂(t, x) =
∑
k≥1

fk(x)tk, âj,α(t, x) =
∑
k≥qj,α

aj,α,k(x)tk, b̂ν(t, x) =
∑
k≥pν

bν,k(x)tk.

Since ŵ(t, x) is a formal solution of the equation (2.8), the coefficients wk(x) (k = 1, 2, . . . )
satisfy the recurrent formulas

(2.13) C(1, x)w1 = f1(x)

and for k ≥ 2

(2.14) C(k, x)wk = fk(x) +
∑

(j,α)∈Λ

∑
qj,α≤h≤k−1

aj,α,k(x)(k − h)j∂αxwk−h

+
∑
|ν|≥2

∑
pν≤h≤k−2

bν,h(x)
∑

|k∗|+h=k

∏
(j,α)∈Λ

νj,α∏
i=1

[
kj,α(i)j∂αxwkj,α(i)

]
where |k∗| =

∑
(j,α)∈Λ(kj,α(1)+ . . .+kj,α(νj,α)). Since only the terms w1(x), . . . , wk−1(x)

and their derivatives appear in the right-hand side of (2.14), in the estimation of wk(x)
(k = 1, 2, . . . ) we can use the induction argument on k.

Let us take Fk ≥ 0, Aj,α,k ≥ 0 and Bν,k ≥ 0 so that

|||fk|||K,ρ �
Fk

(1− ρ/R0)n
, |||aj,α,k|||K,ρ �

Aj,α,k
(1− ρ/R0)n

, |||bν,k|||K,ρ �
Bν,k

(1− ρ/R0)n

and that the series∑
k≥1

Fk
k!s−1

tk,
∑
k≥qj,α

Aj,α,k
k!s−1

tk,
∑

|ν|≥2,k≥pν

Bν,k
(k + |ν|)!s−1

tkzν

are convergent in a neighborhood of t = 0 or (t, z) = (0, 0).
Since w1(x) ∈ E{σ}(K) is known, we can choose A > 0 so that

(2.15) |||∂αxw1|||K,ρ �
A

(1− ρ/R0)n
, (j, α) ∈ Λ.

We choose µ ∈ N so that µ ≥ max{j + σ|α| : (j, α) ∈ Λ}, µ > m and µ ≥ n hold. Take
N ∈ N∗ sufficiently large so that s−1 ≥ (µ−m)/(N−1), and set F ∗k = kµ−mFk/(k−1)!s−1
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and

A∗j,α,k =


Aj,α,k, if k + 1 ≤ N,

Aj,α,k
(k + 1−N)!s−1

, if k + 1 > N,

B∗ν,k =


Bν,k, if k + |ν| ≤ N,

Bν,k
(k + |ν| −N)!s−1

, if k + |ν| > N.

Then the series ∑
k≥1

F ∗k t
k,

∑
k≥qj,α

A∗j,α,kt
k and

∑
|ν|≥2,k≥pν

B∗ν,kt
kzν

are convergent in a neighborhood of t = 0 or (t, z) = (0, 0).
Now, let us consider the following functional equation with respect to (Y, t):

(2.16) Y =
At

(1− ρ/R)µ
+

2/c0
(1− ρ/R)µ

[∑
k≥2

F ∗k
(1− ρ/R)µ(2k−2)

tk

+H
∑

(j,α)∈Λ

∑
k≥qj,α

A∗j,α,k(k + 1)µ

(1− ρ/R)µ(2k−1)
tk(βY )

+H
∑
|ν|≥2

∑
k≥pν

B∗ν,k(k + |ν|)µ

(1− ρ/R)µ(2k+|ν|−2)
tk(βY )|ν|

]
,

where R > 0 is the constant in (2.12), ρ is regarded as a parameter with 0 < ρ < R,
H = eN(s−1) and β = (2µe/R)µ. Since this is an analytic functional equation, the implicit
function theorem tells us that for any 0 < ρ < R equation (2.16) has a unique holomorphic
solution Y of the form

Y =
∑
k≥1

Yk(ρ)tk,

and the coefficients Yk = Yk(ρ) (k = 1, 2, . . . ) are determined by the recurrent formulas:

(2.17) Y1 =
A

(1− ρ/R)µ

and for k ≥ 2

Yk =
2/c0

(1− ρ/R)µ

[
F ∗k

(1− ρ/R)µ(2k−2)
(2.18)

+H
∑

(j,α)∈Λ

∑
qj,α≤h≤k−1

A∗j,α,h(h+ 1)µ

(1− ρ/R)µ(2h−1)
(βYk−h)

+H
∑
|ν|≥2

∑
pν≤h≤k−2

B∗ν,h(h+ |ν|)µ

(1− ρ/R)µ(2h+|ν|−2)

∏
(j,α)∈Λ

νj,α∏
i=1

[
βYkj,α(i)

]]
.

Moreover, by induction on k we see that the coefficients Yk(ρ) have the form

Yk(ρ) =
Ck

(1− ρ/R)µ(2k−1)
, k = 1, 2, . . .

where C1 = A and Ck ≥ 0 (k ≥ 2) are constants independent of the parameter ρ.
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The following lemma says that Y (t) is a majorant series of the formal solution ŵ(t, x):

Lemma 2.5. For any k = 1, 2, . . . we have

(2.19) kj |||∂αxwk|||K,ρ �
(k − 1)!s−1

kµ−j−σ|α|
βYk(ρ) for any (j, α) ∈ Λ.

Proof. The case k = 1 follows from (2.15) and (2.17). The general case is proved by
induction on k. To do so, we apply the induction hypothesis to (2.14), we note that
(k − `)!/(k − 1)! ≤ e`/k`−1 holds for any k > ` > 1, and we use formula (2.18) and
Lemma 2.3. Then we have

|||wk|||K,ρ �
(k − 1)!s−1

kµ
(1− ρ/R)µYk(ρ) =

(k − 1)!s−1

kµ
Ck

(1− ρ/R)µ(2k−2)
.

Thus, by using Lemma 2.4 we have the estimate (2.19). Since the argument is similar to
the argument in [GT, Chapter 6], we may omit the details.

Since if we fix ρ > 0 the series Y =
∑
k≥1 Yk(ρ)tk is convergent in a neighborhood of

t = 0, we have Yk(ρ) ≤ Chk (k = 1, 2, . . . ) for some C > 0 and h > 0. By applying these
estimates to (2.19) we have the result (2.11).

3. Gevrey regularity in time. Now, let us return to Problem 1.1. In order to treat
time regularity problem, we will use the norm

(3.1) |||f |||[0,T ]×K,ρ =
∑
|α|≥0

‖∂αx f‖[0,T ]×K

|α|!σ
ρ|α|

(where f(t, x) ∈ C∞([0, T ], E{σ}(V )), K b V , ‖∂αx f‖[0,T ]×K denotes the maximum norm
on [0, T ] ×K, and ρ is a parameter). It is clear that u(t, x) ∈ E{s,σ}([0, T ] × V ), if and
only if for any compact subset K of V there are ρ > 0, C > 0 and h > 0 such that

|||∂kt u/k!|||[0,T ]×K,ρ ≤ Chkk!s−1 ∀k ∈ N.
If we use Faà di Bruno’s formula (see Johnson [J]) instead of the recurrent formulas (2.14)
which appear in the calculation of formal power series solution, we can apply the same
argument to Problem 1.1 as in Maillet type theorem in Section 2.

Therefore, by Theorem 2.2 it will be expected that the solution u(t, x) satisfies
u(t, x) ∈ E{s,σ}([0, T ] × V ) for any s ≥ max{s∗0, s1, s2}, that is, the Gevrey order of
the regularity in time for actual solution will be the same as the Gevrey order for formal
solution in Maillet type theorem. But, in fact, it seems not true in the general case as is
seen in the theorem given below.

Instead of the valuation, we define

Definition 3.1. For f(t, x) ∈ C∞([0, T ] × V ) we define the order of the zero of f(t, x)
on V at t = 0 (which we denote by ordt(f, V )) by

ordt(f, V ) = min{k ∈ N : (∂kt f)(0, x) 6≡ 0 on V }
(if (∂kt f)(0, x) ≡ 0 on V for all k ∈ N, we set ordt(f, V ) =∞).

Under the conditions a1)–a4) we set

kj,α = ordt
( ∂F

∂zj,α
(t, x,Du(t, x)), V

)
, (j, α) ∈ Λ,
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and we suppose

(3.2)

{
kj,α ≥ γ −m+ j, if (j, α) ∈ Λ and |α| = 0,

kj,α ≥ γ −m+ j + 1, if (j, α) ∈ Λ and |α| > 0.

By Tahara [T2, Theorem 2.2] we have

Theorem 3.2 (Gevrey regularity in time). Suppose the conditions a1)–a4) and (3.2).
Then we have u(t, x) ∈ E{s,σ}([0, T ]× V ) for any s ≥ max{s0, s1, s2} with

(3.3) s0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

( j + σ|α| −m
min{kj,α − γ +m− j,m− j}

)]
.

We note that s∗0 ≤ s0 holds; in general, the time regularity in the case of formal
solutions is better than the case of actual solutions.

Remark 3.3.
(1) In the case γ = 0, the index s0 is expressed as

(3.4) s0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

(j + σ|α| −m
m− j

)]
.

(2) In the case γ = m, the index s0 is expressed as

(3.5) s0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

( j + σ|α| −m
min{kj,α − j, m− j}

)]
.

Example 3.4.
(1) Let us consider the periodic KdV equation:

(3.6) ∂tu+ ∂3
xu+ 6u∂xu = 0, u(0, x) = ϕ(x) on T

where ϕ(x) is an analytic function on the torus T. The following results are known: i) The
problem (3.6) is well-posed in Hs(T) for s � 1; ii) Gorsky–Himonas [GH] showed that
u(t, x) ∈ C∞((−δ, δ), E{1}(T)); and iii) Hannah–Himonas–Petronilho [HHP] showed that
u(t, x) ∈ E{3,1}((−δ, δ) × T). Since our index s0 is given by s0 = 3σ, the result iii) just
coincides with our result.

(2) Let a > 0, k ∈ N∗ and let us consider

(3.7) (t∂t + a)2u− tk∂2
xu = f(t, x).

The following results are known in [T1]: i) (3.7) is uniquely solvable in C∞([0, T ], E{σ}(R))
for any σ ≥ 1; ii) if f(t, x) ∈ E{σ}([0, T ]× R) we have the time regularity

(3.8)

{
u(t, x) ∈ E{σ}([0, T ]× R), if k ≥ 2,

u(t, x) ∈ E{2σ−1,σ}([0, T ]× R), if k = 1.

Since our index s0 is given by s0 = 1 + (2σ− 2)/min{k, 2}, the result (3.8) just coincides
with our result.

Sketch of the proof of Theorem 3.2. Let u(t, x) ∈ C∞([0, T ], E{σ}(V )) be a solution of
(2.1) given in a4), and set s = max{s0, s1, s2}. Take any compact subset K of V . Our
purpose is to show that u(t, x) ∈ E{s,σ}([0, T ] × K). We will give a sketch of the proof
only in the case s > 1. The complete proof is given in [T2].
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Step 1. Reduction. We take q ∈ N sufficiently large and we divide our solution u(t, x)
into the form

(3.9) u(t, x) = ϕ(t, x) + tqw(t, x) with ϕ(t, x) =
q−1∑
k=0

(∂kt u)(0, x)
k!

tk.

Then we have w(t, x) ∈ C∞([0, T ], E{σ}(K)), and we see that w(t, x) satisfies an equation
of the form

(3.10) C
(
t∂t, x

)
w = G

(
t, x,Θw

)
with Θw = {(t∂t)j∂αxw}(j,α)∈Λ,

where C(λ, x) = λm+c1(x)λm−1+. . .+cm(x) ∈ E{σ}(K)[λ] andG(t, x, z) ∈ E{s∗,σ,s2}(Ω1)
for s∗ = max{s1, s2} and some open subset Ω1 of Rt × Rnx × Rdz satisfying the property:
(t, x) ∈ [0, T ]×K =⇒ (t, x,Θw(t, x)) ∈ Ω1. Moreover, we have the following conditions:

1) ordt
( ∂G

∂zj,α
(t, x,Θw(t, x)),K

)
≥ 1,

2) ordt
(∂|ν|G
∂zν

(t, x,Θw(t, x)),K
)
≥ (q −m+ 1)|ν| − (q + γ −m) for |ν| ≥ 2,

3) if we set qj,α = ordt
( ∂G

∂zj,α
(t, x,Θw(t, x)),K

)
we have

(3.11) s0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

( j + σ|α| −m
min{qj,α,m− j}

)]
.

We set

q∗p,ν = ordt
(∂p+|ν|G
∂tp∂zν

(t, x,Θw(t, x)),K
)
, p+ |ν| ≥ 1, |ν| ≥ 1

(if p = 0 and ν = ej,α we have q∗0,ej,α = qj,α) and set Λν = {(j, α) ∈ Λ : νj,α > 0}. Since
q is taken sufficiently large we may suppose the condition

s0 − 1 ≥ max
(j,α)∈Λν

( j + σ|α| −m
p+ |ν|+ min{q∗p,ν ,m− j} − 1

)
, p+ |ν| ≥ 2, |ν| ≥ 1.

In the case |ν| ≥ 2 this is verified in [T2, Proposition 6.2]. In the case p ≥ 1 and ν = ej,α
we have q∗p,ej,α ≥ max{qj,α − p, 0}, and so this is verified by the following: if qj,α − p ≤ 0
we have p+|ν|+min{q∗p,ν ,m−j}−1 = p+min{q∗p,ν ,m−j} ≥ p ≥ qj,α ≥ min{qj,α,m−j},
if 0 < qj,α−p ≤ m− j we have p+ |ν|+min{q∗p,ν ,m− j}−1 ≥ p+min{qj,α−p,m− j} =
p + (qj,α − p) = qj,α ≥ min{qj,α,m − j}, and if qj,α − p > m − j we have p + |ν| +
min{q∗p,ν ,m− j}−1 ≥ p+min{qj,α−p,m− j} = p+(m− j) ≥ m− j ≥ min{qj,α,m− j}.

Thus, to prove Theorem 3.2 it is sufficient to show that

(3.12) w(t, x) ∈ E{s,σ}([0, T ]×K).

Step 2. Basic lemma. We take C > 0 and R0 > 0 so that |||ci|||K,ρ � C/(1 − ρ/R0)n

(i = 1, . . . ,m). Then, instead of Lemma 2.3, we have

Lemma 3.5 ([T2, Lemma 5.2.2]). There are k0 > 0 and M0 > 0 such that if w(t, x),
g(t, x) ∈ C∞([0, T ]×K) satisfy the equation C(t∂t + k, x)w(t, x) = g(t, x) on [0, T ]×K
for some k ≥ k0, if |||g|||[0,T ]×K,ρ � A/(1− ρ/R)a holds for some A > 0, 0 < R < R0 and
a ≥ 1, and if R satisfies

(3.13) M0C
[ 1

(1−R/R0)n
− 1
]
≤ 1/2,
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then we have

|||(t∂t + k)iw|||[0,T ]×K,ρ �
2M0A

km−i(1− ρ/R)a
, i = 0, 1, . . . ,m.

Step 3. Proof of (3.12). We know that w(t, x) is a solution of equation (3.10). By
applying ∂kt to both sides of (3.10) and by using Faà di Bruno’s formula (or Lemma 4.2
in [T2]) we have

(3.14) C(t∂t + k, x)
1
k!
∂kt w

= fk(t, x) +
∑

1≤p+|ν|≤k,|ν|≥1

ap,ν(t, x)
∑

|k∗|=k−p

∏
(j,α)∈Λ

[
1

kj,α(1)!
∂
kj,α(1)
t (t∂t)j∂αxw

× . . .× 1
kj,α (νj,α)!

∂
kj,α(νj,α)
t (t∂t)j∂αxw

]
,

where |k∗| =
∑

(j,α)∈Λ(kj,α(1) + . . .+ kj,α(νj,α)),

fk(t, x) =
1
k!
∂kG

∂tk
(t, x,Θw(t, x)) (k ≥ 1),

ap,ν(t, x) =
1
p!ν!

∂p+|ν|G

∂tp∂zν
(t, x,Θw(t, x)) (p+ |ν| ≥ 1, |ν| ≥ 1).

By the definition, we have q∗p,ν = ordt(ap,ν(t, x),K) (p + |ν| ≥ 1 and |ν| ≥ 1). Since
qj,α(= q∗0,ej,α) ≥ 1, we can express the right-hand side of (3.14) by a polynomial of the
terms (t∂t + h)i∂αx (∂ht w/h!) (i = 0, 1, . . . ,m, |α| ≤ L and h = 1, . . . , k − 1). Therefore, in
the estimation of ∂kt w/k! we can use the induction argument on k. We note that formula
(3.14) corresponds to the formula (2.14) in Section 2. Moreover, we have constants Fk ≥ 0
and Ap,ν ≥ 0 such that

|||fk|||[0,T ]×K,ρ �
Fk

(1− ρ/R0)n
, |||ap,ν |||[0,T ]×K,ρ �

Ap,ν
(1− ρ/R0)n

and that the series∑
k≥1

Fk
k!s−1

tk and
∑

p+|ν|≥1,|ν|≥1

Ap,ν
(p+ |ν|)!s−1

tpzν

are convergent in a neighborhood of t = 0 or (t, z) = (0, 0).

We choose µ ∈ N so that µ ≥ max{j + σ|α| : (j, α) ∈ Λ}, µ > m and µ ≥ n. Take
N ∈ N∗ sufficiently large so that s − 1 ≥ (µ −m)/(N − 1), (m + 1)N ≥ k0 and N ≥ 2,
we take A∗p,ν > 0 (2 ≤ p+ |ν| ≤ N , |ν| ≥ 1) sufficiently large, and we set

F ∗k =
kµ−mFk

(k − 1)!s−1
(k ≥ 1),

A∗p,ν =
Ap,ν

(p+ |ν| −N)!s−1
(p+ |ν| ≥ N, |ν| ≥ 1).
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We take A∗ > 0 and C∗k > 0 (k = 1, 2, . . . , (m+ 1)N) so that

|||(t∂t)j∂αxw|||[0,T ]×K,ρ �
A∗

(1− ρ/R0)n
, j = 0, 1, . . . ,m and |α| ≤ L,(3.15)

|||(t∂t + k)j∂αx (∂kt w/k!)|||[0,T ]×K,ρ �
(k − 1)!s−1

kµ−j−σ|α|
C∗k

(1− ρ/R0)n
(3.16)

for j = 0, 1, . . . ,m, |α| ≤ L and k = 1, 2, . . . , (m+ 1)N.

Now, let us consider the following functional equation with respect to (Y, t):

(3.17) Y =
A∗

(1− ρ/R)µ
t+

2
(1− ρ/R)2µ

tY +
∑

1≤k≤(m+1)N

C∗k
(1− ρ/R)µ(2k−1)

tk

+
2M0

(1− ρ/R)µ

[ ∑
k>(m+1)N

F ∗k
(1− ρ/R)µ(2k−2)

tk +H
∑

(j,α)∈Λ

A∗0,ej,α(m+ 1)µ

(1− ρ/R)µ
t× 2βY

+H
∑

p+|ν|≥2,|ν|≥1

A∗p,ν(p+ (m+ 1)|ν|)µ

(1−R/R0)n(1− ρ/R)µ(2p+|ν|−2)
tp(βY )|ν|

]
where R > 0 is the constant in (3.13), ρ is regarded as a parameter with 0 < ρ < R,
H = e(s−1)(m+1)N (m + 1)µ and β = (2µe/R)µ. Since this is an analytic functional
equation, the implicit function theorem tells us that for any 0 < ρ < R equation (3.17)
has a unique holomorphic solution Y of the form

Y =
∑
k≥1

Yk(ρ)tk.

Moreover, we see that the coefficients Yk(ρ) have the form

Yk(ρ) =
Ck

(1− ρ/R)µ(2k−1)
, k = 1, 2, . . .

where Ck ≥ 0 (k ≥ 1) are constants independent of the parameter ρ. We can show

Lemma 3.6. For any k = 1, 2, . . . we have

(3.18) |||(t∂t + k)j∂αx (∂kt w/k!)|||[0,T ]×K,ρ �
(k − 1)!s−1

kµ−j−σ|α|
βYk(ρ)

for j = 0, 1, . . . ,m and |α| ≤ L.

The cases k = 1, 2, . . . , (m + 1)N follow from (3.16), and the general case is proved
by induction on k. The complete proof is given in [T2, Section 7].

Since if we fix ρ > 0 the series Y =
∑
k≥1 Yk(ρ)tk is convergent in a neighborhood of

t = 0, we have Yk(ρ) ≤ Chk (k = 1, 2, . . . ) for some C > 0 and h > 0. By applying these
estimates to (3.18) we have the result (3.12).

4. On the necessity of the condition. In this last section, we will derive a necessary
condition for a solution u(t, x) (or û(t, x)) to belong to the class E{s,σ}([0, T ] × V ) (or
E{s,σ}({t}, V )).

4.1. Fuchsian case. We set C(λ, x) = λm + c1(x)λm−1 + . . . + c0(x) ∈ E{σ}(V )[λ]. If
the equation is written in the form

(4.1) C(t∂t, x)u = F
(
t, x,Θu

)
with Θu = {(t∂t)j∂αx u}(j,α)∈Λ
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our indices (2.6) and (3.3) are written as

s∗0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

(j + σ|α| −m
qj,α

)]
,(4.2)

s0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

( j + σ|α| −m
min{qj,α,m− j}

)]
(4.3)

with

(4.4) qj,α = ordt
( ∂F

∂zj,α
(t, x,Θu(t, x)), V

)
, (j, α) ∈ Λ.

In this case, let us estimate the index s of the Gevrey class E{s,σ} from below such
that u(t, x) ∈ E{s,σ}([0, T ]× V ) or û(t, x) ∈ E{s,σ}({t};V ) holds.

Let T > 0, V be an open neighborhood of x = 0 ∈ Rn, and Ω be an open neighborhood
of (t, x, z) = (0, 0, 0) ∈ R × Rn × Rd. For a function f(t, x) ∈ C∞([0, T ] × V ), we write
f(t, x) � 0 (at (t, x) = (0, 0)) if (∂kt ∂

β
xf)(0, 0) ≥ 0 holds for all (k, β) ∈ N × Nn. We

assume:

b1) C(k, 0) > 0 for any k = 1, 2, . . . ;
b2) C(k, 0)− C(k, x)� 0 (at x = 0) for any k = 1, 2, . . . ;
b3) F (t, x, z)� 0 (at (t, x, z) = (0, 0, 0)), and

(4.5) lim inf
|β|→∞

( (∂t∂βxF )(0, 0, 0)
|β|!σ

)1/|β|
> 0;

b4) u(0, x) = 0 on V , and
∂F

∂zj,α
(t, x,Θu)

∣∣∣
t=0
≡ 0 on V for any (j, α) ∈ Λ.

We note that by b4) we have (Θu)(0, x) = 0 and so by setting t = 0 in (4.1) we have
F (0, x, 0) = 0 on V . If we set a(x) = (∂tF )(0, x, 0) the condition (4.5) implies that there
is an h > 0 such that (∂βxa)(0) ≥ h|β||β|!σ holds for any sufficiently large |β|.

As before, we set qj,α = ordt((∂F/∂zj,α)(t, x,Θu(t, x)), V ) ((j, α) ∈ Λ). Then we have
the expression

∂F

∂zj,α
(t, x,Θu(t, x)) = aj,α(x)tqj,α +O(tqj,α+1) (as t −→ +0)

for some aj,α(x) ∈ E{σ}(V ) with aj,α(x)� 0 (at x = 0). We set

(4.6) Λ(+) = {(j, α) ∈ Λ : aj,α(0) > 0, |α| > 0}.

Then we have the following result.

Theorem 4.1. Let u(t, x) ∈ C∞([0, T ], E{σ}(V )) be a solution of the equation (4.1). If
u(t, x) ∈ E{s,σ}([0, T ]× V ) or û(t, x) ∈ E{s,σ}({t};V ) for some s ≥ 1, we have

(4.7) s ≥ 1 + max
[
0, max

(j,α)∈Λ(+)

(j + σ|α| −m
qj,α

)]
.

Remark 4.2. Compare (4.7) with (4.2) or (4.3). In the case of formal solutions, our
sufficient condition (4.2) is very close to the necessary condition (4.7); but in the case of
actual solutions, there is a gap.
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Sketch of the proof of Theorem 4.1. Let

(4.8) û(t, x) =
∞∑
k=1

uk(x)tk ∈ E{σ}(V )[[t]]

be the formal Taylor expansion at t = 0 of the solution u(t, x). By a formal calculation
we can see that uk(x)� 0 (at x = 0) for any k = 1, 2, . . . .

Take any (j, α) ∈ Λ(+), then we have qj,α ≥ 1 and aj,α(0) > 0. Our aim is to show
the condition

(4.9) s− 1 ≥ j + σ|α| −m
qj,α

.

For simplicity we write q = qj,α and A = aj,α(0) > 0. Since

C(t∂t + 1, x)∂tu = (∂tF )(t, x,Θu) +
∂F

∂zj,α
(t, x,Θu)× ∂t(t∂t)j∂αx u+ . . .

� a(x) +Atq × ∂t(t∂t)j∂αx u = a(x) +Atq−1(t∂t)j+1∂αx u

(where we used: a(x) = (∂tF )(0, x, 0)) and since C(k, 0)−C(k, x)� 0 for any k = 1, 2, . . . ,
we have C(1, 0)u1 � a(x) and

C(q + `, 0)uq+` �
A`j+1

(q + `)
∂αx u`, ` ≥ 1.

Therefore

(4.10) Wkq+1(x)� Ak(q + 1)j+1 · · · ((k − 1)q + 1)j+1

C(1, 0)C(q + 1, 0) · · ·C(kq + 1, 0)

× 1
(q + 1) · · · (kq + 1)

∂kαx (a(x)) for k = 1, 2, . . . .

Here we recall: by the assumption û(t, x) ∈ E{s,σ}({t}, V ) we have |up(0)| ≤ BHpp!s−1

(p = 0, 1, 2, . . . ) for some B > 0 and H > 0, and by the condition (4.5) we have an
h > 0 such that (∂βxa)(0) ≥ h|β||β|!σ for any sufficiently large |β|. We note also that
C(k, 0) ≤ ckm (for k = 1, 2, . . . ) holds for some c > 0. By applying these conditions
to (4.10), for any sufficiently large k we have

BHkq+1(kq + 1)!s−1 ≥ |ukq+1(0)| = ukq+1(0)

≥ Ak(q + 1)j+1 · · · ((k − 1)q + 1)j+1

ck+1(q + 1)m+1 · · · (kq + 1)m+1
hk|α|(k|α|)!σ ≥ B1H

k
1 k!j+σ|α|−m

for some B1 > 0 and H1 > 0. This proves that j + σ|α| −m ≤ q(s − 1). Thus, we have
proved (4.9). The details are written in [T2, Section 8].

4.2. Non-singular case. Let us consider the initial value problem

(4.11)

{
∂mt u = F (t, x,Du) on [0, T ]× V , where Du = {∂jt ∂αx u}(j,α)∈Λ,

∂itu
∣∣
t=0

= ϕi(x) on V , i = 0, 1, . . . ,m− 1,
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where ϕi(x) ∈ E{σ}(V ) (0 ≤ i ≤ m− 1) are supposed. In this case, our indices (2.6) and
(3.3) are written as

s∗0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

(j + σ|α| −m
kj,α +m− j

)]
,(4.12)

s0 = 1 + max
[
0, max

(j,α)∈Λ,|α|>0

(j + σ|α| −m
m− j

)]
(4.13)

with

(4.14) kj,α = ordt
( ∂F

∂zj,α
(t, x,Du(t, x)), V

)
, (j, α) ∈ Λ.

Let T > 0, V be an open neighborhood of x = 0 ∈ Rn, and Ω be an open neighborhood
of (t, x, z) = (0, 0, p) ∈ R × Rn × Rd with p = {(∂αxϕj)(0)}(j,α)∈Λ. We set ϕm(x) =
F (0, x, {(∂αxϕj)(x)}(j,α)∈Λ) and

a(x) =
∂F

∂t

(
0, x, {(∂αxϕj)(x)}(j,α)∈Λ

)
+

∑
(j,α)∈Λ

∂F

∂zj,α

(
0, x, {(∂αxϕj)(x)}(j,α)∈Λ

)
(∂αxϕj+1)(x).

We assume:

c1) F (t, x, z)� 0 (at (t, x, z) = (0, 0, p));
c2) ϕi(x)� 0 (at x = 0), i = 0, 1, . . . ,m− 1;
c3) lim inf

|β|→∞

(
(∂βxa)(0)/|β|!σ

)1/|β|
> 0.

As before, we set kj,α = ordt
(
(∂F/∂zj,α)(t, x,Du(t, x)), V

)
((j, α) ∈ Λ). Then we have

the expression
∂F

∂zj,α
(t, x,Du(t, x)) = aj,α(x)tkj,α +O(tkj,α+1) (as t −→ +0)

for some aj,α(x) ∈ E{σ}(V ) with aj,α(x)� 0 (at x = 0). We set

(4.15) Λ(+) = {(j, α) ∈ Λ : aj,α(0) > 0, |α| > 0}.
Then we have the following result.

Theorem 4.3. Let u(t, x) ∈ C∞([0, T ] × E{σ}(V )) be a solution of (4.8). If u(t, x) ∈
E{s,σ}([0, T ]× V ) or û(t, x) ∈ E{s,σ}({t};V ) for some s ≥ 1, we have

(4.16) s ≥ 1 + max
[
0, max

(j,α)∈Λ(+)

(j + σ|α| −m
kj,α +m− j

)]
.

Remark 4.4. Compare (4.16) with (4.12) or (4.13). In the case of formal solutions, our
sufficient condition (4.12) is very close to the necessary condition (4.16); but in the case
of actual solutions, there is a gap.

Proof of Theorem 4.3. By c1) and c2) we have ϕm(x)� 0. We set

u(t, x) =
m∑
i=0

ϕi(x)
ti

i!
+ tmw(t, x).

Then we can reduce our equation (4.14) to an equation of type (4.1) with respect to
w(t, x), and we can apply Theorem 4.1. The condition (4.5) is verified by c3).
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4.3. A generalized KdV type equation. Let k, ` ∈ {1, 2, 3, 4, 5, . . . } and m ∈ {3, 4,
5, 6, . . . }, and let us consider

(4.17) ∂tu = ∂mx u+ uk∂`xu, u(0, x) = ϕ(x),

where t ∈ R, x ∈ R or x ∈ T, and ϕ(x) is an appropriate function in the Gevrey class
E{σ} for some σ ≥ 1. This equation is discussed in Hannah–Himonas–Petronilho [HHP].
By Theorems 3.2 and 4.3 we have

Theorem 4.5.
(1) Let I = (−δ, δ) and let V be an open subset of R. If u(t, x) ∈ C∞(I, E{σ}(V )) is

a solution of (4.17), we have u(t, x) ∈ E{s,σ}(I × V ) (and so û(t, x) ∈ E{s,σ}({t}, V )) for
any s ≥ max{mσ, `σ}.

(2) Conversely, if u(t, x) ∈ E{s,σ}(I × V ) is a solution of (4.17) and if ϕ(x) satisfies
ϕ(0) > 0, ϕ(x)� 0 (at x = 0) and

(4.18) lim inf
α→∞

( (∂αxϕ)(0)
α!σ

)1/α

> 0,

we have s ≥ max{mσ, `σ}.
In the case σ > 1 there are many functions ϕ(x) ∈ E{σ}(R) with compact support

satisfying (4.18). In the case σ = 1, the necessity of the condition s ≥ max{m, `} can be
verified under the initial data

ϕ(x) =


i(m−`)/keix

M − eix
(M > 1) in the case V = T

1
(i− x)(4p+m−`)/k (p ∈ N∗, k < 2m− 2`+ 8p) in the case V = R

by a small modification of the argument in [HHP].

4.4. Heat equation. Let k ∈ {1, 2, . . . } and let us consider

(4.19) ∂tu = tk∂2
xu, u(0, x) = ϕ(x),

where (t, x) ∈ (0,∞)× R. We know:

Proposition 4.6. If ϕ(x) is a bounded continuous function on R, the equation (4.19)
has a unique solution u(t, x) ∈ C0([0,∞) × R) ∩ C∞((0,∞) × R) which is bounded on
[0,∞)× R; moreover, the unique solution is given by

u(t, x) =
∫ ∞
−∞

E
(
tk+1/(k + 1), x− y

)
ϕ(y) dy, where E(t, x) =

1√
4πt

e−x
2/4t.

As to a solution in the Gevrey class, under the condition that ϕ(x) ∈ B∞(R) and

|∂mx ϕ(x)| ≤ AHmm!σ on R, m = 0, 1, 2, . . .

for some A > 0 and H > 0, we have

Theorem 4.7.
(1) The solution u(t, x) of (4.19) satisfies u(t, x) ∈ E{2σ,σ}([0,∞) ×R).
(2) Conversely, if u(t, x) ∈ E{s,σ}([0,∞) × R) is a solution of (4.19) and if ϕ(x)

satisfies ϕ(x)� 0 (at x = 0) and

lim inf
α→∞

(
(∂αxϕ)(0)/α!σ

)1/α
> 0,

we have s ≥ (2σ + k)/(k + 1).
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We note that if k = 0 we have (2σ + k)/(k + 1) = 2σ; but that if k ≥ 1 we have

2σ = 1 +
2σ − 1

1
> 1 +

2σ − 1
k + 1

=
2σ + k

k + 1
.

In the case of formal solutions, we have û(t, x) ∈ E{s,σ}({t},R) for any s ≥ (2σ+k)/(k+1)
which coincides with the necessity in (2).

[GL1] and [GL2] have discussed a similar problem for semilinear heat equations,
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